
The DDS Tutorial
Release

Contents
1 Foundations 1

1.1 The Data Distribution Service . 1
1.2 The OMG DDS Standard . 1
1.3 DDS in a Nutshell . 2
1.4 Summary . 6

2 Topics, Domains and Partitions 7
2.1 Topics Inside Out . 7
2.2 Scoping Information . 11
2.3 Content Filtering . 12
2.4 Summary . 13

3 Reading and Writing Data 14
3.1 Writing Data . 14
3.2 Accessing Data . 17
3.3 Waiting and being Notified . 20
3.4 Summary . 22

4 Quality of Service 23
4.1 The DDS QoS Model . 23
4.2 Summary . 27

5 Appendix A 28
5.1 Online Resources . 28

6 Acronyms & Abbreviations 29

7 Bibliography 30

8 Contacts & Notices 32
8.1 Contacts . 32
8.2 Notices . 33

i

1
Foundations

1.1 The Data Distribution Service

Whether you are an experienced programmer or a novice, it is highly likely that you have already experienced
some form of Pub/Sub (Publish/Subscribe) – an abstraction for one-to-many communication that provides anony-
mous, decoupled, and asynchronous communication between a publisher and its subscribers. ‘Pub/Sub’ is the
abstraction behind many of the technologies used today to build and integrate distributed applications, such as so-
cial applications, financial trading, etc., whilst keeping their component parts loosely-coupled and independently
evolvable.

Various implementations of the Pub/Sub abstraction have emerged through time to address the needs of differ-
ent application domains. DDS (Data Distribution Service) is an OMG (Object Management Group) standard for
Pub/Sub introduced in 2004 to address the data-sharing needs of large scale mission- and business-critical appli-
cations. Today DDS is one of the hot technologies at the heart of some of the most interesting IoT (Internet of
Things) and I2 (Industrial Internet) applications.

To the question ‘What is DDS?’ one answer is

it is a Pub/Sub technology for ubiquitous, polyglot, efficient and secure data sharing.

Another way of answering this question is to say that

DDS is Pub/Sub on steroids.

1.2 The OMG DDS Standard

The DDS standards family is comprised of the DDS v1.4 API (see OMG DDS 2015) and the DDSI v2.2 (see OMG
DDSI 2014), the ISO/IEC C++ V1.0 API (see ISO/IEC C++ 2013) and the Java5 V1.0 API (see Java5 2013) as
illustrated in The DDS Standard below.

The DDS Standard

1

The DDS Tutorial, Release

The DDS API standard guarantees source code portability across different vendor implementations, while the
DDSI standard ensures on-the-wire interoperability between DDS implementations from different vendors.

The DDS API standard defines several different profiles (see The DDS Standard) that enhance real-time Pub/Sub
with content filtering and queries, temporal decoupling and automatic fail-over. Additionally, APIs are available
in C, C++, C#, Java, JavaScript, CoffeeScript, Scala and more, that can be mixed in deployment as appropriate to
the user application.

The DDS standard was formally adopted by the OMG in 2004 and today it has become the established Pub/Sub
technology for distributing high volumes of data, dependably and with predictable low latency in applications
such as Smart Grids, Smart Cities, Defense, SCADA, Financial Trading, Air Traffic Control and Management,
High Performance Telemetry and Large Scale Supervisory Systems. It is also one of the reference communication
architectures as defined by the Industrial Internet Consortium for the Internet of Things (IoT).

1.3 DDS in a Nutshell

To explain DDS this Tutorial will develop a ‘real-world’ example that is straightforward enough that it can be
understood easily yet complex enough that it will illustrate all of the major features of a DDS system.

The example is a temperature monitoring and control system for a very large building.

Each floor of the building has several rooms, each of which is equipped with a set of temperature and humidity
sensors and one or more conditioners. The application is intended to perform monitoring for all the elements in
the building as well as temperature and humidity control for each room.

This application is a typical distributed monitoring and control application in which there is data telemetry from
several sensors distributed throughout a space, and processing of the sensor data results in actions being applied
to actuators (the conditioners).

1.3.1 Global Data Space

The key abstraction at the foundation of ‘Global Data Space’ is a fully-distributed GDS. It is important to remark
that the DDS specification requires the implementation of the Global Data Space to be fully distributed in order
to avoid single points of failure and bottlenecks.

The Global Data Space

Publishers and Subscribers can join or leave the GDS at any time, as they are dynamically discovered. The
dynamic discovery of Publishers and Subscribers is performed by the GDS and does not rely on any kind of
centralized registry like those found in other Pub/Sub technologies such as the Java Message Service (JMS).

1.3. DDS in a Nutshell 2

The DDS Tutorial, Release

Finally, the GDS also discovers application-defined data types and it propagates them as part of the discovery
process.

The essential point here is that the presence of a GDS equipped with dynamic discovery means that when a system
is deployed no configuration is needed. Everything is automatically discovered and data begins to flow.

Moreover, since the GDS is fully distributed there is no need to fear that the crash of some server having an
unpredictable impact on system availability. In DDS there is no single point of failure, so although applications
can crash and re-start, or disconnect and re-connect, the system as a whole continues to run.

1.3.2 Domain Participant

To do anything useful a DDS application needs to create a Domain Participant (DP). The DP gives access to the
GDS – called domain in DDS applications.

Although there are several DDS API’s to choose from, this Tutorial is restricted to giving source code examples
written in the ISO/IEC C++ API (see ISO/IEC C++ 2013).

The listing Creating a Domain Participant shows how a Domain Participant can be created; notice that domains
are identified by integers.

Creating a Domain Participant

// create a Domain Participant, -1 defaults to value defined in configuration file
dds::domain::DomainParticipant dp(-1);

// Creates a domain participant in the domain identified by
// the number 18
dds::domain::DomainParticipant dp2(18);

1.3.3 Topics

In DDS, the data flowing from Publishers to Subscribers belongs to a Topic, which represents the unit of informa-
tion that can be produced or consumed.

A Topic is defined as a triad composed of

• a type,

• a unique name,

• and a set of Quality of Service (QoS) policies

which, as will be explained in detail later in this Tutorial, are used to control the non-functional properties associ-
ated with the Topic.

For the time being it is enough to say that if the QoSs are not explicitly set, then the DDS implementation will use
some defaults prescribed by the standard.

Topic Types can be represented with the subset of the OMG Interface Definition Language (IDL) standard that
defines struct types, with the limitations that Any-types are not supported.

Those unfamiliar with the IDL standard can regard Topic Types as being defined with C-like structures whose
attributes can be primitive types (such as short, long, float, string, etc.), arrays, sequences, unions and
enumerations. Nesting of structures is also allowed.

Those who are familiar with IDL may wonder how DDS relates to CORBA. The only thing that DDS has in
common with CORBA is that it uses a subset of IDL; other than this, CORBA and DDS are two completely
different standards and two completely different yet complementary technologies.

Returning to the temperature control application, we are going to define topics representing the reading of temper-
ature sensors, the conditioners and the rooms in which the temperature sensors and the conditioners are installed.
The listing IDL definition of a Temperature Sensor provides an example of how the topic type for the temperature
sensor might be defined.

1.3. DDS in a Nutshell 3

The DDS Tutorial, Release

IDL definition of a Temperature Sensor

// TempControl.idl
enum TemperatureScale {
CELSIUS,
FAHRENHEIT,
KELVIN

};

struct TempSensorType {
short id;
float temp;
float hum;
TemperatureScale scale;

};
#pragma keylist TempSensorType id

As the listing reveals, IDL structures really look like C/C++ structures, so learning to write Topic Types is usually
effortless for most programmers.

Notice that the IDL definition of a Temperature Sensor also includes a #pragma keylist directive. This
directive is used to specify keys. The TempSensorType is specified to have a single key represented by the
sensor identifier (id attribute). At runtime, each key value will identify a specific stream of data; more precisely,
in DDS each key-value identifies a Topic instance. For each instance it is possible to observe the life-cycle and
learn about interesting transitions such as when it first appeared in the system, or when it was disposed.

Keys, along with identifying instances, are also used to capture data relationships as would be done in traditional
entity relationship modeling.

Keys can be made up of an arbitrary number of attributes, some of which could also be defined in nested structures.

