A ADLINK

4 ‘4
) 4‘;'»7
4 4

4 "VOR]

- X

OPENSPLICE

Modeling Guide

Release 2.5.x

Contents

1 Preface 1
1.1~ About The Modeling Guide e 1
1.2 Intended Audience e 1
1.3 Organisation o vt i e e e e e e e e e e e e e e e 1
1.4 ConventionsS v v v i e e e e e e 1
2 Introduction 3
3 Installation 5
3.1 General Installation Instructions e 5
3.2 Setting Vortex OpenSplice Preferences oo 6
3.3 Uninstallation Instructions e e e e e 7
4 Modeler Described 9
A1 OVEIVIEW . . v v o v e o e e e e e e e e e e e e e 9
42 TheModeler GUIL e e e 9
4.3 Creating and Using a Vortex OpenSplice Project, 11
4.4 Project COmMpPONENtS oottt e e e e e e e e e 13
4.5 Specialized Editors 16
5 Modeling 25
5.1 Information Modeling L 25
5.2 Application Modeling 29
6 Code Generation 36
6.1 Savingto Eclipse Projects L 36
6.2 Exporting Applications e e 37
6.3 JavaCode Generation it e e e e e 39
6.4 CH++Code Generation v v v v i e e e e e e e e 47
7 Creating Launch Configurations 56
7.1 Creating and Running an OSPL, start Launch Configuration 56
7.2 Creating and Running an OSPL stop Launch Configuration 57
8 Compiling and Running 59
8.1 Compiling e e e 59
8.2 Running e e e 59
9 Tutorial 61
9.1 Example Chatroom OVerview i v v it e i e e e e e e 61
9.2 Creatingthe Chatroom e 63
10 Appendix A 79
10.1 A Chatroom Example, Java Source Code 79
11 Appendix B 96
11.1 Chatroom Example, C++ Source Code 96
12 Contacts & Notices 126
12.1 ContactS v o e e e 126
12.2 NOLICES . . v v v e e e e e e e e e e e 126

Preface

1.1 About The Modeling Guide

The Modeling Guide is included with the Vortex OpenSplice Modeler documentation set.

The Modeling Guide is intended to be used with the Vortex OpenSplice Modeler product suite.

1.2 Intended Audience

The Modeling Guide is intended to be used by Vortex OpenSplice Modeler users.

1.3 Organisation

The Guide is organised as follows:

The Introduction explains what the Vortex OpenSplice Modeler is, what its advantages and benefits are, and
provides general information about the Modeler product.

The Installation section provides the instructions for installing Vortex OpenSplice Modeler.

The features and tools of Vortex OpenSplice Modeler are then described in detail, and an outline of their use for
modeling and code generation is given.

The Modeling section describes in detail how to use the tools in Vortex OpenSplice Modeler for modeling and
assembling resources.

The next section, on Code Generation, describes how to use the Vortex OpenSplice Modeler for generating DDS-
compliant source code.

Launch Configurations, convenient ways to run and control the Modeler, are described next.

The following section gives details of how to compile and run applications using Vortex OpenSplice Modeler and
Eclipse Workbench.

There is also a Tutorial, which uses a DDS-based example to demonstrate how to use the basic features of the
Vortex OpenSplice Modeler modeling tool.

Finaly, two Appendices contain source code in Java and C++ for the Chatroom example project described in the
Tutorial.

1.4 Conventions

The icons shown below are used in the Vortex product documentation to help readers to quickly identify informa-
tion relevant to their specific use of Vortex OpenSplice.

Modeling Guide, Release 2.5.x

Meaning

Q
S
3

Item of special significance or where caution needs to be taken.

Item contains helpful hint or special information.

Windows Information applies to Windows (e.g. XP, 2003, Windows 7) only.

Information applies to Unix-based systems (e.g. Solaris) only.

Information applies to Linux-based systems (e.g. Ubuntu) only.

C language specific.

+

C++ language specific.

o)
+*

C# language specific.

SEREAGRE

Java

Java language specific.

1.4. Conventions 2

Introduction

The Vortex OpenSplice Modeler is an integrated Eclipse-based tool chain based on Data Distribution Service
(DDS) domain-specific model driven techniques. It provides the essential productivity tools of ADLINK's third
generation OMG-DDS suite.

Vortex OpenSplice is a suite of software products comprised of a high-performance, low-overhead run-time envi-
ronment, development tools for modeling information and applications, and run-time tools for monitoring system
performance.

The Vortex OpenSplice Modeler conforms to the Object Management Group’s (OMG’s) Data Distribution Service
for Real-Time Systems Specification for the high-performance, high-integrity systems required in defence, air-
traffic control, SCADA, and other applications, where RT distributed data is a requirement for acceptable systems
performance.

The Vortex OpenSplice Modeler is designed to provide developers of these RT systems with an easy-to-use, graph-
ical modeling environment that dramatically increases their productivity, and 2nd generation DDS middleware
offering superior performance, scalability, robustness, fault-tolerance, flexibility, and ease-of-use.

The objective of the Vortex OpenSplice Modeler is to reduce complexity, shorten time-to-market, raise quality,
and ensure Standards compliance and code correctness; all in a single integrated suite of tools from a proven and
trusted vendor.

The Vortex OpenSplice Modeler facilitate DDS-based system development by clearly distinguishing between the
various scopes and lifecycle stages of the system supported by visual composition, configuration and round-trip
engineering. This purpose is realized by the following means:

* Guidance - the tools provide context-aware guidance regarding the overall DDS concept, patterns and best-
practices.

o Well-defined hierarchical steps - includes information modeling (topic definitions in IDL, code-generation
for topic QoS), application design (code-generation for application frameworks and DDS entities such
as publishers/writers, subscribers/readers) and system deployment (information partitioning, network-
configuration and durability configuration resulting in XML-based Vortex OpenSplice configuration data).

The Vortex OpenSplice Modeler includes these tools:

 Vortex OpenSplice Information Modeler - graphical information-modeling tool for system-wide Types and
Topics.

» Vortex OpenSplice Application Modeler - graphical application-modeling tool for application code-
generation based on a DDS meta-model and related palette of DDS-entities and application frameworks,
including of DomainParticipants, Publishers, Subscribers, DataWriters, DataReaders and Listeners.

A future release will also include:

* Vortex OpenSplice Deployment Modeler - graphical deployment-control environment supporting real-time
connectivity with the deployed target system both for configuration-purposes as well as run-time control
and monitoring (by integrating the OpenSplice Tuner features in the Eclipse-based framework).

* Round-trip engineering between the modeling environment and the actual deployed target system.

| Linux ||Windows|

Modeling Guide, Release 2.5.x

The Vortex OpenSplice Modeler is currently available for Windows and Linux running Sun’s Java SE JDK 6 and
Eclipse 3.6.

The Vortex OpenSplice Modeler product is supplied as profiles: individual, tailored packages specific to each
modeling area, including:

¢ information modeling
e application modeling

* deployment modeling (to be supported in a future release)

Installation

3.1 General Installation Instructions

Follow the steps shown below to install the Vortex OpenSplice Modeler.
Step 1: Prerequisites

Ensure that Java Version 6 (required) and the Vortex OpenSplice Host Development Environment
! (recommended), plus any other supporting software (such as native compilers, for example), are
installed and working.

The prerequisites for C++ Code Generation are given in the Release Notes included with
your Modeler product distribution.

