A _ADLINK

R EX
PLICE

Streams API
Reference Guide

Release 6.x

Contents

1 Preface 1
1.1 About The Vortex Streams API Reference Guide 1
1.2 Intended Audience e e e e e e 1
1.3 Organisation o vt i e e e e e e e e e e e e e e e 1
1.4 ConventionS v i v i v i e e e e e e e e e e e e e e 1
2 Introduction 3
2.1 Features e e e 3
2.2 Getting Started L. e e e e e e 3
3 API Reference 5
3.1 Introduction e e e e e e 5
32 QOSPOLicies e e e 5
3.3 StreamDataWriter Class e e e e e 6
3.4 StreamDataReader Class e 10
3.5 FooStreamFilterCallback Interface 16
4 Contacts & Notices 17
4.1 Contacts e e e e e e e e e 17
4.2 NOLCES . . . v vt e e e e e e e e 17

Preface

1.1 About The Vortex Streams API Reference Guide

The Vortex Streams API Reference Guide provides a detailed overview of the Vortex OpenSplice Streams API.
The Streams API is an add-on, built on the Data Centric Public Subscribe (DCPS) paradigm that is implemented
by Vortex OpenSplice and standardized in the OMG’s Data Distribution Service Specification.

This Guide complements the Vortex OpenSplice C++ Reference Guide.

1.2 Intended Audience

The Streams API Reference Guide is intended to be used by C++ programmers who are using the OpenSplice
Streams API to develop applications. While not strictly required, it is assumed that the reader has a basic under-
standing of the DDS C++ API as detailed in the Vortex OpenSplice C++ Reference Guide.

1.3 Organisation

This Guide is organised in two parts.

The Introduction provides some background information about the features of the Streams API and how to use
them. It also gives a broad overview of all entities and relations between entities in the Streams API.

The API Reference provides detailed descriptions of all of the classes and operations of the Streams API.

1.4 Conventions

The icons shown below are used in ADLINK product documentation to help readers to quickly identify informa-
tion relevant to their specific use of Vortex OpenSplice.

Streams API Reference Guide, Release 6.x

Meaning

Q
S
3

Item of special significance or where caution needs to be taken.

Item contains helpful hint or special information.

Windows Information applies to Windows (e.g. XP, 2003, Windows 7) only.

Information applies to Unix-based systems (e.g. Solaris) only.

Information applies to Linux-based systems (e.g. Ubuntu) only.

C language specific.

+

C++ language specific.

o)
+*

C# language specific.

SEREAGRE

Java

Java language specific.

1.4. Conventions 2

Introduction

2.1 Features

Vortex OpenSplice Streams API supports a common data-distribution pattern where continuous flows or streams
of data have to be transported with minimal overhead and therefore maximal achievable throughput.

Vortex OpenSplice Streams API implements this streams pattern by transparent packing and queuing of data
samples using auto-generated containers, thus minimizing the overhead normally associated with the management
and distribution of individual DDS samples.

2.2 Getting Started

The Vortex OpenSplice Streams API is divided in two main components:
* type-specific code that can be generated using the Vortex OpenSplice IDL Pre-Processor
* a Streams library.

Applications that wish to use the Streams API are required to do two things:

1. Link against one of the Vortex OpenSplice Streams libraries available within the Vortex OpenSplice distri-
bution. There are separate libraries for either CORBA-Cohabitation mode or Standalone C++ mode.

2. Annotate the data-model IDL file with #pragma stream directives for each data type for which a Stream
needs to be created.

The Vortex OpenSplice Streams API is built on the DCPS API. Since the C++ bindings of Vortex OpenSplice are
available in two flavours, so is the Streams API. In the following paragraphs the steps will be discussed to build a
simple application that uses the following data-model:

Space.idl:

module Space {
struct Foo {
long long_1;
long long_2;
}i
#pragma stream Foo

struct Type2 {
long long_1;
long long_2;
long long_3;
i
#pragma stream Type2
#pragma keylist Type2 long_1

}i

Streams API Reference Guide, Release 6.x

Using this model, both Foo and Type?2 can be used with the Streams API. In addition Type?2 can also be used
as a regular DDS topic, with 1ong_1 as key.