After the topic type has been defined and the IDL pre-processor nas been run to generate the language repre-
sentation required for the topics, a DDS topic can be programmatically registered using the DDS API by simply
instantiating a Topic class with the proper type and name.

Topic creation

// Create the topic
dds::topic::Topic<tutorial::TempSensorType> topic(dp, "TTempSensor");

1.3.4 Reading and Writing Data

Now that topics have been specified, this Tutorial will demonstrate how to make a Topic flow between Publishers
and Subscribers.

DDS uses the specification of user-defined Topic Types to generate efficient encoding and decoding routines as
well as strongly-typed DataReaders and DataWriters.

Creating a DataReader or a DataWriter is straightforward, as it simply requires the construction of an object by
instantiating a template class with the Topic Type and the passing of the desired Topic object.

After a DataReader has been created for a TempSensorType you are ready to read the data produced by tem-
perature sensors distributed in your system.

Likewise, after a DataWriter has been created for the TempSensorType you are ready to write (publish) data.

The listings Writing data in DDS and Reading data in DDS show the steps required to write and read data.

Writing data in DDS

// create a Domain Participant, -1 defaults to value defined in configuration file
dds::domain::DomainParticipant dp(-1);

// Create the topic
dds::topic::Topic<tutorial::TempSensorType> topic(dp, "TTempSensor");

1.3. DDS in a Nutshell 4

The DDS Tutorial, Release

// Create the Publisher and DataWriter
dds::pub::Publisher pub(dp);
dds::pub::DataWriter<tutorial::TempSensorType> dw(pub, topic);

// Write the data
tutorial::TempSensorType sensor(1, 26.0F, 70.0F, tutorial::CELSIUS);
dw.write(sensor);

// Write data using streaming operators (same as calling dw.write(...))
dw << tutorial::TempSensorType(2, 26.5F, 74.0F, tutorial::CELSIUS);

Reading data in DDS

// create a Domain Participant, -1 defaults to value defined in configuration file
dds::domain::DomainParticipant dp(-1);
// create the Topic
dds::topic::Topic<tutorial::TempSensorType> topic(dp, "TTempSensor");
// create a Subscriber
dds::sub::Subscriber sub(dp);
// create a DataReader
dds::sub::DataReader<tutorial::TempSensorType> dr(sub, topic);

while (true) {
auto samples = dr.read();
std::for_each(samples.begin(),

samples.end(),
[](const dds::sub::Sample<tutorial::TempSensorType>& s) {
std::cout << s.data() << std::endl;

});
std::this_thread::sleep_for(std::chrono::seconds(1));

}

This first DDS application (Reading data in DDS)uses polling to read data out of DDS every second. A sleep is
used to avoid spinning in the loop too fast, since the DDS read is non-blocking and returns immediately if there is
no data available.

Although polling is a valid method to use, DDS supports two other ways for informing your application of data
availability: listeners and waitsets.

• Listeners can be registered with readers for receiving

notification of data availability as well as several other interesting status changes such as violation in QoS.

• Waitsets, modeled after the Unix-style select call, can

be used to wait for the occurrence of interesting events, one of which could be the availability of data. I will detail
these coordination mechanisms later on in this tutorial.

The code may appear slightly puzzling at first glance, since the data reader and the data writer are completely
decoupled. It is not clear where they are writing data to or reading it from, how they are finding out about each
other, and so on. This is the DDS magic! As explained in the very beginning of this chapter, DDS is equipped with
dynamic discovery of participants as well as user-defined data types. Thus it is DDS that discovers data producers
and consumers and takes care of matching them.

It is strongly recommended that you try to compile the code examples available online (see Appendix A) and run
them on your own machine or (even better) on a couple of machines.

Try running one writer and several readers. Then try adding more writers and see what happens. Also experiment
with arbitrarily- terminating readers and writers and re-starting them. This way you will see the dynamic discovery
in action.

1.3. DDS in a Nutshell 5

The DDS Tutorial, Release

1.4 Summary

This first chapter has explained the abstraction behind DDS and introduced some of its core concepts. It has also
shown how to write a first DDS application that distributes temperature sensors’ values over a distributed system.
It needed fewer than 15 lines of code to get the application working, which shows the remarkable power of DDS.

Upcoming chapters will introduce more advanced concepts, and by the end of this Tutorial all the DDS features
will have been demonstrated whilst creating a sophisticated scalable, efficient and real-time Pub/Sub application.

1.4. Summary 6

2
Topics, Domains and Partitions

The previous chapter introduced the basic concepts of DDS and walked through the steps required to write a
simple Pub/Sub application.

This chapter will look at DDS in more depth, starting with data management.

2.1 Topics Inside Out

A Topic represents the unit for information that can produced or consumed by a DDS application. Topics are
defined by a name, a type, and a set of QoS policies.

2.1.1 Topic Types

DDS is independent of the programming language as well as the Operating System (OS), so it defines its type
system along with a space- and time-efficient binary encoding for its types. Different syntaxes can be used to
express DDS topic types, such as IDL, XML. Some vendors, such as ADLINK, also support Google Protocol
Buffers.

This Tutorial will focus on the subset of IDL that can be used to define a topic type. A topic type is made with an
IDL struct plus a key. The struct can contain as many fields as required, and each field can be a primitive
type (see table Primitive Types), a template type (see table IDL Template Types), or a constructed type (see table
IDL Constructed types).

Primitive Types

Primitive Type Size (bits)
boolean 8
octet 8
char 8
short 16
unsigned short 16
long 32
unsigned long 32
long long 64
unsigned long long 64
float 32
double 64

As shown in the table Primitive Types, primitive types are essentially what you would expect, with just one
exception: the int type is not there! This should not be a problem since the IDL integral types short, long
and long long are equivalent to the C99 int16_t, int32_t and int64_t. And what is more: in contrast
to the int type, which can have a different footprint on different platforms, each of these types has specified
exactly what its footprint is.

IDL Template Types

7

The DDS Tutorial, Release

Template Type Example
string<length = UNBOUNDED$>

string s1;
string<32> s2;

sequence<T,length = UNBOUNDED>

sequence<octet> oseq;
sequence<octet, 1024> oseq1k;
sequence<MyType> mtseq;
sequence<MyType, $10>$ mtseq10;

In the table IDL Template Types, the string can be parameterized only with respect to their maximum length,
while the sequence type can be parameterized with respect to both its maximum length and its contained type.
The sequence type abstracts a homogeneous random access container, pretty much like the std::vector in
C++ or java.util.Vector in Java.

Finally, it is important to point out that when the maximum length is not provided the type is assumed to have an
unbounded length, meaning that the middleware will allocate as much memory as necessary to store the values
that the application provides.

The table IDL Constructed Types shows that DDS supports three different kinds of IDL constructed types: enum,
struct, and union.

IDL Constructed Types

Constructed Type Example
enum enum Dimension {1D, 2D, 3D, 4D};
struct

struct Coord1D { long x;};
struct Coord2D { long x; long y; };
struct Coord3D { long x; long y; long z; };
struct Coord4D { long x; long y; long z,

unsigned long long t;};

union
union Coord switch (Dimension) {

case 1D: Coord1D c1d;
case 2D: Coord2D c2d;
case 3D: Coord3D c3d;
case 4D: Coord4D c4d;

};

It should be clear from this that a Topic type is a struct that can contain (as fields) nested structures, unions,
enumerations, and template types, as well as primitive types. In addition, it is possible to define multi-dimensional
arrays of any DDS-supported or user-defined type.

To tie things together, there are language-specific mappings from the IDL types described above to mainstream
programming languages such as C++, Java, and C#.

2.1.2 Topic Keys, Instances and Samples

Each Topic comes with an associated key-set. This key-set might be empty or it can include an arbitrary number of
attributes defined by the Topic Type. There are no limitations on the number, kind, or level of nesting, of attributes
used to establish the key. There are some limitations to its kind though: a key should either be a primitive type
(see table Primitive Types), an enumeration or a string. A key cannot be constructed type (although it may consist
of one or more members of an embedded constructed type), an array or a sequence of any type.