The Release Notes can be viewed by opening index . html located in the root (or base) directory of
your Vortex OpenSplice installation and following the Release Notes link.

Step 2: Run the Vortex OpenSplice Modeler installer

[Unix || Linux |

On Unix-based platforms (including Linux), run from the command line:
VortexOpenSpliceModeler—<version>—-<platform>-installer.bin

where <version> is the release version number and <plat form> is the build for your platform.
Ensure that the execute permission is enabled first, then follow the on-screen instructions. For exam-
ple:

% chmod u+x VortexOpenSpliceModeler-2.5.12-1linux-installer.bin
./VortexOpenSpliceModeler—-2.5.12-1inux-installer.bin

On Windows-based platforms, run by double-clicking on the filename in Windows Explorer:

oe

VortexOpenSpliceModeler—-<version>-windows—installer.exe

where <version> is the release version number, then follow the on-screen instructions. For exam-
ple:

> VortexOpenSpliceModeler-2.5.12-windows—-installer.exe

Step 3: Install the license file

A license file must be obtained from ADLINK, then copied to the eclipse or eclipse/etc
subdirectories where the Vortex OpenSplice Modeler has been installed, or copied to the
ADLINK/Vortex_v2/license directory, or have the ADLINK_LICENSE environment variable
defined with the file path to the license file.

! The Host Development Environment (HDE) generates DCPS typed interfaces: generated application code will not compile without the

HDE.

Modeling Guide, Release 2.5.x

For example:

[Unix || Linux |

/home /myHomeDir/ADLINK/Vortex_v2/Tools/VortexModeler/2.5.12/eclipse/etc

\ADLINK\Vortex_v2\Tools\VortexModeler\2.5.12\eclipse

For more information about licensing, please refer to the Getting Started Guide.

3.2 Setting Vortex OpenSplice Preferences

After installing the Vortex OpenSplice Modeler it is necessary to specify the location of the Vortex OpenSplice
installation to be used.

Step 1: Start the Vortex OpenSplice Modeler.
Step 2: Choose Window > Preferences.
Step 3: Select OpenSplice.
Step 4: Add the location of the Vortex OpenSplice installation to OSPL_HOME.
In the OSPL_HOME path field enter (for example)
/home/apps/ADLINK/Vortex_v2/Device/VortexOpenSplice/6.6.0pl/HDE/x86_64.1inux
The Browse button can be used to navigate through your file system to point to the installation.
You can also set the OSPL_URT path if this is different from the default location.
Step 5: If you are modelling DDS applications for Vortex Lite:
Set the LITE_HOME path field, e.g.
/home/apps/ADLINK/Device/VortexLite/2.0.0
As before, you can set the LITE_URT path to a Vortex Lite configuration file if required.

The Vortex OpenSplice Preferences

3.2. Setting Vortex OpenSplice Preferences 6

Modeling Guide, Release 2.5.x

|typefiltertt=xt Yortex OpenSplice

General
Ant OSPL_HOME path |

C/Ce+ OSPL_URI path
Help

|
Install/Update LITE_HOME path |
|

Java LITE_URI path
JET Transformations

Medel Validation
Run/Debug
Team

|- | Vortex OpenSplice

[
[
[
[
[
[
[
[
[
[

| Restore Qefaulls| |

oK ||

The license location can also be specified using the Licensing Preferences page, which is below the
Vortex OpenSplice Preferences page described above.

Vortex OpenSplice licensing

[type filter text | Licensing PrT
1> General
I Ant (®) Use Default License file
F HU(I:” By default Vortex OpenSplice Modeler tries to obtain license file from SMODELER_INSTALL_DIR/etc.
i+ Help
[+ Install/Update
1> Java (C) Use specified License file
1> JET Transformations License File location: Browse...
1> Model Validation
1> Run/Debug
o Team () Use License server
4 Vortex OpenSplice License Server Name:

License Server Port:

| Restore thuhs| | Apply |

@ [ok][camcel |

3.3 Uninstallation Instructions

The uninstaller cleans the Vortex OpenSplice Modeler install directory by removing any file created during the
installation process.

3.3. Uninstallation Instructions 7

Modeling Guide, Release 2.5.x

Files created by users (such as project files in the workspace directory) are not removed by the uninstaller so that
users do not lose their work.

A normal uninstallation typically removes all folders except for the ec1ipse folder (with the workspace, p2,
plugins and configuration sub-folders).

Follow the steps below to uninstall the Vortex OpenSplice Modeler.

Step 1: Navigate to the uninstall folder of your Vortex OpenSplice Modeler installation.

[Unix || Linux |

On Unix-based platforms (including Linux), the default path will be:
/home/myHomeDir/ADLINK/Vortex_v2/Tools/VortexModeler/<version>/uninstall

where <version> is the release version number.

On Windows-based platforms, the default path will be:
\ADLINK\Vortex_v2\Tools\VortexModeler\<version>\uninstall
where <version> is the release version number.

Step 2: Run the Vortex OpenSplice Modeler uninstaller.

| Unix || Linux |

On Unix-based platforms (including Linux), run from the command line:
uninstall-Vortex OpenSplice Modeler <version>

where <version> is the release version number, then follow the on-screen instructions. For exam-
ple:

% ./uninstall-Vortex\ OpenSplice\ Modeler\ V2.5.12

On Windows-based platforms, run by double-clicking on the filename in Windows Explorer:
uninstall-Vortex OpenSplice Modeler <version>.exe

where <version> is the release version number, then follow the on-screen instructions. For exam-
ple:

> uninstall-Vortex OpenSplice Modeler V2.5.12.exe

On Windows, if certain files are still in use by a process (or by the operating system), the uninstaller
will skip them but prompt you to restart your machine. Restarting the machine removes locks on the
files and ensures that the uninstaller processes them.

Note: To install a new version of Vortex OpenSplice Modeler on top of an existing one, it is rec-
ommended that you uninstall the current version first. Because the uninstaller leaves the workspace
folder untouched, installing a new version of Modeler should be seamless and you should be able to
continue working with your existing projects.

3.3. Uninstallation Instructions 8

Modeler Described

This section describes the features and specialized tools available in Vortex OpenSplice Modeler, and outlines
how to use them for modeling and assembling resources (such as DDS entities) as well as for generating DDS-
compliant source code.

4.1 Overview

The Vortex OpenSplice Modeler is an integrated Eclipse-based tool chain based on DDS domain-specific model-
driven techniques.

The Vortex OpenSplice Modeler modeling tool provides both Information and Application modeling:
e Information modeling includes the modeling of Types and Topics

* Application modeling includes the modeling of DomainParticipants, Publishers, Subscribers, DataWriters,
DataReaders, Listeners, WaitSets and Conditions.

Future releases will also include Deployment modeling (a graphical deployment-control environment supporting
real-time connectivity).

ﬂ A detailed example showing how to model a publisher-subscriber application is provided in the Tutorial.
Readers should be familiar with the Vortex OpenSplice product, the OMG’s Data Distribution Service for
Real-Time Systems Specification, Version 1.2, and the Eclipse IDE before reading these sections or using
the Vortex OpenSplice Modeler.

4.1.1 The Vortex OpenSplice Modeler and Eclipse
Eclipse (http://www.eclipse.org) is an extensible, Open Source, Integrated Development Environment (IDE) for
developing software.