The following relevant Streams API classes are generated based on this model for Foo:

Space: :FooStreamDataWriter
Space: :FooStreamDataReader
Space: :FooStreamBuf

It is recommended to use smart references to the StreamDataWriter and StreamDataReader classes
in applications. The regular Vortex OpenSplice C++ smart-pointer <class>_var types are available for this
purpose. See the section on Memory Management in the Vortex OpenSplice C++ Reference Guide for more
information.

2.2.1 CORBA Cohabitation Mode

In CORBA Co-habitation mode, 1d1pp generates code that can be processed with any of the supported ORB
compilers (OpenFusion TAO, Mico, efc.).

First id1pp is executed on the Space.idl file:
$ idlpp -I$OSPL_HOME/etc/idl -1 cpp -C Space.idl
The standard Vortex OpenSplice IDL directory is referenced as include-path, since it contains definitions of

some basic data-types and interfaces that are required if DDS Topics are created for any of the types in the IDL
file. The other parameters are used to put id1pp in C++ CORBA-Cohabitation mode.

As usual when DDS topics are created, the above command generates, among other files, a file called
SpaceDcps.idl. The file SpaceStreams.idl is also generated.

To proceed, 1 d1pp should be executed on the ExampleStreams.idl file:

$ idlpp -I$OSPL_HOME/etc/idl -1 cpp -C SpaceStreams.idl

This creates the descriptions of the DCPS entities that are required to manage the DDS topics that will be used for
the Streams types, just like with the original IDL file, in a file called SpaceStreamsDcps.idl.

Now all four IDL files should be processed with the appropriate (ORB-specific) CORBA IDL processor. After
this step all code and header files are generated to start using the Streams API in application code.

2.2.2 Standalone Mode

In Standalone C++ mode, the generated interfaces are not required to be processed by an IDL compiler. Instead,
idlpp will use the cppgen code-generator that is part of the Vortex OpenSplice distribution. idlpp will
automatically call cppgen to process certain files; the user is only required to execute idlpp, first on the
original IDL file:

$ idlpp -ISOSPL_HOME/etc/idl -1 cpp -S Space.idl

This creates SpaceStreams.idl, which in turn also needs to be processed by id1lpp:

$ idlpp -I$OSPL_HOME/etc/idl -1 cpp -S —-i SpaceStreams.idl

The -1 parameter is required because normally no code is generated for interfaces (for DDS topics, only datatypes
are generated). In the case of streams, interfaces should not be ignored.

2.2. Getting Started 4

API| Reference

3.1 Introduction

As described in :ref: ‘Getting Started <Getting Started>°, the Vortex OpenSplice IDL preprocessor generates typed
Streams API classes for each type that is annotated with a streams pragma.

As in the Vortex OpenSplice C++ Reference Guide, the fictional type Foo, defined in module Space, is used
as an example. When the Foo type is annotated with a pragma streams, FooStreamDataWriter and
FooStreamDataReader classes will be generated.

This section describes the usage of all operations on these classes.

3.2 QoS Policies

StreamDataWriterQos StreamDataReaderQos
StreamFlushQosPolicy

StreamFlushQosPolicy | Type Default value

max_delay DDS: :Duration_t | DDS::DURATION_INFINITE
max_samples long 0

3.2.1 StreamDataWriterQos

StreamFlushQosPolicy

Scope

DDS::Streams

Synopsis

#include <streams_ccpp.h>

struct StreamFlushQosPolicy {
Duration_t max_delay;
long max_samples;

}i

Description

The StreamFlushQosPolicy can be used to set limits on the stream(s) of the
StreamDataWriter itis applied to.

Attributes

Duration_t max_delay Time-based limit. The StreamDataWriter will automatically flush all
of its streams each max_delay period.

Streams API Reference Guide, Release 6.x

A Note: max_delay is not yet implemented. It is scheduled for a future release.

long max_samples Samples-per-stream based limit. The StreamDataWriter will automatically
flush a stream when, after appending a sample, the number of samples in that stream equals

max_samples.

Detailed Description

By setting the St reamFlushQosPolicy, the StreamDataWriter will automatically flush its
stream(s) based on a particular limit. The attributes can be combined, for example a max_delay
of I second and a max_samples of 100 will result in a flush at least each second or sooner if 100

samples are appended to a stream.

The max_delay limit applies to all streams in case a StreamDataWriter manages more than
one stream. It is initialized when the first stream is created, and applied to all streams created after

that.

In case of a manual flush (when the application calls the flush operation), the max_samples limit

is reinitialized.