2.1. Topics Inside Out 8

The DDS Tutorial, Release

Keyed and Keyless Topics

enum TemperatureScale {
CELSIUS,
FAHRENHEIT,
KELVIN

};

struct TempSensorType {
short id;
float temp;
float hum;
TemperatureScale scale;

};
#pragma keylist TempSensorType id

struct KeylessTempSensorType {
short id;
float temp;
float hum;
TemperatureScale scale;

};
#pragma keylist KeylessTempSensorType

Returning to the example application (the temperature control and monitoring system), it is possible to define a
keyless variant of the TempSensorType defined in the Foundations chapter.

Keyed and Keyless Topics shows the TempSensorType with the id attribute defined as its key, along with the
KeylessTempSensorType showing off an empty key-set as defined in its #pragma keylist directive.

If two topics associated with the types declared in Keyed and Keyless Topics are created, what are the differences
between them?

dds::topic::Topic<tutorial::TempSensorType> topic(dp, "TTempSensor");
dds::topic::Topic<tutorial::KeylessTempSensorType> kltsTopic(dp,

"KLTempSensorTopic");

The main difference between these two topics is their number of instances:

• Keyless topics have only one instance, and thus can be thought of as singletons.

• Keyed topics have one instance per key-value.

Making a parallel with classes in object-oriented programming languages, a Topic can be regarded as defining a
class whose instances are created for each unique value of the topic keys. Thus, if the topic has no keys you get a
singleton.

Topic instances are runtime entities for which DDS keeps track of whether

• there are any live writers,

• the instance has appeared in the system for the first time, and

• the instance has been disposed (explicitly removed from the system).

Topic instances impact the organization of data on the reader side as well as the memory usage. Furthermore, as
will be seen later in this Tutorial, there are some QoSs that apply at the instance level.

We will now illustrate what happens when you write a keyless topic versus a keyed topic.

If we write a sample for the keyless KLSensorTopic this is going to modify the value for exactly the same
instance, the singleton, regardless of the content of the sample.

On the other hand, each sample written for the keyed TempSensorTopic will modify the value of a specific
topic instance, depending on the value of the key attributes (id in the example).

Data Reader queue for a keyless Topic

2.1. Topics Inside Out 9

The DDS Tutorial, Release

Thus, the code below is writing two samples for the same instance, as shown in Data Reader queue for a keyless
Topic. These two samples will be posted in the same reader queue: the queue associated with the singleton
instance, as shown in Data Reader queue for a keyless Topic.

dds::pub::DataWriter<tutorial::KeylessTempSensorType> kldw(pub, kltsTopic);
tutorial::KeylessTempSensorType klts(1, 26.0F, 70.0F, tutorial::CELSIUS);
kldw.write(klts);
kldw << tutorial::KeylessTempSensorType(2, 26.0F, 70.0F, tutorial::CELSIUS);

If we write the same samples for the TempSensorTopic, the end-result is quite different. The two samples
written in the code fragment below have two different id values, respectively 1 and 2; they are referring to two
different instances.

dds::pub::DataWriter<tutorial::TempSensorType> dw(pub, topic);
tutorial::TempSensorType ts(1, 26.0F, 70.0F, tutorial::CELSIUS);
dw.write(ts);
dw << tutorial::TempSensorType(2, 26.0F, 70.0F, tutorial::CELSIUS);

These two samples are posted into two different queues, as represented in Data Reader queues for keyed Topics,
one queue for each instance.

Data Reader queues for keyed Topics

In summary, Topics should be thought of as classes in an object-oriented language, and each unique key-value
identifies an instance. The life-cycle of topic instances is managed by DDS and to each topic instance are allo-
cated memory resources; think of it as a queue on the reader side. Keys identify specific data streams within a
Topic. Thus, in our example, each id value will identify a specific temperature sensor. Differently from many
other Pub/Sub technologies, DDS allows keys to be used to automatically de-multiplex different streams of data.
Furthermore, since each temperature sensor represents an instance of the TempSensorTopic it is possible to
track the lifecycle of the sensor by tracking the lifecycle of its associated instance. It is possible to detect when a
new sensor is added into the system, because it introduces a new instance; it is possible to detect when a sensor
has failed, because DDS can report when there are no more writers for a specific instance. It is even possible to
detect when a sensor has crashed and then recovered thanks to information about state transitions that is provided
by DDS.

Finally, before moving on from DDS instances, it is emphasized that DDS subscriptions concern Topics. Thus
a subscriber receives all of the instances produced for that topic. In some cases this is not desirable and some
scoping actions are necessary. Scoping is discussed in the next section.

2.1. Topics Inside Out 10

The DDS Tutorial, Release

2.2 Scoping Information

2.2.1 Domain

DDS provides two mechanism for scoping information, domains and partitions.

A domain establishes a virtual network linking all of the DDS applications that have joined it. No communication
can ever happen across domains unless explicitly mediated by the user application.

2.2.2 Partition

Domains can be further organized into partitions, where each partition can represent a logical grouping of topics.

DDS Partitions are described by names such as SensorDataPartition, CommandPartition,
LogDataPartition, etc., and a partition has to be explicitly joined in order to publish data in it or subscribe
to the topics it contains.

Domains and partitions in DDS

The mechanism provided by DDS for joining a partition is very flexible as a publisher or a subscriber can join by
providing its full name, such as SensorDataPartition, or it can join all the partitions that match a regular
expression, such as Sens* or *Data*. Supported regular expressions are the same as those accepted by the
POSIX fnmatch function (see POSIX fmatch).

To recap: partitions provide a way of scoping information. This scoping mechanism can be used to organize
topics into different coherent sets.

Partitions can also be used to segregate topic instances. Instance segregation can be necessary for optimizing
performance or minimizing footprint for those applications that are characterized by a very large number of in-
stances, such as large telemetry systems, or financial trading applications. Referring to the example temperature
monitoring and control system, a scheme can be devised with a very natural partitioning of data that mimics the
physical placement of the various temperature sensors. To do this, we can use partition names made of the building
number, the floor level and the room number in which the sensor is installed:

building-<number>:floor-<level>:room-<number>

Using this naming scheme, as shown in Domains and partitions in DDS, all of the topics produced in room 51 on
the 15th floor of building 1 would belong to the partition building-1:floor-15:room-51. Likewise, the
partition expression building-1:floor-1:room-* matches all of the partitions for all of the rooms at the
first floor in building 1.

In a nutshell, partitions can be used to scope information, and naming conventions (such as those used for the
example temperature control applications) can be used to emulate hierarchical organization of data starting from
flat partitions. Using the same technique it is possible to slice and access data across different dimensions or
views, depending on the needs of the application.

2.2. Scoping Information 11

The DDS Tutorial, Release

2.3 Content Filtering

Domains and Partitions are useful mechanisms for the structural organization of data, but what if it is neccessary
to control the data received based on its content? Content Filtering enables the creation of topics that constrain
the values that their instances might take.

When subscribing to a content-filtered topic an application will receive, amongst all published values, only those
that match the topic filter. The filter expression can operate on the full topic content, as opposed to being able to
operate only on headers as it happens in many other Pub/Sub technologies, such as JMS. The filter expression is
structurally similar to a SQL WHERE clause.

The table lists the operators supported by DDS.

Legal operators for DDS Filters and Query Conditions

Constructed Type Example
= equal
<> not equal
> greater than
< less than
>= greater than or equal
<= less than or equal
BETWEEN between and inclusive range
LIKE matches a string pattern

Content-Filtered topics are very useful from several different perspectives. First of all, they limit the amount of
memory used by DDS to the instances and samples that match the filter. Furthermore, filtering can be used to
simplify your application by delegating to DDS the logic that checks certain data properties. For instance, if we
consider the temperature control application we might be interested in being notified only then the temperature or
the humidity are outside a given range. Thus, assuming that we wanted to maintain the temperature between 20.5
and 21.5 degrees and the humidity between 30% and 50%, we could create a Content-Filtered topic that would
alert the application when the sensor is producing values outside the desired ranges. This can be done by using
the filter expression below:

((temp NOT BETWEEN 20.5 AND 21.5)
OR

(hum NOT BETWEEN 30 AND 50))

The listing Content Filtered Topic shows the code that creates a content-filtered topic for the TempSensor
topic with the expression above. Notice that the content-filtered topic is created starting from a regular topic.
Furthermore it is worth noticing that the filter expression is relying on positional arguments %0, %2, etc., whose
actual values are passed via a vector of strings.