The Vortex OpenSplice Modeler (also referred to simply as Modeler for convenience) is a set of plug-ins for
Eclipse. The Vortex OpenSplice Modeler plug-in enables the model-driven development of the Information Model
together with the software components (the Application Model) that operate on it. Distinguishing between infor-
mation and application modeling allows a clear ‘separation of concerns’ for users. System architects can model
the information and software engineers can model their applications on this model.

The Modeler can generate the source code and descriptors needed for any of the supported OpenSplice architec-
tures and platforms.

4.2 The Modeler GUI

The Vortex OpenSplice Modeler Graphical User Interface (GUI) is composed of:
* views - panels within the GUI which provide information about the components which constitute the models.

* editing tools - editors which are used to create, manage, and modify the models and components.

http://www.eclipse.org

Modeling Guide, Release 2.5.x

* a Vortex OpenSplice Design Perspective - a collection of specific views, menus and editors which are par-
ticular to the Modeler plug-in.

The GUI elements are introduced below.

4.2.1 Eclipse Workbench and Perspectives

The Workbench is the Eclipse main window and working area. The Workbench contains the editors and views that
are used to develop, modify and view your software project and its components (see Vortex OpenSplice Design
Perspective and Example Project).

A Perspective defines what actions are available in the Eclipse menus and tool bars as well as arranging the
available editors and views. A Perspective’s views can be customized to suit individual needs. Any number of
Perspectives can be open at one time, but only one is visible at a time. The Perspective Switch icon, located in the
upper right-hand corner of the Workbench, is used to change the currently displayed perspective.

The Vortex OpenSplice Design Perspective

The Vortex OpenSplice Design Perspective is an Eclipse perspective containing the views, menus and editors
needed by users to perform tasks within the Modeler.

The Vortex OpenSplice Design Perspective

* is displayed when using the Vortex OpenSplice Modeler

* populates the Menu and Tool Bars with OpenSplice-specific items.

The Vortex OpenSplice Design Perspective with an open project, editors and Outline View is shown below.

i-g

Vortex OpenSplice Design Perspective and Example Project

File Edit View Navigate Search Project Run Window Help

e EHAEBEERP O

HEASE SO RUSEr S

TZRR R

Srdrig

[E =] Vortex Open... >

<

@ Typedsf nameType

o StatusCondition
gl GuardCondition

[Project Explorer 53 G ¥ = O|[s5 ChatDiagram &3
& Tutorial [y Select
@ chat
3 model [} Marquee :
B (default) "\ Connection Tool ol -
@ Chat (> DDS Elements ﬁ
ChatDiagram — () UserloadWaitset
Application
hatMessage._topic i
hatRoom [ChatRoom] <2 Partition
[& ChatterApplication © Participant
op! p -
lessageBoardApplication Topic - [ChatterApplication
amedMessage_topic ¢ Ehered o —
amedMessageFilteredTopic Tg;‘t:”t iitere: 2 O benepan
ameService_topic .
| < - Fi
UserLoadApplication o DataWriter ChatRosm o Publisher Vi
Chatidl & DataReader ChatRgy
B Module Chat B Publisher
4 Constant MAX_NAME @ Subscriber
ruct ChatMessage
ruct NamedMessage 3 Listener
ruct NameService (T) WaitSet

*~.. [-T2 MessageBoardApplication

[@ PrivateParticipant,

g

8 outine 2 = O
- : [

Location
Name

Scoped Name
Type

ReadConditi o= |
&G ResdCondition = &
£ QueryCondition - e
j
B ChatMessageDataReaderlistener
' NamedtessageDataReaderListener
= v
< >
[20 Problems | = Properties 52 =.53=:> E =0
Property Value

file:/C:/Program %.20Files/ ADLINK/Vortex_v2/Toels/VortexModele

ChatDiagram
Chat:ChatDiagram
DIAGRAM

i

The Vortex OpenSplice Design Perspective contains the views listed below.

illustration above.

These views can be seen in the

4.2. The Modeler GUI

10

Modeling Guide, Release 2.5.x

e Project Explorer (located on the left-hand side of the Workbench) - This view shows all of the Vortex
OpenSplice and other Eclipse projects loaded in the Eclipse Workbench, with their contents.

 Editor Area (located in the centre of the Workbench) - This area is where all editors are displayed. More
than one editor can be loaded into the editor area: they are accessed by clicking the tabs appearing along
the top of the editing area. The specialized Modeler editors are described in detail in the section Specialized
Editors.

e Qutline (located along the right-hand side of the Workbench) - This view shows an outline of the component
or entity being edited in the current editor. Selecting a component in the Outline will change the focus in
the editor to that component. This is useful for finding a component in a diagram when the diagram too
large to fit within the visible area of the editor. Various types of outline can be shown, including hierarchical
and zoomable thumbnail views of the editor contents: the type of outline(s) available depends on the editor
being used.

* Properties View (located at the bottom of the Workbench) - The Properties View displays an object’s prop-
erties: the object can be selected in either the Project Explorer or in an editor.

* Problems View (located at the bottom of the Workbench) - The Problems View displays all Problem Markers
on all resources in the users Workspace, including errors and warnings in Vortex OpenSplice projects.

4.3 Creating and Using a Vortex OpenSplice Project

A Vortex OpenSplice project contains the components and entities that are used to generate the source code and
interfaces for Vortex OpenSplice-based DDS applications.

The following basic steps describes how to create a Vortex OpenSplice project.
Step 1
Open the Create a Vortex OpenSplice Project wizard, by
* choosing File > New > Vortex OpenSplice Project from the Menu Bar
OR
¢ clicking the New Vortex OpenSplice Project icon = located in the Tool Bar
OR

* right-clicking in the Project Explorer window to display the pop-up menu, then choosing New >
Other > Vortex OpenSplice Project (see New Vortex OpenSplice Project dialog and New Vortex
OpenSplice Project.).

Step 2

Enter a name for the project into the Project Name text box (in the Create a Vortex OpenSplice Project
wizard). The Location text box shows where the project will be saved: you can change the location
if desired, however the Use Default Location check box must be cleared before the Location text box
can be edited.

Click the Finish button to create your new project.

Your newly-created project should appear in the Project Explorer window (located on the left-hand side of the
Eclipse Workbench). The project will contain a single Vortex OpenSplice Model called mode 1. The model will
contain the global or default module, appearing as default in the Project Explorer view.

The project, complete with its basic file structure, will be saved to the location specified in the Location text box
of the Create a Vortex OpenSplice Project wizard.

A project’s contents can be displayed in the Project Explorer window by clicking the expansion icon [appearing
at the left of the project name.

New Vortex OpenSplice Project dialog

4.3. Creating and Using a Vortex OpenSplice Project 11

Modeling Guide, Release 2.5.x

Vartex Openplie Project ' VORTEX

Create a Vortex OpenSplice project OPENSPLICE

Project name: | MyProject

Use default location

Location: | C\Program Files\ADLINK\Vortex_v2\Tools\VortexModeler\2.! Browse...

New Vortex OpenSplice Project

Eile Edit MNavigate Search Project Run Window Help

RS HMAEREERS S [0O~

EDE{OJE;EBNM&LA =B

c @ BEE T
4 |l= MyProject
a [model
8 (default)

Step 3

Add all of the DDS entities, Modeler components and resources that are needed for your DDS soft-
ware application.

Steps 3 through 5 can be done in any order, using the Diagram Editor or Project Explorer.