StreamDataReaderQos

Currently no QoS properties for a StreamDataReader have been identified, but the
StreamDataReaderQos is defined in the API to maintain consistency with the St reamDataWriter;itis

reserved for future use.

3.3 StreamDataWriter Class

3.3.1 Constructors

Scope
Space: :FooStreamDataWriter
Synopsis

#include <SpaceStreamsApi.h>

ooStreamDataWriter (
DDS: :Publisher_ptr publisher,
DDS::Streams::StreamDataWriterQos &sqgos,
const charx streamName) ;

FooStreamDataWriter (
DDS: :DomainId_t domainId,
DDS::Streams: :StreamDataWriterQos &sqgos,
const charx streamName) ;

FooStreamDataWriter (
DDS::Streams::StreamDataWriterQos &sqgos,
const char* streamName) ;

FooStreamDataWriter (
DDS: :Publisher_ptr publisher,
const char* streamName) ;

FooStreamDataWriter (
DDS: :DomainId_t domainId,

const charx streamName) ;

Description

3.3. StreamDataWriter Class

Streams API Reference Guide, Release 6.x

Multiple constructors are available to create a FooStreamDataWriter. Depending on which
parameters are supplied by the application, one of the overloaded constructors will be selected to
create a new instance of the FooStreamDataWriter class.

Parameters

in DDS: :Publisher_ptr publisher A pointer to a pre-created DDS Publisher. This pa-
rameter is optional; if a publisher is not supplied the FooStreambDataWriter will create an

internal publisher.

in DDS::DomainId t domainId The id of the DDS domain to attach to. The
DDS: :DOMAIN_ ID DEFAULT macro can be used to connect to the default domain, which

is also used if the parameter is omitted.

in DDS::Streams: :StreamDataWriterQos &sqgos The QoS settings that are applied to

the FooStreamDataWriter.

in const charx streamName The system-wide unique name of the stream that is
used to create a DDS (container-)topic for the stream(s) that are handled by the

FooStreamDataWriter.

Exceptions

Constructors cannot return a value, therefore they throw exceptions when the object cannot be con-
structed. Besides exceptions, the regular Vortex OpenSplice error logging framework is used to report

additional information when a constructor fails.

The constructors throw a St reamsExcept ion if an error occurs. The application may catch these
exceptions to detect when creation of a StreamDataWriter doesn’t succeed.

DDS::Streams: :StreamsException {
out const char xmessage;
out DDS::ReturnCode_t id

}

The message contains a description of the error. The id field contains a DDS error code that repre-

sents the error condition.

Detailed Description

When a pre-created publisher is not supplied, the FooStreamDataWriter will create an internal
DDS participant and DDS publisher. This will naturally consume some resources, so when a lot
of streams need to be created it is recommended to supply a publisher that can be re-used for each

FooStreamDataWriter instance.

The st reamName is a required parameter. The FooStreamDataWriter will create a DDS topic
of the correct type and name it after the supplied st reamName.

3.3.2 append

Scope
Space: :FooStreamDataWriter
Synopsis

#include <SpaceStreamsApi.h>
DDS: :ReturnCode_t
append (

StreamId id,
const Foo &data)

Description

Write a sample to the stream with the supplied id.

3.3. StreamDataWriter Class

Streams API Reference Guide, Release 6.x

Parameters

in StreamId id The stream id.

in Foo &data The data to write to the stream.
Return Value

ReturnCode_t Possible return codes of the operation are: DDS: :RETCODE_OK,
DDS: :RETCODE_PRECONDITION_NOT_MET

Detailed Description

Using the append operation, the application can write data to a stream. Note that for each stream of
a certain type, multiple instances of this stream-type can be created by assigning unique ids to each
of streams. Each id then represents an instance of the stream of the associated type. So the actual
stream instance is selected based on the supplied St reamId.

When the stream doesn’t exist it is automatically created based on the current QoS settings.
Return Code

When the operation returns:

RETCODE_OK The data was successfully appended to the stream.

RETCODE_PRECONDITION_NOT_MET A precondition failed, data was not appended.

If the StreambDataWriter QoS specifies an auto-flush maximum samples limit, an append may
trigger a flush. In that case the append call forwards the return code of the flush to the application,
so any return code that is specified in the next section may also be returned by append.