Content Filtered Topic

// Create the TTempSensor topic
dds::topic::Topic<tutorial::TempSensorType> topic(dp, "TTempSensor");

// Define the filter expression
std::string expression =
"(temp NOT BETWEEN %0 AND %1) \
OR \
(hum NOT BETWEEN %2 and %3)";

// Define the filter parameters
std::vector<std::string> params =
{"20.5", "21.5", "30", "50"};

// Create the filter for the content-filtered-topic
dds::topic::Filter filter(expression, params);

2.3. Content Filtering 12

The DDS Tutorial, Release

// Create the ContentFilteredTopic
dds::topic::ContentFilteredTopic<tutorial::TempSensorType> cfTopic(topic,

"CFTTempSensor",
filter);

dds::sub::Subscriber sub(dp);
//This data reader will only receive data that matches the content filter
dds::sub::DataReader<tutorial::TempSensorType> dr(sub, cfTopic);

2.4 Summary

This chapter has covered the most important aspects of data management in DDS: topics-types and topic instances,
and the various mechanisms provided by DDS for scoping information.

Information can be structurally organized by means of domains and partitions, and special views can be created
using content-filtered topics and query conditions.

It is recommended again that the reader compiles and runs the examples and experiments with the programs
developed so far.

2.4. Summary 13

3
Reading and Writing Data

The previous chapter covered the definition and semantics of DDS topics, topic-instances and samples. It also de-
scribed domains and partitions and the roles they play in organizing application data flows. This chapter examines
the mechanisms provided by DDS for reading and writing data.

3.1 Writing Data

As already illustrated, writing data with DDS is as simple as calling the write method on the DataWriter.
Yet to be able to take full advantage of DDS it is necessary to understand the relationship between writers and
topic-instances life-cycles.

To explain the difference between topics and the instances of a topic’s datatype, this Tutorial made the analogy
between topics/topic datatypes and classes/objects in an Object-Oriented Programming language, such as Java or
C++. Like objects, the instances of the topic’s datatype have:

• an identity provided by their unique key value, and

• a life-cycle.

The instance life-cycle of a topic’s datatype can be implicitly managed through the semantics implied by the
DataWriter, or it can be explicitly controlled via the DataWriter API. The instance life-cycle transition can
have implications for local and remote resource usage, thus it is important to understand this aspect.

3.1.1 Topic-Instances Life-cycle

Before getting into the details of how the life-cycle is managed, let’s see which are the possible states.

• An instance of a topic’s datatype is ALIVE if there is at least one DataWriter that has explicitly or
implicitly (through a write) registered it. A DataWriter that has registered an instance declares that it
is committed to publishing potential updates for that instance as soon as they occur. For that reason, the
DataWriter has reserved resources to hold the administration for the instances and at least one of its
samples. DataReaders for this topic will also maintain a similar resource reservation for each registered
instance. As long as an instance is registered by at least one DataWriter, it will be considered ALIVE.

• An instance is in the NOT_ALIVE_NO_WRITERS state when there are no more DataWriters that have
registered the instance. That means no more DataWriters have an intent to update the instance state
and all of them released the resources they had previously claimed for it. In this state DataReaders no
longer expect any incoming updates and so they may release their resources for the instance as well. Be
aware that when a Writer forgets to unregister an instance it no longer intends to update, it does not only
leak away the resources it had locally reserved for it, but it also leaks away the resources that all subscribing
DataReaders still have reserved for it in the expectation of future updates.

• Finally, the instance is NOT_ALIVE_DISPOSED if it was disposed either implicitly, due to some default
QoS settings, or explicitly by means of a specific DataWriter API call. The NOT_ALIVE_DISPOSED
state indicates that the instance is no more relevant for the system and should basically be wiped from all
storage. The big difference with the NOT_ALIVE_NO_WRITERS state is that the latter only indicates that
nobody intends to update the instance and does not say anything about the validity of the last known state.

14

The DDS Tutorial, Release

As an example, when a publishing application crashes it might want to restart on another node and obtain its last
known state from the domain in which it resides. In the mean time it has no intention to invalidate the last known
state for each of its instances or to wipe them from all storage in its domain. Quite the opposite, it wants the last
known state to remain available for late-joiners, so that it can pick back up where it left off as soon as it is restarted.
So in this case the Writer needs to make sure its instances go from ALIVE to NOT_ALIVE_NO_WRITERS after
the crash, which may then go back to ALIVE after the publishing application has been restarted.

On the other hand, if the application gracefully terminates and wants to indicate that its instances are no longer a
concern to the DDS global data space, it may want the state of its instances to go to NOT_ALIVE_DISPOSED so
that the rest of the domain knows it can safely wipe away all of its samples in all of its storages.

3.1.2 Automatic Life-cycle Management

We will illustrate the instances life-cycle management with an example.

If we look at the code in Automatic management of Instance life-cycle and assume this is the only application
writing data, the result of the three write operations is to create three new topic instances in the system for the
key values associated with the id = 1, 2, 3 (the TempSensorType was defined in the first chapter as having
a single attribute key named id). These instances will be in the ALIVE state as long as this application is running,
and will be automatically registered (we could say ‘associated’) with the writer. The default behavior for DDS is
to then dispose the topic instances once the DataWriter object is destroyed, thus leading those instances to the
NOT_ALIVE_DISPOSED state. The default settings can be overridden to simply induce instances’ unregistration,
causing in this case a transition from ALIVE to NOT_ALIVE_NO_WRITERS.

Automatic management of Instance life-cycle

#include <thread>
#include <chrono>
#include <TempControl_DCPS.hpp>

int main(int, char**) {
dds::domain::DomainParticipant dp(org::opensplice::domain::default_id());
dds::topic::Topic<tutorial::TempSensorType> topic(dp, "TempSensorTopic");
dds::pub::Publisher pub(dp);

dds::pub::DataWriter<tutorial::TempSensorType> dw(pub, topic);

//[NOTE #1]: Instances implicitly registered as part
// of the write.
// {id, temp hum scale}
dw << tutorial::TempSensorType(1, 25.0F, 65.0F, tutorial::CELSIUS);
dw << tutorial::TempSensorType(2, 26.0F, 70.0F, tutorial::CELSIUS);
dw << tutorial::TempSensorType(3, 27.0F, 75.0F, tutorial::CELSIUS);

std::this_thread::sleep_for(std::chrono::seconds(10));

//[NOTE #2]: Instances automatically unregistered and
// disposed as result of the destruction of the dw object

return 0;
}

3.1.3 Explicit Life-cycle Management

Topic-instances life-cycle can also be managed explicitly via the API defined on the DataWriter.

In this case the application programmer has full control of when instances are registered, unregistered and dis-
posed.

Topic-instance registration is a good practice to follow when an application writes an instance very often and
requires the lowest-latency write. In essence the act of explicitly registering an instance allows the middleware

3.1. Writing Data 15

The DDS Tutorial, Release

to reserve resources as well as optimize the instance lookup. Topic-instance unregistration provides a means
for telling DDS that an application is done with writing a specific topic-instance, thus all the resources locally
associated with can be safely released. Finally, disposing topic-instances gives a way of communicating to DDS
that the instance is no longer relevant for the distributed system, thus whenever possible resources allocated with
the specific instances should be released both locally and remotely. Explicit management of topic-instances life-
cycle shows an example of how the DataWriter API can be used to register, unregister and dispose topic-instances.

In order to show the full life-cycle management, the default DataWriter behavior has been changed so that in-
stances are not automatically disposed when unregistered. In addition, to keep the code compact it takes advan-
tage of the new C++11 auto feature which leaves it to the the compiler to infer the left-hand-side types from the
right-hand-side return-type.

Explicit management of topic-instances life-cycle shows an application that writes four samples belonging to four
different topic-instances, respectively those with id = 1, 2, 3. The instances with id = 1, 2, 3 are
explicitly registered by calling the DataWriter::register_instance method, while the instance with
id=0 is automatically registered as result of the write on the DataWriter.