A diagram is just one specific view on the model: it does not necessarily show all model components
and/or relationships. Consider the model a UML diagram, for example: one diagram can be used to
clarify the inheritance relationships without showing the attributes of the objects, while another shows
exactly the same objects with attributes and associations to other objects.

Accordingly, components that are in the diagram are always in the model, but components in the model
do not need to be in the diagram.

Step 4

Set each DDS entity’s properties and QoS policy values as needed.

Step 5

Create Diagram component(s). Use the Diagram Editor to assemble your projects entities into a
model of your software application in the diagram components. This model will be used to generate
your project’s source code and interfaces.

Step 6

Generate the DDS source code using your completed Vortex OpenSplice project model.

Step 7

Implement your application’s interfaces (using the generated class names).

4.3. Creating and Using a Vortex OpenSplice Project 12

Modeling Guide, Release 2.5.x

Creating different versions of your application can easily be done by simply re-using the generated
DDS code (created in Step 6), then writing different implementations of the interfaces.

Step 8

Compile your software application using your chosen compiler.

4.4 Project Components

Vortex OpenSplice projects consists of components. The project components include:

1.

Generic Components - items which are used by the modeling tool to contain and structure the software
project’s DDS entities and include

(a) Diagrams - graphically model the software project’s structure, entities and properties, as well as defin-
ing the associations between the entities

(b) Modules - a container for other components or elements within the model

(c) QoS Sets - sets containing QoS policy instances which can be associated with one or more Application
Modeling Components; QoS sets can also be associated with one or more Information Modeling
Components '

(d) Specialized Editors - these include editors which are used to create and modify the Diagram and QoS
Set components

(e) Resources - directory folders, files, or other items which are used by the project

2. Information Modeling Components

3.

(a) IDL Type - the specification (or definition) of the information that will be used or transmitted by the
application (as a data type) >

(b) Topic - a DDS entity which provides the most basic description of the data to be published and sub-
scribed to

(c) Content Filtered Topic - a DDS entity that is a specialization of “TopicDescription’ that allows for
content-based subscriptions

Application Modeling Components

(a) Application - In the context of Vortex OpenSplice Modeler, an application is a deployable software
component that uses DDS for the distribution of information. An application is associated with a set
of entities, which determine the incoming and/or outgoing information as well as how the information
is obtained and or published.

(b) DomainParticipant - contains and associates DDS entities such publishers and subscribers; represents
the local membership of the application in a domain

(c) Publisher - responsible for data distribution: it publishes data types using a DataWriter

(d) Subscriber - responsible for receiving published data and making it available to the receiving applica-
tion

(e) DataWriter - used by the application to communicate with a Publisher
(f) DataReader - used by the application to communicate with a Subscriber
(g) Partition - a logical partition for associating matching topics between Publishers and Subscribers

(h) Listeners - a mechanism for the Vortex OpenSplice middleware to asynchronously alert the application
of the occurrence of relevant status changes

1 QoS sets are categorized under Generic Components for this reason.

2 The Data Type definitions are imported from IDL specifications written outside of the Vortex OpenSplice Modeler. The Vortex OpenSplice
Modeler supports the generation of models from IDL files within the project (automatic) as well. Users can write and modify IDL alongside
their models which will automatically be compiled into a splice model.

4.4. Project Components 13

Modeling Guide, Release 2.5.x

(i) WaitSets - a mechanism for the Vortex OpenSplice middleware to synchronously alert the application
of the occurrence of relevant status changes

(j) Conditions - objects which filter the status changes that applications are advised of

The project’s components are displayed as a hierarchical tree in the Project Explorer: higher level items contain
lower level or dependent items. For example, the Model component (which is the top-level entity for all projects
in the tool) contains Modules, which contain Applications, which in turn contain DomainParticipants.

All project components have properties which can be displayed in the Properties panel. The Properties view is
located in the bottom section of the Workbench.

If the Properties view is not visible, then choose Window > Show View > Properties from the Menu Bar to display
the panel.

4.4.1 Component Descriptions

The following table provides detailed descriptions of the project components listed above. These components
are used for creating project applications and are added to projects from either the Project Explorer, by using the
Eclipse File > New menu dialogs and pop-ups or by using a specialized editor (see Specialized Editors).

Detailed Descriptions of Modeler’s Project Components

Generic Components
Diagram This is a graphical representation of the project’s model and is a main component of
a modeling project. Diagrams:
* perform the actual modeling of the project and its applications
* show the structure and relationships of the project’s applications and associated
elements
e are used to create components, including all low-level components
* link and associate application components with each other, as required by the
application

Module A module is used to provide a logical separation for users. It can be used to package
items together that are related, in order to improve the readability. A module in the
Modeler is like a package in UML.

QoS Set A Modeler component which contains the set of QoS policy instances which can be
associated with one or more modeled DDS entities.
Resources Directory folders, files, or other items which are used by the project.

Information Modeling Components

IDL Type, Data Type | The specification (or definition) of the information that will be used or transmitted by
the application (as a data type).

Topic A Topic is a DDS entity which provides the most basic description of the data to be
published and subscribed. A Topic is identified by its name, which must be unique in
the whole DDS Domain. It fully specifies the type of the data that can be communi-
cated when publishing or subscribing to the Topic.

Content Filter Topic A DDS entity that is a specialization of ‘TopicDescription’ that allows for content-
based subscriptions. Based on an existing topic, the ContentFilteredTopic allows
DataReaders to subscribe to a subset of the topic content.

4.4. Project Components 14

Modeling Guide, Release 2.5.x

Application Modeling Components

Application

An application is a Modeler component that uses DDS to publish information or
subscribe to information. An application contains or helps to organise related DDS
entities. DDS entities are:

DomainParticipant

Publisher

Subscriber

DataWriter

DataReader

Topic

Topic type

QoS Sets with QoS policies
Applications will only communicate with each other if they publish or subscribe from
or to the same Topic and their mutual sets of QoS policies are compatible. Developers
should refer to the OMG’s DDS Specification to ascertain the appropriate settings for
the relevant QoS policies.
Note that the Partition QoS is shown separately as the Partition building block.

DomainParticipant

A DDS entity, needed by all DDS applications, which holds and associates DDS
entities such publishers and subscribers.

Developers should refer to the OMG’s DDS Specification for the complete descrip-
tion.

Publisher

This is responsible for data distribution; it publishes data types using a DataWriter.

Subscriber

This is responsible for receiving published data and making it available to the receiv-
ing application.

DataWriter

This is used by the application to communicate to a Publisher.

DataReader

This is used by the application to communicate to a Subscriber.

Partition

This is a logical partition for associating matching topics between Publishers and Sub-
scribers and represents a Partition QoS policy. Publishers and Subscribers connect to
one or more Partitions.

The Partition is shown as a separate building block (in the Diagram Editor)

Listener

A mechanism for the Vortex OpenSplice middleware to asynchronously alert the ap-
plication of the occurrence of relevant status changes, such as a missed deadline,
violation of a QosPolicy setting efc.

WaitSet

A mechanism for the Vortex OpenSplice middleware to asynchronously alert the ap-
plication of the occurrence of relevant status changes, such as missed deadlines, vi-
olation of a QosPolicy setting efc. WaitSets allow application threads to wait until
one or more of the attached Condition objects have a trigger value of TRUE or until a
specified timeout expires.