3.3.3 flush

Scope
Space: :FooStreamDataWriter
Synopsis

#include <SpaceStreamsApi.h>

DDS: :ReturnCode_t
flush (
DDS::Streams::StreamId id)

Description

Write all data in a stream to the DDS subsystem.
Parameters

in StreamId id The id of the stream.
Return Value

ReturnCode_t Possible return codes of the operation are: DDS: :RETCODE_OK,
DDS: :RETCODE_PRECONDITION_NOT_MET

Detailed Description

When a stream is flushed, all data in the stream is delivered to DDS and the stream is emptied. The
memory allocated will be reused the next time data is appended to the stream.

The £lush operation results in a write call on the underlying DDS subsystem. Depending on the
result of the write, this result is returned back to the application.

Return Code
RETCODE_OK The stream was successfully flushed.

3.3. StreamDataWriter Class 8

Streams API Reference Guide, Release 6.x

RETCODE_PRECONDITION_NOT_MET A precondition failed; most likely the stream doesn’t ex-
ist.

See the Vortex OpenSplice C++ Reference Guide for possible result codes returned by aDDS write
operation.

3.3.4 get_qos

Scope
Space: :FooStreamDataWriter
Synopsis

#include <SpaceStreamsApi.h>

DDS: :ReturnCode_t
get_qgos (
DDS::Streams::StreamDataWriterQos &gos)

Description
This operation allows access to the existing set of QoS policies for a FooStreamDataWriter.
Parameters

inout StreamDataWriterQos &gos A pointer to a StreamDatatWriterQos object to
which the current QoS settings will be copied.

Return Value
ReturnCode_t Possible return code of the operation is: DDS: : RETCODE_OK.
Detailed Description

The existing list of QoS settings of the FooStreamDataWriter is copied to the object pointed to
by gos. The application can then inspect and, if necessary, modify the settings and apply the settings
using the set__gos operation.

Return Code
RETCODE_OK The QoS settings were successfully copied to the supplied gos object.

3.3.5 set_qos

Scope
Space: :FooStreamDataWriter
Synopsis

#include <SpaceStreamsApi.h>

DDS: :ReturnCode_t
set_qgos (
DDS::Streams: :StreamDataWriterQos &gos)

Description

This operation allows replacing the existing set of QoS policies for a FooStreamDataWriter.
Parameters

in StreamDataWriterQos &gos A pointer to a gos object with the new policies.

Return Value

3.3. StreamDataWriter Class 9

Streams API Reference Guide, Release 6.x

ReturnCode_t Possible return codes of the operation are: DDS: :RETCODE_OK,
DDS: :RETCODE_UNSUPPORTED.

Detailed Description

This operation allows replacing the set of QoS policies of a FooStreamDataWriter.

A Note: A new StreamFlushQosPolicy may decrease the value of max_samples, but
existing streams are not allowed to violate this limit. Any streams that contain data that exceeds the
new max_samples value are automatically flushed before the new policy is applied.

Return Code
RETCODE_OK The QoS settings were successfully applied to the FooStreamDataWriter.

RETCODE_UNSUPPORTED The application attempted to set QoS policies or values that are not (yet)
supported.

3.4 StreamDataReader Class

3.4.1 Constructors

Scope
Space: :FooStreamDataReader
Synopsis

#include <SpaceStreamsApi.h>

FooStreamDataReader (
DDS: :Subscriber_ptr subscriber,
DDS::Streams: :StreamDataReaderQos &sqgos,
const char*x streamName) ;

FooStreamDataReader (
DDS::DomainId_t domainId,
DDS::Streams: :StreamDataReaderQos &sqgos,
const char* streamName) ;

FooStreamDataReader (
DDS::Streams::StreamDataReaderQos &sqgos,
const charx streamName) ;

FooStreamDataReader (
DDS: :Subscriber_ptr subscriber,
const char* streamName) ;

FooStreamDataReader (
DDS: :DomainId_t domainId,
const char* streamName) ;

Description

Multiple constructors are available to create a FooStreamDataReader. Depending on which
parameters are supplied by the application, one of the overloaded constructors will be selected to
create a new instance of a FooStreamDataReader class.

Parameters

in DDS::Subscriber_ptr subscriber A pointer to a pre-created DDS Subscriber. This
parameter is optional; if a subscriber is not supplied the FooSt reamDataReader will create
an internal subscriber.