To show the different possible state transitions, the topic-instance with id=1 is explicitly unregistered, thus caus-
ing it to transition to the NOT_ALIVE_NO_WRITER state; the topic-instance with id=2 is explicitly disposed,
thus causing it to transition to the NOT_ALIVE_DISPOSED state. Finally, the topic-instance with id=0,3
will be automatically unregistered, as a result of the destruction of the objects dw and dwi3 respectively, thus
transitioning to the state NOT_ALIVE_NO_WRITER.

Once again, as mentioned above, in this example the writer has been configured to ensure that topic-instances are
not automatically disposed upon unregistration.

#include <iostream>
#include <TempControl_DCPS.hpp>

int main(int, char**) {
dds::domain::DomainParticipant dp(org::opensplice::domain::default_id());
dds::topic::Topic<tutorial::TempSensorType> topic(dp, "TempSensorTopic");
dds::pub::Publisher pub(dp);

//[NOTE #1]: Avoid topic-instance dispose on unregister
dds::pub::qos::DataWriterQos dwqos = pub.default_datawriter_qos()
<< dds::core::policy::WriterDataLifecycle::ManuallyDisposeUnregisteredInstances();

//[NOTE #2]: Creating DataWriter with custom QoS.
// QoS will be covered in detail in article #4.
dds::pub::DataWriter<tutorial::TempSensorType> dw(pub, topic, dwqos);

tutorial::TempSensorType data(0, 24.3F, 0.5F, tutorial::CELSIUS);
dw.write(data);

tutorial::TempSensorType key;
short id = 1;
key.id(id);

//[NOTE #3] Registering topic-instance explicitly
dds::core::InstanceHandle h1 = dw.register_instance(key);
id = 2;
key.id(id);
dds::core::InstanceHandle h2 = dw.register_instance(key);
id = 3;
key.id(id);
dds::core::InstanceHandle h3 = dw.register_instance(key);

dw << tutorial::TempSensorType(1, 24.3F, 0.5F, tutorial::CELSIUS);
dw << tutorial::TempSensorType(2, 23.5F, 0.6F, tutorial::CELSIUS);
dw << tutorial::TempSensorType(3, 21.7F, 0.5F, tutorial::CELSIUS);

// [NOTE #4]: unregister topic-instance with id=1

3.1. Writing Data 16

The DDS Tutorial, Release

dw.unregister_instance(h1);
// [NOTE #5]: dispose topic-instance with id=2
dw.dispose_instance(h2);
//[NOTE #6]:topic-instance with id=3 will be unregistered as
// result of the dw object destruction

return 0;
}

3.1.4 Keyless Topics

Most of the discussion above has focused on keyed topics, but what about keyless topics? As explained in Topics,
Domains and Partitions keyless topics are like singletons, in the sense that there is only one instance. As a result
for keyless topics the state transitions are tied to the lifecycle of the data-writer.

Explicit management of topic-instances life-cycle

3.1.5 Blocking or Non-Blocking Write?

One question that might arise at this point is whether the write is blocking or not. The short answer is that the
write is non-blocking; however, as will be seen later on, there are cases in which, depending on settings, the write
might block. In these cases, the blocking behaviour is necessary to avoid data-loss.

3.2 Accessing Data

DDS provides a mechanism to select the samples based on their content and state, and another to control whether
samples have to be read or taken (removed from the cache).

3.2.1 Read vs. Take

The DDS provides data access through the DataReader class which exposes two semantics for data access:
read and take.

The read semantics, implemented by the DataReader::read method, gives access to the data received by
the DataReader without removing it from its cache. This means that the data will remain readable via an
appropriate read call.

The take semantics, implemented by the DataReader::take method, allows DDS to access the data received
by the DataReader by removing it from its local cache. This means that once the data is taken, it is no longer
available for subsequent read or take operations.

The semantics provided by the read and take operations enable you to use DDS as either a distributed cache
or like a queuing system, or both. This is a powerful combination that is rarely found in the same middleware
platform. This is one of the reasons why DDS is used in a variety of systems sometimes as a high-performance
distributed cache, or like a high-performance messaging technology, and at yet other times as a combination of the
two. In addition, the read semantics is useful when using topics to model distributed states, and the take semantics
when modeling distributed events.

3.2.2 Data and Meta-Data

The first part of this chapter showed how the DataWriter can be used to control the life-cycle of topic-instances.
The topic-instance life-cycle along with other information describing properties of received data samples are made
available to DataReader and can be used to select the data access via either a read or take. Specifically, each
data sample received by a DataWriter has an associated SampleInfo describing the property of that sample.
These properties includes information on:

3.2. Accessing Data 17

The DDS Tutorial, Release

• Sample State. The sample state can be READ or NOT_READ depending on whether the sample has already
been read or not.

• Instance State. As explained above, this indicates the status of the instance as being either ALIVE,
NOT_ALIVE_NO_WRITERS, or NOT_ALIVE_DISPOSED.

• View State. The view state can be NEW or NOT_NEW depending on whether this is the first sample ever
received for the given topic-instance or not.

The SampleInfo also contains a set of counters that allow you to determine the number of times that a topic-
instance has performed certain status transitions, such as becoming alive after being disposed.

Finally, the SampleInfo contains a timestamp for the data and a flag that tells wether the associated data
sample is valid or not. This latter flag is important since DDS might generate valid samples info with invalid data
to inform about state transitions such as an instance being disposed.

3.2.3 Selecting Samples

Regardless of whether data are read or taken from DDS, the same mechanism is used to express the sample
selection. Thus, for brevity, the following examples use the read operation; to use the take operation, simply
replace each occurrence of a read with a take.

DDS allows the selection of data based on state and content.

• State-based selection is based on the values of the view state, instance state and sample state.

• Content-based selection is based on the content of the sample.

State-based Selection

For instance, to get all of the data received, no matter what the view, instance and sample state, issue a read (or
a take) as follows:

dds::sub::LoanedSamples<tutorial::TempSensorType> samples;
samples = dr.select().state(dds::sub::status::DataState::any()).read();

On the other hand, to read (or take) only samples that have not been read yet, issue a read (or a take) as follows:

samples = dr.select().state(dds::sub::status::SampleState::not_read()).read();

To read new valid data, meaning no samples with only a valid SampleInfo, issue a read (or a take) as
follows:

samples = dr.select().state(dds::sub::status::DataState::new_data()).read();

Finally, to only read data associated to instances that are making their appearance in the system for the first time,
issue a read (or a take) as follows:

dds::sub::status::DataState ds;
ds << dds::sub::status::SampleState::not_read()

<< dds::sub::status::ViewState::new_view()
<< dds::sub::status::InstanceState::alive();

samples = dr.select().state(ds).read();

Notice that this kind of read only and always gets the first sample written for each instance.

Although it might seem a strange use case, this is quite useful for all those applications that need to do something
special whenever a new instance makes its first appearance in the system. An example could be a new airplane
entering a new region of control; in this case the system would have to do quite a few things that are unique to this
specific state transition.

It is also worth mentioning that if the status is omitted, a read (or a take) can be used like this:

3.2. Accessing Data 18

The DDS Tutorial, Release

auto samples2 = dr.read();

This is equivalent to selecting samples with the NOT_READ_SAMPLE_STATE, ALIVE_INSTANCE_STATE
and ANY_VIEW_STATE.

finally, it should be noted that statuses enable data to be selected based on its meta-information.

Content-based Selection

Content-based selection is supported through queries. Although the concept of a query might seem to overlap
with that of content filtering, the underlying idea is different.

Filtering is about controlling the data received by the data reader: the data that does not match the filter is not
inserted into the data reader cache. On the other hand, queries are about selecting the data that is (already) in the
data reader cache.

Content Query

// Define the query expression
std::string expression =

"(temp NOT BETWEEN (%0 AND %1)) \
OR \

(hum NOT BETWEEN (%2 and %3))";

// Define the query parameters
std::vector<std::string> params = {"20.5", "21.5", "30", "50"};

dds::sub::Query query(dr, expression, params);

auto samples = dr.select().content(query).read();

The syntax supported by query expressions is identical to that used to define filter expressions; for convenience
this is summarized in the table.