GuardCondition

A GuardCondition is a specific Condition whose trigger value is completely under the
control of the application. The purpose of a GuardCondition is to provide the means
for an application to manually wake a WaitSet.

StatusCondition

Entity objects that have status attributes also have a StatusCondition. StatusCondi-
tions can be set to monitor various communication statuses of the Entity which are
enabled by setting a status mask. When attached to a WaitSet, a StatusCondtion
causes the WaitSet to trigger when one or more of the enabled status attributes be-
comes TRUE.

ReadCondition

ReadCondition objects are associated with a DataReader and provide an alternative
communication style between the Data Distribution Service and the application (in
other words, wait-based rather than notification-based).

A ReadCondtion allows a DataReader to specify the data samples it is interested in
by specifying the desired sample-states, view-states and instance-states.

A ReadCondition object can be used on its own to read from a DataReader or it can
be attached to a WaitSet. When attached to a WaitSet a ReadCondition causes the
WaitSet to trigger when data is available which satisfies the settings of the ReadCon-
dition.

QueryCondition

QueryCondition objects are specialized ReadCondition objects. A subset of an SQL
expression can be used to allow the application to filter out newly arrived data, in
addition to the notification of new arrivals.

4.4. Project Components 15

Modeling Guide, Release 2.5.x

All of the components shown in the table can be added to a project by following the steps shown below. The
Diagram Editor (see Diagram Editor and Diagrams) can also be used to add the components to the project.

Step 1
Select (click on) the project’s name located in the Eclipse Project Explorer panel.
Step 2
Either
* choose File > New > <item> from the Eclipse Menu Bar
OR

* right-click on the project name and choose New > Other > Vortex OpenSplice > <item> from
the pop-up dialog

where <item> is the name of the required component or resource, for example Module. This opens a
pop-up dialog for adding details about the new component.

Step 3

Provide details about the new component in the pop-up dialog’s text boxes, including the component’s
intended root (the parent or container that the component is to be added to), the component’s name,
plus any other requested information. Click Next or Finish to add the component (after providing all
requested details).

Components are context- and container-sensitive: they can only be added to the appropriate parts of a project or
other components.

ﬂ Components are context- and container-sensitive: they can only be added to the appropriate parts of a
project or other components.

4.5 Specialized Editors

Certain modeling components, including Diagrams and QoS Sets (see Component Descriptions) are created and/or
edited using the Modeler’s specialized editors: the QoS Set Editor (QoS Set Editor and QoS Sets) and Diagram
Editor (Diagram Editor and Diagrams).

The editors are displayed in the Workbench’s centre panel and are opened by:
Step 1

Locating the component to be edited in the Project Explorer.
Step 2

Right-clicking the component, then clicking on the required editor when it is displayed in the pop-up
dialog that appears.

OR
Double-clicking the component or its parent (container).

The use of these specialized editors is described in QoS Set Editor and QoS Sets and Diagram Editor and Dia-
grams.

ﬂ More than one editor can be open at one time, but only one editor is visible at a time. Each editor can be
displayed by clicking on its tab (displayed along the top of the Workbench’s centre panel).

4.5. Specialized Editors 16

Modeling Guide, Release 2.5.x

4.5.1 QoS Set Editor and QoS Sets

A QoS Set is a set of Quality of Service policies and associated values * . A Qos Set can be assigned to a particular
DDS entity or it may exist as an independent set within a module.

A QoS Set is added to a module by:
* choosing File > New > QoS Set from the Eclipse Menu Bar
OR
e right-clicking on the module and choosing QoS Set from the pop-up dialog

The QoS Set Editor is an editing tool specifically designed to quickly and easily add and set Quality of Service
(QoS) policies.

The QoS Set Editor is opened by double-clicking on a QoS Set component, or right-clicking on it and then
choosing Edit QoS Set from the pop-up menu.

The QoS Set Editor is a multi-page editor with three pages:
* The Overview page provides general information about the QoS Set (see QoSSet Editor and Overview page).

» The Edit QoS Policy Values page is used to manage and display the set’s QoS properties (see Edit QoS
Policy Values page).

» The Edit Imported QoS Sets page page has facilities for managing imported QoS sets (see Edit Imported
QoS Sets page).

The pages are opened by clicking on their tabs located along the bottom of the editor (see QoSSet Editor and
Overview page).

Each page contains widgets that are specific to the page such as combo boxes, buttons and lists. The combo boxes
are opened and closed by clicking on the icons located at the left of each list.

In addition to the page-specific widgets, there is also a Resultant QoS Set tree viewer; this widget is common to all
pages. The Resultant QoS Set is the actual set of policies and values that will be assigned to the QoS Set’s owner,
using both the current QoS Set and imported QoS Sets. The Resultant QoS Set is determined by an algorithm
which compares the current QoS Set’s values with the values of its imported QoS Sets, then calculates which
values should be used (see QoS Resultant Set).

Overview Page

The Overview page contains the following lists and information:

General Information - general information about the QoS set including its name, path (relationship
with ancestor components) and name of its parent - the set’s owner

Imports - QoS sets which have been imported into this QoS set.

QoSSet Editor and Overview page

3 Refer to the OMG’s DDS Specification and the Vortex OpenSplice Language Reference Guides for explanations and descriptions of
Quality of Service properties and their use.

4.5. Specialized Editors 17

Modeling Guide, Release 2.5.x

Ele Edit Novigate Search Project Run Window Help

NCEHRE HOE#RERL e (M 50 P B F e

Elcieren|

([Project Explorer 23 = O[g Qos 52 = 8(B= outline 52 =g
| <2 @B 5 | overview | |An outlineis not available.
» 5 ChatMessageBoraApplication a
b %2 Chat.UserLoadApplication ~ General Information ~ Resultant QoS Set
4 & Chatroom Generalinformation about this QoS set. The Qs Policies provided by this QoS Set.
» @ Chat
g Nome Q5 @ Desdline [:DefoutTopcQ055e]
2 B ety P e Y—— @ Destination Order [:Default TopicQoSSet]
p @ Durability [:DefaultTopicQosset]
& Chaiagam Parent: | ChatMessage 3, Durability Service [xDefaultTopicQoSSet]
2 T ChatMossage @ History [:DefaultTopicQoSSet]
e S @ Latency Budget [:DefaulTopicQosSet]
M An ordered st of Qo sets which are imported into this QoS set, @ Lifespan [:Default TopicQoSSet]
S roports B omiopcassal @ Liveines :DefukTopicQosset
e Durdine @ Ovnership [:DefaultTopicQoSSet]
5 @ Destination Order @ Reliabilty
» o Dbty @ Resource Limits [:DefaultTopicQosSet]
» o Durabiity Senice @ Topic Deta [:DefaultTopicQoSSet]
o Hiory @ Transport Priority [:DefaultTopicQoSSet]
b @ Latency Budget
b @ Lifespan
b @ Liveliness
b @ Ownership
b @ Reliability
b @ ResourceLimits
b ® TopicData
b @ Transport Priorty
<t ChatRoom [ChatRoom]
4 [3] ChatterApplication
s © Participant
4 [&] MessageBoardApplication
b 3 ChatMessageDataReaderl.
b ¥ NamedMessageDataReach
5 © Participant
b © PrivateParticipant
4 [E] NamedMessage
b NemedMessage
b P QoS
» & NamedMessageFitteredTopic .
» [Namesenvice
b=l Ovenview|Vatass[import]

< GuardCondition
b © Participant

[2 Problems | Properties 33 ® =0

b 6§ QueryCondition & Qos
b 6 ReadCondition — 1 ~
K 96 ReadCont Revomrce . Property Value
b (©) UserloadWaitset Imports
e Location fle/Ca DUINKVortex v hatroom
» & chtia . o R .
< > < >

e & Qo5

Edit QoS Policy Values Page
The Edit QoS Policy Values page contains a QoS Policies list section and <Policy> Values section (in addition to
the Resultant QoS Set list):

* the QoS Policies displays the list of QoS policies which users can alter the property values of

¢ the <Policy> Values section displays the properties and value for the policy, <Policy>, selected in the
QoS Policies list.