3.4. StreamDataReader Class 10

Streams API Reference Guide, Release 6.x

in DDS::DomainId t domainId The id of the DDS domain to attach to. The
DDS: :DOMAIN_ID_DEFAULT macro can be used to connect to the default domain, which
is also used if the parameter is omitted.

in DDS::Streams: :StreamDataReaderQos &sqgos The QoS settings that are applied to
the FooStreamDataReader.

in const charx streamName The system-wide unique name of the stream which is
also used to create a DDS (container-)topic for the stream(s) that are handled by the
FooStreamDataReader.

Exceptions

Constructors cannot return a value, therefore they throw exceptions when the object cannot be con-
structed. Besides exceptions, the regular Vortex OpenSplice error logging framework is used to report
additional information when a constructor fails.

The constructors throw a St reamsException if an error occurs. The application may catch these
exceptions to detect when creation of a St reamDataReader doesn’t succeed.

DDS::Streams: :StreamsException {
out const char xmessage;
out DDS::ReturnCode_t id

}

The message contains a description of the error. The id field contains a DDS error code that repre-
sents the error condition.

Detailed Description

When a pre-created subscriber is not supplied, the FooSt reamDat aReader will create an internal
DDS participant and DDS subscriber. This will naturally consume some resources, so when a lot of
instances need to be created it is recommended to supply a subscriber that can be re-used for each
FooStreamDataReader instance.

The st reamName is a required parameter. The FooSt reamDataReader will create a DDS topic
of the correct type and name it after the supplied st reamName.

3.4.2 get

Scope
Space: :FooStreamDataReader
Synopsis

#include <SpaceStreamsApi.h>

DDS: :ReturnCode_t

get (
DDS::Streams: :StreamId id,
Space: :FooStreamBuf data_values,
long max_samples,
DDS: :Duration_t timeout);

Description
Check if any data is available in a stream and retrieve it, emptying the stream.
Parameters
in StreamId id The id of the stream instance from which to retrieve the data.
inout FooStreamBuf data_values The buffer in which the data is stored.

in long max_samples The maximum amount of data samples retrieved. Default is
DDS: :LENGTH_UNLIMITED.

3.4. StreamDataReader Class 11

Streams API Reference Guide, Release 6.x

in Duration_t timeout Blocking time, in case no data is immediately available.

Return Value

ReturnCode_t Possible return codes of the operation are: DDS: :RETCODE_OK,
DDS: :RETCODE_PRECONDITION_NOT_MET.

Detailed Description

Using the get operation, the application can retrieve data from a stream. The stream is selected based
on the supplied St reamId.

If no data is available initially, the get operation blocks for a maximum period speci-
fied in the timeout parameter. If data becomes available during the timeout period the
FooStreamDataReader proceeds to retrieve the data and return it to the application. To re-
turn immediately, the application can use the special value DDS: : DURATION_ZERO as a t imeout
parameter. To block indefinitely until data is available, the value DDS: : DURATION_INFINITE
should be passed.

The data is returned in a buffer that is to be supplied by the application. The application is responsible
for allocating a buffer that is large enough to contain the available data. If more data is available
than will fit in the buffer, the excess data will be stored by the StreamDataReader and returned to the
application during the next call to get (or get_w_filter). In this state, the St reamDataReader will
only attempt to retrieve new data after all data that was stored internally is returned to the application.

Since allocating memory for the buffer is an expensive operation, it is recommended to re-use the
same buffer for each subsequent call to get or get_w_filter. The max_samples parameter can be
used to limit the amount of data that is returned with each get or get_w_filter call.

A Note: Internal pre-allocation of buffers, using a loans registry similar to the DCPS API, will be
implemented in a future version.

Return Code

DDS: :RETCODE_OK Data is returned in the data_values buffer.
DDS: :RETCODE_NO_DATA There is currently no data available.

DDS: :RETCODE_PRECONDITION_NOT_MET The operation could not be performed because a
precondition is not met; most likely the data_values buffer is not preallocated.

The list of possible return codes includes all possible return codes of waitset.wait () and
take_instance () calls. These DCPS calls are used internally by the Streams API. There is
one exception: if the waitset .wait () returns aDDS: : RETCODE_TIMEOUT, this return code is
translated to a DDS : : RETCODE_ NO_DATA return code.

See the Vortex OpenSplice C++ Reference Guide for possible result codes returned by a DDS
take_instance operation and for waitset.wait ().