Legal operators for content query

Constructed Type Example
= equal
<> not equal
> greater than
< less than
>= greater than or equal
<= less than or equal
BETWEEN between and inclusive range
LIKE matches a string pattern

The execution of the query is completely under user control and is performed in the context of a read or take
operation as shown in ListingB [Listing:DDS:Query].

Instance-based Selection

In some instances you may want to only look at the data coming from a specific topic instance. As instances are
identified by the values of their key attributes you may be tempted to use content filtering to discriminate between
them. Although this would work perfectly well, it is not the most efficient way of selecting an instance. DDS
provides another mechanism that allows you to pinpoint the instance you are interested in more efficiently than
content filtering. In essence, each instance has an associated instance handle; this can be used to access the data
from a given instance in a very efficient manner.

The listing Instance-based selection shows how this can be done.

Instance-based selection

3.2. Accessing Data 19

The DDS Tutorial, Release

tutorial::TempSensorType key;
key.id() = 123;
auto handle = dr.lookup_instance(key);

auto samples = dr.select().instance(handle).read();

3.2.4 Iterators or Containers?

The examples shown so far were ‘loaning’ the data from DDS: in other words, you did not have to provide the
storage for the samples. The advantage of this style of read is that it allows ‘zero copy’ reads. However, if you
want to store the data in a container of your choice you can use iterator-based read and take operations.

The iterator-based read/take API supports both forward iterators as well as back-inserting iterators. The API
allows you to read (or take) data into whatever structure you’d like, so long as you can get a forward or a back-
inserting iterator for it. Here we will focus on the forward-iterator-based API; back-inserting is pretty similar. you
should be able to read data as follows:

// Forward iterator using array.
dds::sub::Sample<tutorial::TempSensorType> samples[MAXSAMPLES];
unsigned int readSamples = dr.read(&samples, MAXSAMPLES);

// Forward iterator using vector.
std::vector<dds::sub::Sample<tutorial::TempSensorType> > fSamples(MAXSAMPLES);
readSamples = dr.read(fSamples.begin(), MAXSAMPLES);

// Back-inserting iterator using vector.
std::vector<dds::sub::Sample<tutorial::TempSensorType> > biSamples;
uint32_t readBiSamples = dr.read(std::back_inserter(biSamples));

3.2.5 Blocking or Non-Blocking Read/Take?

The DDS read and take are always non-blocking. If no data is available to read then the call will return imme-
diately. Likewise if there is less data than requested the call will gather what is available and return right away.
The non-blocking nature of read/take operations ensures that these can be safely used by applications that poll for
data.

3.3 Waiting and being Notified

One way of coordinating with DDS is to have the application poll for data by performing either a read or a take
every so often. Polling might be the best approach for some classes of applications, the most common example
being control applications that execute a control loop or a cyclic executive. In general, however, applications might
want to be notified of the availability of data or perhaps be able to wait for its availability, as opposed to polling
for it. DDS supports both synchronous and asynchronous coordination by means of wait-sets and listeners.

3.3.1 Waitsets

DDS provides a generic mechanism for waiting on conditions. One of the supported kind of conditions are
ReadConditions which can be used to wait for the availability data on one or more DataReaders. This
functionality is provided by the Waitset class, which can be regarded as an object-oriented version of the Unix
select.

Using WaitSet to wait for data availability

// Create the WaitSet
dds::core::cond::WaitSet ws;
// Create a ReadCondition for our DataReader and configure it for new data

3.3. Waiting and being Notified 20

The DDS Tutorial, Release

dds::sub::cond::ReadCondition rc(dr, dds::sub::status::DataState::new_data());
// Attach the condition
ws += rc;

// Wait for new data to be available
ws.wait();
// Read the data
auto samples = dr.read();
std::for_each(samples.begin(),

samples.end(),
[](const dds::sub::Sample<tutorial::TempSensorType>& s) {

std::cout << s.data() << std::endl;
});

If we wanted to wait for temperature samples to be available we could create a ReadCondition on our
DataReader and make it wait for new data by creating a WaitSet and attaching the ReadCondition to it
as shown in Using WaitSet to wait for data availability.

At this point, we can synchronize on the availability of data, and there are two ways of doing it. One approach
is to invoke the Waitset::wait method, which returns the list of active conditions. These active conditions
can then be iterated upon and their associated datareaders can be accessed. The other approach is to invoke the
Waitset::dispatch, which is demonstrated in a separate example.

As an alternative to iterating through the conditions yourself, DDS conditions can be associated with functor
objects which are then used to execute application-specific logic when the condition is triggered. The DDS event-
handling mechanism allows you to bind anything you want to an event, meaning that you could bind a function,
a class method, or even a lambda-function as a functor to the condition. You then attach the condition to the
waitset in the same way, but in this case you would invoke the Waitset::dispatch function, that causes the
infrastructure to automatically invoke the functor associated with each triggered conditions before unblocking, as
is shown in Using WaitSet to dispatch to incoming data. Notice that the execution of the functor happens in the
context of the application thread, prior to returning from the Waitset::dispatch function.

Using WaitSet to dispatch to incoming data

// Create the WaitSet
dds::core::cond::WaitSet ws;
// Create a ReadCondition for our DataReader and configure it for new data
dds::sub::cond::ReadCondition rc(dr,

dds::sub::status::DataState::new_data(),
[](const dds::sub::ReadCondition& srcCond) {

dds::sub::DataReader<tutorial::TempSensorType> srcReader = srcCond.data_reader();
// Read the data
auto samples = srcReader.read();
std::for_each(samples.begin(),

samples.end(),
[](const dds::sub::Sample<tutorial::TempSensorType>& s) {
std::cout << s.data() << std::endl;

});
});

// Attach the condition
ws += rc;

// Wait for new data to be available
ws.dispatch();

3.3.2 Listeners

Another way of finding out when there is data to be read is to take advantage of the events raised by DDS and no-
tified asynchronously to registered handlers. Thus, if we wanted a handler to be notified of the availability of data,
we would connect the appropriate handler with the on_data_available event raised by the DataReader.

3.3. Waiting and being Notified 21

The DDS Tutorial, Release

Using a listener to receive notification of data availability

class TempSensorListener :
public dds::sub::NoOpDataReaderListener<tutorial::TempSensorType>

{
public:

virtual void on_data_available(
dds::sub::DataReader<tutorial::TempSensorType>& dr) {

auto samples = dr.read();
std::for_each(samples.begin(), samples.end(),

[](const dds::sub::Sample<tutorial::TempSensorType>& s) {
std::cout << s.data().id() << std::endl;

});
}

};

TempSensorListener listener;
dr.listener(&listener, dds::core::status::StatusMask::data_available());

The listing Using a listener to receive notification of data availability shows how this can be done. The
NoOpDataReaderListener is a utility class provided by the API that provides a trivial implementation for
all of the operations defined as part of the listener. This way, you can override only those that are relevant for your
application.

Something worth pointing out is that the handler code will execute in a middleware thread. As a result, when
using listeners you should try to minimize the time spent in the listener itself.

3.4 Summary

This chapter has presented the various aspects involved in writing and reading data with DDS. It described the
topic-instance life-cycle, explained how that can be managed via the DataWriter and showcased all the meta-
information available to DataReader. It explained wait-sets and listeners and how these can be used to receive
indication of when data is available.

It is recommended again that the reader compiles and runs the examples and experiments with the programs
developed so far.

3.4. Summary 22

4
Quality of Service

4.1 The DDS QoS Model

DDS provides applications policies to control a wide set of non-functional properties, such as data availability,
data delivery, data timeliness and resource usage. The figure below shows the full list of QoS policies available.

DDS QoS Policies

The semantics and the behaviour of entities, such as a topic, data reader, and data writer, can be controlled through
available QoS policies. The policies that control an end-to-end property are considered as part of the subscription
matching.

DDS Request vs. Offer QoS Model

DDS uses a ‘request vs. offer’ QoS-matching approach, as shown in the figure DDS Request vs. Offer QoS
Model in which a data reader matches a data writer if and only if the QoS it is requesting for the given topic does
not exceed (i.e. it is no more stringent than) the QoS with which the data is produced by the data writer. DDS

23

The DDS Tutorial, Release

subscriptions are matched against the topic type and name, as well as against the QoS being offered and requested
by data writers and readers.