The <Policy> Values section is only visible when a QoS policy is selected in the QoS Policies list.

Edit QoS Policy Values page

4.5. Specialized Editors 18

Modeling Guide, Release 2.5.x

& 005 53

Edit QoS Policy Values

olicies specified in this Qo5 Set.

@ User Data Add...

Remove

~ User Data Value
Edit the value of the selected GoS Policy.

Value: | 0 bytes Import File

~ Resultant QoS Set

The QoS Policies provided by this QoS Set.

@ User Data

@ Entity Factory [::DefaultDomainParticipantCoS5et]

Show Default Policies

Overviewl\u‘alues] Impor‘ts|

Adding a QoS Policy

This process adds a QoS Policy to the QoS Policies list.

All appropriate QoS Policies already exist for the entity; however, only those QoS Policies which appear in the
list are able to have their values changed or edited using the QoS Policy Values section.

Step 1

Click the Add button located at the right of the QoS Policies list. This displays the Add QoS Value

dialog.

Step 2

Click the icon adjacent to the Type drop-down list. The list displays the policies which are appropriate
for the entity that the QoS Set is assigned to. Scroll down the list of available policies to find and
select the one required. Click the OK button when finished. The new policy will be added to the QoS

Policies and Resultant QoS Set lists.

Step 3

Select the newly-added policy from the QoS Policies list (if it is not already selected). The properties
and values for the selected policy will be displayed in the <Policy> Values list, where <Policy> is
the policy’s name. The values and selection methods shown are specific to each policy type. Select
and set the policy values by choosing them from the displayed drop-down lists, check boxes or text

boxes.

4.5. Specialized Editors

19

Modeling Guide, Release 2.5.x

ﬂ Check boxes are used to enter boolean values: setting the check box (displaying an ‘X’ mark)
sets the associated value to TRUE.

A The data types and values displayed for each policy are in accordance with the OMG’s DDS
Specification. However, it is the developer’s responsibility to correctly select or set the values that
are appropriate for the selected policy and component (entity) the QoS Set will be assigned to. It is
recommended that reference is made to the DDS Specification when setting these values.

Removing a QoS Policy

Select the policy to be removed from the QoS Value list, then click the Remove button.

ﬂ The QoS policy still exists but it is removed from the QoS Policies list and its properties are reset to their
default values.

Changing a QoS Property Value

A policy’s values can be changed if needed: select the policy from the QoS Policies list, then change the values
which are displayed in the <Policy> Values section, where <Policy> is the policy’s name.

It is recommended that users refer to the DDS Specification to ensure that the values used for a policy are appro-
priate.

Edit Imported QoS Sets Page
The Edit Imported QoS Sets page contains an Imports list and Imported Set Detail section (in addition to the
Resultant QoS Set list):

» Imports displays an ordered list of the QoS sets which have been imported into the current QoS Set: sets
can be added, removed and reordered.

A The order that the QoS Sets are displayed in the Imports list is used by the Resultant QoS Set to resolve
conflicts and determine the priority of each set’s policy values. The order is changed using the Promote and
Demote buttons.

 Imported Set Details - displays the Resultant QoS Sets for the selected imported sets.

ﬂ This section is only visible when a QoS Set is selected from the Imports section Imported Set Details.
Edit Imported QoS Sets page

4.5. Specialized Editors 20

Modeling Guide, Release 2.5.x

[Qs 53 =5
Edit Imported QoS Sets

= Imports = Resultant QoS Set
An ordered list of QoS sets which are imported into this QoS The QoS Policies provided by this QoS Set.
set,
[» | @ Entity Factory [:DefaultDomainParticipantQoSSet] |
DefauItDomainParticipanthSSet[] Add... > @ UserData
Remove
Demote
Promote

v DefaultDomainParticipantQoSSet Details
QoS policies supported by the selected QoS set.

@ Entity Factory
& User Data

Show Default Policies

Overview|\falues Imports

Importing a QoS Set

Step 1

Click the Add button located at the right of the Imports list. This displays the QoS Set Selection
dialog.

Step 2

Click the expansion icons ! adjacent to the project name and component containing the QoS Set you
want to import. Expand the project-component tree until the desired QoS Set appears (see the Project
Explorer tree shown in the QoSSet Editor and Overview page screen).

ﬂ Only QoS Sets that have not already been imported will be displayed in order to prevent inad-
vertently importing the same QoS Set more than once.

Step 3
Select the desired QoS Set, then click the OK button.

The newly-imported QoS set will appear in the Imports list and its details will appear in the Imported
Set Details list.

4.5. Specialized Editors 21

Modeling Guide, Release 2.5.x

Removing an Imported QoS Set

Select the required QoS Set from the Imports list, then click the Remove button.

Changing the Order of Imported QoS Sets

An imported QoS Set can be moved up or down the Imports list by clicking the Promote or Demote buttons,
respectively. However, default QoS Sets and QoS Sets from a topic (datawriters and datareaders) can not be
moved.

A The order that the QoS Sets are displayed in the Imports list is used by the Resultant QoS Set to resolves
conflicts and determine the priority of each set’s policy values.

QoS Resultant Set
A QoS Set can import other, stand-alone QoS sets. The imported sets are merged with the current set’s policy
values to create a Resultant Set.

Strict rules of precedence are followed when computing the Resultant Set, since different QoS sets may contain
duplicate values. Starting with an empty working set, values are merged to form the Resultant Set, where duplicate
values overwrite values already in the working set and the steps are applied recursively:

1. Merge the Resultant Set into the working set for each QoS set in the imports list.

2. Merge the values into the working set to produce the final Resultant Set.

Default QoS Sets

The modeling tool contains default QoS Sets. The default QoS Sets contain all the values that are required for a
particular entity. There are six hidden global default sets for each type of entity. DomainParticipants and Topics
import this set as the first set in the imports list. The default QoS Set cannot be removed.

ﬂ The default QoS Set does not appear in the QoS Policies list.

The DomainParticipant also has an extra three default sets for the Subscriber, Publisher and Topic which contain
the global default for the entity type and extend it. This is equivalent to the Vortex OpenSplice factory defaults.
Subscribers and Publishers then inherit the default QoS set from their parent DomainParticipant (again restricted
to being first in list and compulsory). Subscribers and Publishers contain extended default sets for DataReaders
and DataWriters and their child DataReaders/Writers pick these default sets up.

DataReaders/DataWriters also by default inherit the topic’s QoS if they are connected to one. This is placed
second in the imports list and it can be removed (this is equivalent to the optional copy_from_topic_gos ()
DDS method).