3.4.3 get_w_filter

Scope
Space: :FooStreamDataReader
Synopsis

#include <SpaceStreamsApi.h>

DDS: :ReturnCode_t

get_w_filter(
DDS: :Streams: :StreamId id,
Space: :FooStreamBuf data_values,
long max_samples,

3.4. StreamDataReader Class

12

Streams API Reference Guide, Release 6.x

DDS: :Duration_t timeout
Space: :FooStreamFilterCallback a_filter);

Description

Check if any data is available in a stream and retrieve it if it matches the filter, discard otherwise.
Parameters

in StreamId id The id of the stream instance of which to retrieve the data.

inout FooStreamBuf data_values The buffer in which the data is stored.

in long max_samples The maximum amount of data samples retrieved.

in Duration_t timeout Blocking time, in case no data is immediately available.

in FooStreamFilterCallback a_filter Pointer to a function that implements a filter for
the data.

Return Value

ReturnCode_t Possible return codes of the operation are: DDS: :RETCODE_OK,
DDS: :RETCODE_PRECONDITION_NOT_MET.

Detailed Description

The get_w_filter operation is equivalent to the get operation, the description of get also applies
toget_w_filter.

The difference is that get_w_filter allows the application to supply a
FooStreamFilterCallback instance that implements the match_data () operation.
Each data sample is matched against the filter and only data for which the filter returns true is
returned to the application.

Samples that do not match the filter are not considered in relation to max_samples and the
data_values buffer length; the buffer does not need to be capable of holding all available samples,
just the samples that pass the filter.

Samples are only evaluated once and are discarded if not matched.
Return Code
DDS: :RETCODE_OK Data is returned in the data_values buffer.
DDS: :RETCODE_NO_DATA There is no data available during the period specified by t imeout.

DDS: :RETCODE_PRECONDITION_NOT MET The operation could not be performed because a
precondition is not met; most likely the data_values buffer is not preallocated.

The list of possible return codes includes all possible return codes of waitset.wait () and
take_instance () calls. These DCPS calls are used internally by the Streams API. There’s one
exception: If the waitset.wait () returns a DDS: :RETCODE_TIMEOUT, this return code is
translated to a DDS : : RETCODE_NO_DATA return code.

See the Vortex OpenSplice C++ Reference Guide for possible result codes returned by a DDS
take_instance operation and waitset.wait ().

3.4.4 return_loan

Scope
Space: :FooStreamDataReader

Synopsis

3.4. StreamDataReader Class 13

Streams API Reference Guide, Release 6.x

#include <SpaceStreamsApi.h>

DDS: :ReturnCode_t
return_loan (
Space: :FooStreamBuf data_values)

Description

The application should use this operation to indicate that it has finished accessing the sequence of
data_values.

Parameters

inout FooStreamBuf data_values The data sequence which was loaned from the
FooStreamDataReader.

Return Value

ReturnCode_t Possible return codes of the operation are: DDS: :RETCODE_OK,
DDS: :RETCODE_PRECONDITION_NOT_MET.

Detailed Description

When the application does not pre-allocate a buffer to hold the data, the FooStreamDataReader
will do so itself when a get operation is invoked. The application calls return_loan to indicate
that it has finished accessing this buffer so the FooSt reamDat aReader can reclaim the resources
allocated for the buffer.

A Note: Internal pre-allocation will be implemented in a future release. This operation has no effect
on buffers allocated by the application.

3.4.5 get_qos

Scope
Space: :FooStreamDataReader
Synopsis

#include <SpaceStreamsApi.h>

DDS: :ReturnCode_t
get_qgos (
DDS::Streams: :StreamDataReaderQos &gos)

Description
This operation allows access to the existing set of QoS policies for a FooStreamDataReader.
Parameters

inout StreamDataReaderQos &gos A pointer to a StreamDataReaderQos object to
which the current QoS settings will be copied.

Return Value
ReturnCode_t Possible return code of the operation is: DDS: : RETCODE_OK.
Detailed Description

The existing list of QoS settings of the FooStreamDataReader is copied to the object pointed to
by gos. The application can then inspect and, if necessary, modify the settings and apply the settings
using the set__qgos operation.

Return Code

RETCODE_OK The QoS settings were successfully copied to the supplied gos object.