This DDS matching mechanism ensures that:

• types are preserved end-to-end due to the topic type matching, and

• end-to-end QoS invariants are also preserved.

The remainder of this chapter describes the most important QoS policies in DDS.

4.1.1 Data availability

DDS provides the following QoS policies that control the availability of data to domain participants:

• The DURABILITY policy controls the lifetime of the data written to the global data space in a domain.
Supported durability levels include:

– VOLATILE, which specifies that once data is published it is not maintained by DDS for delivery to
late-joining applications;

– TRANSIENT_LOCAL, which specifies that publishers store data locally so that late-joining sub-
scribers get the last-published item if a publisher is still alive;

– TRANSIENT, which ensures that the GDS maintains the information outside the local scope of any
publishers for use by late-joining subscribers; and

– PERSISTENT, which ensures that the GDS stores the information persistently so to make it available
to late joiners even after the shutdown and restart of the whole system.

Durability is achieved by relying on a durability service whose properties are configured by means of the
DURABILITY_SERVICE QoS of non-volatile topics.

• The LIFESPAN QoS policy controls the interval of time during which a data sample is valid. The default
value is infinite, with alternative values being the time-span for which the data can be considered valid.

• The HISTORY QoS policy controls the number of data samples (i.e. subsequent writes of the same topic)
that must be stored for readers or writers. Possible values are the last sample, the last n samples, or all
samples.

These DDS data availability QoS policies decouple applications in time and space. They also enable these applica-
tions to cooperate in highly dynamic environments characterized by continuous joining and leaving of publishers
and subscribers. Such properties are particularly relevant in Systems-of-Systems (SoS) since they increase the
decoupling of the component parts.

4.1.2 Data delivery

DDS provides the following QoS policies that control how data is delivered and how publishers can claim exclusive
rights on data updates:

• The PRESENTATION QoS policy gives control on how changes to the information model are presented to
subscribers. This QoS gives control of the ordering as well as the coherency of data updates. The scope
at which it is applied is defined by the access scope, which can be one of INSTANCE, TOPIC, or GROUP
level.

• The RELIABILITY QoS policy controls the level of reliability associated with data diffusion. Possible
choices are RELIABLE and BEST_EFFORT distribution.

• The PARTITION QoS policy gives control over the association between DDS partitions (represented by a
string name) and a specific instance of a publisher/subscriber. This association provides DDS implementa-
tions with an abstraction that allow segregation of traffic generated by different partitions, thereby improving
overall system scalability and performance.

4.1. The DDS QoS Model 24

The DDS Tutorial, Release

• The DESTINATION_ORDER QoS policy controls the order of changes made by publishers to some in-
stance of a given topic. DDS allows the ordering of different changes according to source or destination
timestamps.

• The OWNERSHIP QoS policy controls which writer ‘owns’ the write-access to a topic when there are
multiple writers and ownership is EXCLUSIVE. Only the writer with the highest OWNERSHIP_STRENGTH
can publish the data. If the OWNERSHIP QoS policy value is shared, multiple writers can concurrently
update a topic. OWNERSHIP thus helps to manage replicated publishers of the same data.

These DDS data delivery QoS policies control the reliability and availability of data, thereby allowing the delivery
of the right data to the right place at the right time. More elaborate ways of selecting the right data are offered by
the DDS content-awareness profile, which allows applications to select information of interest based upon their
content. These QoS policies are particularly useful in SoS since they can be used to finely tune how and to whom
data is delivered, thus limiting not only the amount of resources used, but also minimizing the level of interference
by independent data streams.

4.1.3 Data timeliness

DDS provides the following QoS policies to control the timeliness properties of distributed data:

• The DEADLINE QoS policy allows applications to define the maximum inter-arrival time for data. DDS
can be configured to automatically notify applications when deadlines are missed.

• The LATENCY_BUDGET QoS policy provides a means for applications to inform DDS of the urgency
associated with transmitted data. The latency budget specifies the time period within which DDS must
distribute the information. This time period starts from the moment the data is written by a publisher until
it is available in the subscriber’s data-cache ready for use by readers.

• The TRANSPORT_PRIORITY QoS policy allows applications to control the importance associated with
a topic or with a topic instance, thus allowing a DDS implementation to prioritize more important data
relative to less important data. These QoS policies help ensure that mission-critical information needed to
reconstruct the shared operational picture is delivered in a timely manner.

These DDS data timeliness QoS policies provide control over the temporal properties of data. Such properties are
particularly relevant in SoS since they can be used to define and control the temporal aspects of various subsystem
data exchanges, whilst ensuring that bandwidth is exploited optimally.

4.1.4 Resources

DDS defines the following QoS policies to control the network and computing resources that are essential to meet
data dissemination requirements:

• The TIME_BASED_FILTER QoS policy allows applications to specify the minimum inter-arrival time be-
tween data samples, thereby expressing their capability to consume information at a maximum rate. Samples
that are produced at a faster pace are not delivered. This policy helps a DDS implementation optimize net-
work bandwidth, memory, and processing power for subscribers that are connected over limited-bandwidth
networks or which have limited computing capabilities.

• The RESOURCE_LIMITS QoS policy allows applications to control the maximum available storage to
hold topic instances and a related number of historical samples. DDS’s QoS policies support the various
elements and operating scenarios that constitute net-centric mission-critical information management. By
controlling these QoS policies it is possible to scale DDS from low-end embedded systems connected with
narrow and noisy radio links, to high-end servers connected to high-speed fiber-optic networks.

These DDS resource QoS policies provide control over the local and end-to-end resources, such as memory and
network bandwidth. Such properties are particularly relevant in SoS since they are characterized by largely het-
erogeneous subsystems, devices, and network connections that often require down-sampling, as well as overall
limits on the amount of resources used.

4.1. The DDS QoS Model 25

The DDS Tutorial, Release

4.1.5 Configuration

The QoS policies described above provide control over the most important aspects of data delivery, availability,
timeliness, and resource usage. DDS also supports the definition and distribution of user-specified bootstrapping
information via the following QoS policies:

• The USER_DATA QoS policy allows applications to associate a sequence of octets to domain participants,
data readers and data writers. This data is then distributed by means of a built-in topic. This QoS policy is
commonly used to distribute security credentials.

• The TOPIC_DATA QoS policy allows applications to associate a sequence of octets with a topic. This
bootstrapping information is distributed by means of a built-in topic. A common use of this QoS policy is to
extend topics with additional information, or meta-information, such as IDL type-codes or XML schemas.

• The GROUP_DATA QoS policy allows applications to associate a sequence of octets with publishers and
subscribers; this bootstrapping information is distributed by means built-in topics. A typical use of this
information is to allow additional application control over subscriptions matching.

These DDS configuration QoS policies provide useful a mechanism for bootstrapping and configuring applications
that run in SoS. This mechanism is particularly relevant in SoS since it provides a fully-distributed means of
providing configuration information.

4.1.6 Setting QoS

All the code examples you have have seen so far did rely on default QoS settings, so that we did not have to be
concerned with defining the desired QoS. Setting QoS on DDS entities shows how you can create and set QoS on
DDS entities.

Setting QoS on DDS entities

// create a Domain Participant, -1 defaults to value defined in configuration file
dds::domain::DomainParticipant dp(-1);

dds::topic::qos::TopicQos topicQos
= dp.default_topic_qos()

<< dds::core::policy::Durability::Transient()
<< dds::core::policy::Reliability::Reliable();

dds::topic::Topic<tutorial::TempSensorType> topic(dp, "TempSensor", topicQos);

dds::pub::qos::PublisherQos pubQos
= dp.default_publisher_qos()

<< dds::core::policy::Partition("building-1:floor-2:room:3");

dds::pub::Publisher pub(dp, pubQos);

dds::pub::qos::DataWriterQos dwqos = topic.qos();
dds::core::policy::TransportPriority transportPriority(10);
dwqos << transportPriority;

dds::pub::DataWriter<tutorial::TempSensorType> dw(pub, topic, dwqos);

Along with an API to explicitly create QoS, DDS also provides the concept of a QoSProvider to make it
possible to externalize the definition of the QoS and make it a deployment-time concern. The listing below shows
how the QoSProvider can be used to fetch a QoS definition from a file.