4.5.2 Diagram Editor and Diagrams
A project’s diagram is a graphical representation of the project’s Application Model (see the illustration Diagram
Editor with Tool Palette and Example Components). A diagram is a main component of a modeling project.
The Diagram Editor and diagrams:
* perform the actual modeling of the project and it application(s)
* show the relationships of the project’s applications and associated elements
* are used to create components
* associate application components with each other, as required by the application

The Diagram Editor contains a tool palette and a canvas.

4.5. Specialized Editors 22

Modeling Guide, Release 2.5.x

* The tool palette, located on the left-hand side of the editor, contains a list of components and connection
tools (see Diagram Editor with Tool Palette and Example Components). The palette can be used to add
components to the model and create connection between components.

— Tools are selected by clicking on the tool in the palette; its associated component is added to the
diagram by the clicking in the diagram’s canvas (see below).

— A tool can be de-selected by pressing the [Esc] key on the keyboard.

* The canvas, the large area located on the right-hand side of the editor, is where symbols representing the
model’s component are placed and edited.

Components’ symbols appearing on the diagram can be ‘collapsed’ and ‘expanded’.

* Collapsing a component’s symbol reduces the symbol to a simple box and hides the items it contain. This
is useful for hiding unwanted detail in the diagram.

— Collapse a symbol by clicking on the minus (‘- ‘) icon located at the top-left corner of the symbol.
— The minus icon changes to an addition (‘+’) icon.

* Expanding a component’s symbol returns the symbol to its normal size and shape revealing the items it
contains.

— Expand the symbol by clicking on the addition (‘+’) icon located at the top-left corner of the symbol.

Diagram Editor with Tool Palette and Example Components

E;‘n *ChatDiagram &% = EI]

h Select
:; Marquee

\ Connection Tool

- [UserLoadApplication

- @ Participant

= DDS Elements +

)’-\pph(at\nn
<& Partition

|i=| ChatMessage_topic

@ Participant

i) Topic
|5 Content Filtered
Topic

DataWriter
& DataReader
B Publisher
4 Subscriber
e Listener

WaitSet

() UserLoadWaitSet

- [@ ChatterApplication

/52 MameServi ce_topic

- © Participant

@9@ StatusCondition
g GuardCondition
‘9§ ReadCondition

% QueryCondition

j ChatRoom

ChatRo

£ Publisher

- = MessageBoardApplication

"I, @ PrivateParticipant

|5 NamedMessageFilteredTopic

@ 5u b?cnber

. v
‘ e Cﬁ_atMEssagEData Readerlistener

‘ e} Named.MEssageDataREaderListEner
- -
- @ Participant™.

N S
m
4 Subscriber

|| MamedMessage topic

4.5. Specialized Editors

23

Modeling Guide, Release 2.5.x

Adding Components
Components which are added to the diagram using the Diagram Editor’s palette are added to the project’s model:
they are automatically displayed in the Project Explorer (as well as on the canvas).

Components in the Project Explorer can be added to diagram by clicking on the component then dragging it from
the Project Explorer to the diagram’s canvas. If the component is already displayed in the canvas, then rather than
being duplicated, it will only be moved to the location where the mouse button is released.

Detailed instructions for adding components to the model are given in the section Application Modeling.

Deleting Components

Deleting a Modeler’s component or DDS entities removes it from the project.

Components that are deleted from Diagram Editor’s canvas are also deleted from the project’s model.
There is NO UNDO function! Do not delete a component using the Diagram Editor unless you want to
A permanently delete it from the model.

It is strongly advised that the project be saved before deleting items.

However, an item can be removed from a diagram without deleting it from the project by right-clicking
the item, then choosing Remove from the pop-up dialog.

A component or entity can be deleted by:
¢ right-clicking on it, then choosing the Delete option from the pop-up dialog
* selecting it in the Diagram, then choosing Edit > Delete from the Menu Bar
* selecting it in the Diagram, then pressing the [Shift]+[Delete] keys

ﬂ Pressing the [Delete] key when an entity is selected in a Diagram will just remove the entity from the
Diagram, but not actually delete it.

Renaming Components

Components and entities can be renamed in either the Project Explorer or Diagram Editor by:
 Right-clicking on the component, then choosing the Rename option from the context menu.
* Entering the desired name in the Name text box in the pop-up dialog, then clicking the Return button.
OR

The name of a component in the Diagram can be edited directly by double-clicking on the component.

4.5. Specialized Editors 24

Modeling

This section describes in detail how to use the tools in Vortex OpenSplice Modeler for modeling and assembling
resources (such as DDS entities).

The Vortex OpenSplice Modeler provides separate Information and Application modeling. This section describes
the use of these two modeling paradigms in a project.

5.1 Information Modeling

The following sections describe how to use and add components to a project’s information model. Information
modeling includes the modeling of Types and Topics. The following sections describe how to add and use Types
and Topics in a project

5.1.1 Types and their IDL Specification

A data type, which is part of the Information Model ' and will be distributed by the application, can be regarded
as a table in a database where the database consists of a number of named columns, and each column is assigned
its own primitive type. Just like a database table, the type has a set of keys, which is a subset of the set of columns.

Data types are specified using the Interface Definition Language (IDL). Using the Interface Definition Language
to specify the data types ensures that they will be platform and (implementation or native) language independent.

A data type’s IDL specification is subsequently mapped (in other words, converted) to a data rype of the target
programming language that the application will be implemented in. For example, if the programming language
that the application will be implemented in is Java, then the IDL specification for the data type would be mapped
to attributes in alJava class. However, if the implementation language is C++, then the data type would be
mapped to members ina C struct.

ﬂ The same data type can communicate between applications implemented in different languages without
difficulty.

A data type’s IDL specification is imported from a file containing the specification. The IDL specification is
imported into a project by following these steps:

Step 1
Choose File > Import from the Eclipse menu. This displays the Import dialog.

Expand the Vortex OpenSplice folder (displayed in the dialog), select Vortex OpenSplice IDL Import
Wizard, then click the Next button. This will display the Vortex OpenSplice IDL Import Wizard (see
the illustration below).

Vortex OpenSplice IDL Import Wizard

! The Information Model is the complete set of topics in a domain, including their associated data types and QoS settings.

25

Modeling Guide, Release 2.5.x

Yortex OpenSplice IDL Import Wizard ™ ' VO R—l— EX

Import an IDL file into a Vortex OpenSplice Project OPENSPLICH

Destination Folder MyProject Browse

IDL Source C\MyDataTypes.idl Browse

[] Overwrite existing resources

FEinizh Cancel

Step 2

Enter the folder which the IDL specification is to be imported into in the Destination Folder text box
by using the adjacent Browse button and navigating the Project Explorer’s projects (recommended
method) or by writing the folder pathname in the text box.

Step 3

Enter the full pathname of the file containing IDL specification into the /DL Source text box using the
adjacent Browse button to navigate through the file system to locate the required IDL specification
file.

Step 4

Click the Finish button when all entries are completed in order to import the IDL specification into
the project.

The IDL file being imported should appear in the Project Explorer in the destination folder.

When the import is complete, a new model will be generated from the specification defined in the
IDL file. The model will have the same name as the IDL file.

OR

Create an empty IDL file in a Vortex OpenSplice project, open it in the Eclipse text editor, then write
the IDL specification. A model with the same name as the IDL file will be automatically generated.
The model will contain the data types defined in the IDL specification. Any changes to the original
IDL file will be reflected in the generated model.