3.4. StreamDataReader Class 14

Streams API Reference Guide, Release 6.x

3.4.6 set_qos

Scope
Space: :FooStreamDataReader
Synopsis

#include <SpaceStreamsApi.h>

DDS: :ReturnCode_t
set_gos (
DDS::Streams: :StreamDataReaderQos &gos)

Description

This operation allows replacing the existing set of QoS policies for a FooStreamDataReader.
Parameters

in StreamDataReaderQos &gos A pointer to a gos object with the new policies.
Return Value

ReturnCode_t Possible return codes of the operation are: DDS: :RETCODE_OK,
DDS: :RETCODE_UNSUPPORTED

Detailed Description

This operation allows replacing the set of QoS policies of a FooSt reamDataReader.
Return Code

RETCODE_OK The QoS settings were successfully applied to the FooStreamDataWriter.

RETCODE_UNSUPPORTED The application attempted to set QoS policies or values that are not (yet)
supported.

3.4.7 interrupt

Scope
Space: :FooStreamDataReader
Synopsis

#include <SpaceStreamsApi.h>

DDS: :ReturnCode_t
interrupt () ;

Description
Interrupt a blocking get operation from a different thread.
Return Value

ReturnCode_t Possible return codes of the operation are: DDS: :RETCODE_OK,
DDS: :RETCODE_ERROR.

Detailed Description

The get operation accepts a t imeout parameter which causes the FooStreamDataReader to
block until data becomes available. It can block indefinitely when an infinite timeout is supplied and
data never becomes available because there are simply no compatible writers.

In such cases it can be desirable to interrupt the get operation from the application, i.e. for termination
or reclaiming of resources.

3.4. StreamDataReader Class

15

Streams API Reference Guide, Release 6.x

The interrupt call triggers an internal GuardCondition by calling
DDS: :GuardCondition: :set_trigger_value (true). This causes the get opera-
tion to return with a DDS: : RETCODE_NO_DATA result.

Return Code

The return code of this operation is determined by the result of
DDS: :GuardCondition: :set_trigger_value ()

DDS: :RETCODE_OK The GuardCondition was triggered successfully

DDS: :RETCODE_ERROR An internal error occurred

3.5 FooStreamFilterCallback Interface

Scope
Space: :FooStreamDataReader
Synopsis

#include <SpaceStreamsApi.h>

boolean
a_filter(
const Space::Foo &data)

Description

Function interface for filters that are passed to the get_w_filter and/or peek_w_filter operations.
Parameters

in const Foo &data A datasample.
Return Value

boolean Return true if the supplied data matches, false if it doesn’t match.
Detailed Description

The application can supply any function that adheres to the FooStreamFilterCallback inter-
face, to filter data that is retrieved by the get_w_filter operation. If the data matches the filter, the
function returns true and the data is added to the data_values buffer that is returned by the
get_w_filter operation. Data that doesn’t match the filter is discarded.

3.5. FooStreamFilterCallback Interface

16

Contacts & Notices

4.1 Contacts

ADLINK Technology Corporation
400 TradeCenter

Suite 5900

Woburn, MA

01801

USA

Tel: +1 781 569 5819

ADLINK Technology Limited
The Edge

5th Avenue

Team Valley

Gateshead

NE11 0XA

UK

Tel: +44 (0)191 497 9900

ADLINK Technology SARL
28 rue Jean Rostand

91400 Orsay

France

Tel: +33 (1) 69 015354

Web: http://ist.adlinktech.com/

Contact: http://ist.adlinktech.com

E-mail: ist_info@adlinktech.com

LinkedIn: https://www.linkedin.com/company/79111/
Twitter: https://twitter.com/ADLINKTech_usa
Facebook: https://www.facebook.com/ADLINKTECH

4.2 Notices

Copyright © 2018 ADLINK Technology Limited. All rights reserved.

http://ist.adlinktech.com/
http://ist.adlinktech.com
mailto:ist_info@adlinktech.com
https://www.linkedin.com/company/79111/
https://twitter.com/ADLINKTech_usa
https://www.facebook.com/ADLINKTECH

Streams API Reference Guide, Release 6.x

This document may be reproduced in whole but not in part. The information contained in this document is subject
to change without notice and is made available in good faith without liability on the part of ADLINK Technology
Limited. All trademarks acknowledged.

4.2. Notices 18

	Preface
	About The Vortex Streams API Reference Guide
	Intended Audience
	Organisation
	Conventions

	Introduction
	Features
	Getting Started

	API Reference
	Introduction
	QoS Policies
	StreamDataWriter Class
	StreamDataReader Class
	FooStreamFilterCallback Interface

	Contacts & Notices
	Contacts
	Notices