Setting QoS on DDS entities using the QoSProvider

dds::core::QosProvider qp("file://defaults.xml", "DDS DefaultQosProfile");

// create a Domain Participant, -1 defaults to value defined in configuration file
dds::domain::DomainParticipant dp(-1);

4.1. The DDS QoS Model 26

The DDS Tutorial, Release

dds::topic::qos::TopicQos topicQos = qp.topic_qos();

dds::topic::Topic<tutorial::TempSensorType> topic(dp, "TempSensor", topicQos);

dds::pub::qos::PublisherQos pubQos = qp.publisher_qos();
dds::pub::Publisher pub(dp, pubQos);

dds::pub::qos::DataWriterQos dwqos = qp.datawriter_qos();
dds::pub::DataWriter<tutorial::TempSensorType> dw(pub, topic, dwqos);

4.2 Summary

This chapter has explained the role of QoS in DDS and shown how the various policies can be used to control
the most important aspects of communication, data availability and resource usage. The code examples have also
illustrated that setting QoS is pretty straightforward and the use of the QoSProvider can be of great help in
making the selection of QoS a deployment concern.

4.2. Summary 27

5
Appendix A

5.1 Online Resources

5.1.1 Examples Source Code

All the ISO C++ examples presented throughout the Tutorial are available online at
https://github.com/PrismTech/dds-tutorial-cpp-ex.

The README.md provides all the information necessary to install and run the examples.

5.1.2 Getting a DDS Implementation

At the time of writing, the only open source DDS implementation that supports the new ISO C++ API is Vortex
OpenSplice, which is freely available at http://ist.adlinktech.com/dds-community.

Commercial versions of Vortex OpenSplice and Vortex Lite are also available which support the ISO C++ API
from http://vortex.adlinktech.com.

5.1.3 C++11 Considerations

Although some of the examples in this Tutorial take advantage of C++11, the new C++ API can also be used with
C++03 compilers. That said, if you have the opportunity to use a C++11 compiler, then there are some additional
aspects of the language that can be enabled.

28

https://github.com/PrismTech/dds-tutorial-cpp-ex
http://ist.adlinktech.com/dds-community
http://vortex.adlinktech.com

6
Acronyms & Abbreviations

AMQP Advanced Message Queuing Protocol

CDR Common Data Representation

CORBA Common Object Request Broker Architecture

DDS The Data Distribution Service

DDSI Data Distribution Service Interoperability Wire Protocol

DISR DoD Information-Technology Standards Registry

DoD Department of Defense (US)

DP Domain Participant

DR Data Reader

DW Data Writer

GDS Global Data Space

I2 Industrial Internet

IDL Interface Definition Language

IoT Internet of Things

JMS Java Message Service

MILVA Military Vehicle Association

MoD Mistry of Defence (UK)

MQTT Message Queuing Telemetry Transport

OMG Object Management Group

OS Operating System

Pub/Sub Publish/Subscribe

QoS Quality of Service

SoS Systems-of-Systems

SQL Structured Query Language

ULS Ultra Large Scale Systems

UML Unified Modeling Langauge

XML eXtensible Markup Langauge

29

7
Bibliography

OMG DDS 2015

Object Management Group,
‘Data Distribution Service for Real-Time Systems’,
2004

OMG DDSI 2014

Object Management Group,
‘Data Distribution Service Interoperability Wire Protocol’,
2006

OMG DDS XTYPES 10

Object Management Group,
‘Dynamic and Extensible Topic Types’,
2010

OMG ISO/IEC C++ 2013

Object Management Group,
‘ISO/IEC C++ 2003 Language DDS PSM’,
2013

OMG Java5 2013

Object Management Group,
‘Java 5 Language PSM for DDS’,
2013

PowerGrid Blackout 2003

‘Northeast Blackout of 2003’,
http://bit.ly/ne-blackout,
2003

DDS OSPL

Open Splice,
http://opensplice.com,
2014

DDS SimD

Angelo Corsaro,
http://code.google.com/p/simd-cxx,
2011

Gosling 2005 fk

James Gosling and Joy, Bill and Steele, Guy and Bracha, Gilad,
‘Java(TM) Language Specification’, 3rd Edition,

30

http://bit.ly/ne-blackout
http://opensplice.com
http://code.google.com/p/simd-cxx

The DDS Tutorial, Release

Addison-Wesley Professional,
ISBN 0321246780,
2005

Cardelli 1985 kx

Luca Cardelli and Wegner, Peter,
‘On Understanding Types, Data Abstraction, and Polymorphism’,
ACM Computing Surveys, Volume 17 Number 4, pages 471-522,
1985

Cardelli 1996 uq

Luca Cardelli,
‘Type systems’,
ACM Computing Surveys, Volume 28, pages 263-264,
ISSN 0360-0300,
http://dx.doi.org/10.1145/234313.234418,
1996

Ramakrishnan 2002 vn

Raghu Ramakrishnan and Gehrke, Johannes,
‘Database Management Systems’, 3rd Edition,
McGraw Hill Higher Education,
ISBN 0071230572,
2002

Java JMS

Sun Microsystems,
‘The Java Message Service Specification v1.1’,
Java Community Process JSR-000914,
http://www.oracle.com/technetwork/java/docs-136352.html,
2002

Northrop 2006

L. Northrop and P. Feiler and R. P. Gabriel and J. Goodenough and
R. Linger and T. Longstaff and R. Kazman and M. Klein and D. Schmidt and
K. Sullivan and K. Wallnau,
(Editor W. Pollak),
‘Ultra-Large-Scale Systems - The Software Challenge of the Future’,
Software Engineering Institute, Carnegie Mellon,
http://www.sei.cmu.edu/uls/downloads.html,
http://www.bibsonomy.org/bibtex/253c6e83e1f7ec47b378721a81977c8e8/wnpxrz,
June 2006

POSIX fmatch

The Open Group,
‘fnmatch API (1003.2-1992) section B.6’,
1992

31

http://dx.doi.org/10.1145/234313.234418
http://www.oracle.com/technetwork/java/docs-136352.html
http://www.sei.cmu.edu/uls/downloads.html
http://www.bibsonomy.org/bibtex/253c6e83e1f7ec47b378721a81977c8e8/wnpxrz

8
Contacts & Notices

8.1 Contacts

ADLINK Technology Corporation
400 TradeCenter
Suite 5900
Woburn, MA
01801
USA
Tel: +1 781 569 5819

ADLINK Technology Limited
The Edge
5th Avenue
Team Valley
Gateshead
NE11 0XA
UK
Tel: +44 (0)191 497 9900

ADLINK Technology SARL
28 rue Jean Rostand
91400 Orsay
France
Tel: +33 (1) 69 015354

Web: http://ist.adlinktech.com/

Contact: http://ist.adlinktech.com/

E-mail: ist_info@adlinktech.com

LinkedIn: https://www.linkedin.com/company/79111/

Twitter: https://twitter.com/ADLINKTech_usa

Facebook: https://www.facebook.com/ADLINKTECH

32

http://ist.adlinktech.com/
http://ist.adlinktech.com/
mailto:ist_info@adlinktech.com
https://www.linkedin.com/company/79111/
https://twitter.com/ADLINKTech_usa
https://www.facebook.com/ADLINKTECH

The DDS Tutorial, Release

8.2 Notices

This work is made available under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
license https://creativecommons.org/licenses/by-sa/4.0/legalcode

This document may be reproduced in whole but not in part. The information contained in this document is subject
to change without notice and is made available in good faith without liability on the part of ADLINK Technology
Limited. All trademarks acknowledged.

8.2. Notices 33

https://creativecommons.org/licenses/by-sa/4.0/legalcode

	Foundations
	The Data Distribution Service
	The OMG DDS Standard
	DDS in a Nutshell
	Summary

	Topics, Domains and Partitions
	Topics Inside Out
	Scoping Information
	Content Filtering
	Summary

	Reading and Writing Data
	Writing Data
	Accessing Data
	Waiting and being Notified
	Summary

	Quality of Service
	The DDS QoS Model
	Summary

	Appendix A
	Online Resources

	Acronyms & Abbreviations
	Bibliography
	Contacts & Notices
	Contacts
	Notices