ﬂ Models generated from an IDL file are ‘read only’ and they appear in the Project Explorer with grey label

text. It is not possible to add additional items to these models.

Example Imported Data Type Definitions

5.1. Information Modeling

26

Modeling Guide, Release 2.5.x

Eile Edit Mavigate Search Project Bun Window Help

s HAE#AEBR e [y B0

[Project Explorer &3 & ¥ =0
4 = MyProject
y
- Bl (default)
a4 [J MyDataTypes
4 (default)
4 @ MyMadule
b MY_NAME
4 i= MyData
B © content: PrimitiveDeflmpl
@ ID: PrimitiveDeflmpl
(@) Post Pragma /MyProject/MyDataTypes.idi#34,1
4 §= MameService

o name: namelype
e userlD: PrimitiveDeflmpl
b (3 Typedef nameType
[MyDataTypes.idl

5.1.2 TopicDescription

TopicDescription is the base class for Topic, ContentFilteredTopic and MultiTopic (in accordance with the
DDS Specification).

TopicDescription represents the situation where both publications and subscriptions are associated with a
single data-type.

A MultiTopics are not supported by this release.

5.1.3 Topics

A Topic binds a name to an associated data type. Further, multiple Topics can be created for one specific type.

A Topic can be added to a project or specific application (noting that Topics are associated with data types) by:
Step 1

In the Project Explorer, right-clicking on the Module containing the application the Topic is to be
added to, choosing New Topic from the pop-up dialog.

OR

Choosing File > New > Topic from the Eclipse Menu Bar (not recommended, since an additional step
is required).

OR

In the Diagram Editor (if the application is in an open diagram) by choosing the Topic tool from the
Diagram Editor’s tool palette, then clicking in a free area of the canvas.

Either of these last two methods will display the New Topic dialog (see New Topic dialog).

Step 2

In the New Topic dialog:

 Select the Module that the Topic is to be added to into the Module field (using the adjacent
Browse button). This will automatically set the Model.

* Enter the Topic’s name into the Name text box.

5.1.

Information Modeling

27

Modeling Guide, Release 2.5.x

 Select the data type, using the Browse button adjacent to the Data Type text box to find and
select the data type the Topic is to be associated with; the data type should appear in the Data
Type text box similar to the example in New Topic dialog.

Step 3
Click Finish when complete. The new Topic should appear in the Project Explorer under the selected
Module (and, if the Diagram Editor’s palette tool was used, in the diagram as well).
ﬂ Topics are connected to DataWriters and DataReaders with the Topic Connection Tool: the instructions are
given in Using the Connection Tool for Topics.

New Topic dialog

New Topic

Creates a new Topic

Model | MyProject/model

Module | | |Browse|

Mame | MyDataTopic |

Data Type | :MyModule:MyData | | Browse|

@ Finish | | Cancel

5.1.4 ContentFilteredTopic

The ContentFilteredTopic DDS entity, derived from the TopicDescription base class, can be used
to do content-based subscriptions.

A ContentFilteredTopic can be added to a Module by:
Step 1
Right-click on the Module and choose New ContentFilteredTopic from the pop-up menu.

OR

In the Diagram Editor, select Content Filtered Topic from the Diagram Editor’s palette and click on
the diagram.

Step 2
When using the New ContentFilteredTopic dialog:

* In the Module field, select the Module the ContentFilteredTopic is to be added to using the
adjacent Browse button. This will automatically set the Model field.

» Use the Browse button to browse for the Topic that the ContentFilteredTopic will be based on.

* Enter a filter expression for the ContentFilteredTopic (refer to the OMG’s DDS Specification for
the syntax)

ContentFilteredTopics are connected to DataReaders using the Topic Connection Tool (refer to Using
the Connection Tool for Topics).

5.1. Information Modeling 28

Modeling Guide, Release 2.5.x

5.2 Application Modeling

The following sections describe how to use and add components to a project’s application model. Application
modeling includes the modeling of DomainParticipants, Publishers, Subscribers, DataWriters, DataReaders, Lis-
teners, WaitSets and Conditions.

5.2.1 Applications
A Vortex OpenSplice Modeler Application represents an executable application. An application contains DDS
entities such as DomainParticipants, Publishers, Subscribers, DataReaders and DataWriters.
An application can be added to the project by following these steps:
Step 1
Right-click on a module in the Project Explorer, then choose New Application from the pop-up dialog
OR
In the Diagram Editor, choose the Application tool from the tool palette, then click in the canvas.
Either of these methods will display the New Application dialog.
Step 2
Enter the application’s name into the Name text box in the New Application dialog.
Step 3

Select the Module that the application is to be added to by clicking the Browse button adjacent to the
Module text box, then navigating the project.

Step 4

Click the Finish button. The new application component should appear in the Project Explorer under
the selected module. The application will also appear in the diagram if the Diagram Editor’s tool
palette was used.

New Application dialog

New Application

Creates a new application

Model | MyProject/model

Module|

MName | MyApplication

Finish | | Cancel

5.2.2 DomainParticipants

DomainParticipants can be added to an application by:

5.2. Application Modeling 29

Modeling Guide, Release 2.5.x

Step 1

In the Project Explorer, right-click on the application the DomanParticipant is to be added to, then
choose New Domain Participant from the pop-up dialog.

OR

If the application is in a diagram, then open it in the Diagram Editor, select the DomanParticipant
tool from the tool palette, then click inside the target application’s symbol appearing on the canvas.

Either of these methods will display the New Domain Participant dialog.

New DomainParticipant dialog

Add DomainParticipant
Adds a DoemainParticipant to an Application

Application | aMyModule:MyApplication

MName | MyParticipant

Step 2
Enter the DomainParticipant’s name into the Name text box in the New Domain Participant dialog.
Step 3

The desired target Application should appear in the Application text box: if not, then click the Browse
button adjacent to the Application text box, and navigate the project to locate the parent Application.

Step 4

Click the Finish button. The new DomainParticipant should appear in the Project Explorer under the
selected application. The DomainParticipant will also appear in the diagram, inside the application,
if the Diagram Editor’s tool palette was used.

5.2.3 Publishers and Subscribers

Publishers and subscribers can be added to DomainParticipants using the Diagram Editor’s palette as well as the
Project Explorer. When using the palette, drag the palette’s icon for the entity instance to the DomainParticipant.

5.2.4 DataWriters and DataReaders
DataWriters and DataReaders are contained inside publishers and subscribers, respectively. They are added using
Diagram Editor’s palette: drag the palette’s icon for the entity instance to the appropriate publisher or subscriber.

Individual DataWriter and DataReader instances can be associated with only one particular Topic. The associa-
tion is created using Topic Connectors.

5.2. Application Modeling 30

Modeling Guide, Release 2.5.x

5.2.5 Partition

A DDS Partition entity is associated with Publishers and Subscribers: one or more Publishers and Subscribers can
be connected to a single Partition.

A Partition is added to a model using the Diagram Editor and a Model’s diagram, noting that a diagram should
already exist which contains the Publishers and/or Subscribers the Partition is to be associated with.

A Partition can also be added by clicking the toolbar’s partition icon % and the New Partition context menu item
for Modules. Either of these methods will launch a ‘new partition’ wizard.
Step 1
Open a Model’s Diagram.
Step 2
Select the Partition tool from the Diagram Editor’s palette.
Step 3

Click in a free area of the diagram’s canvas: a new Partition will appear in the diagram and in the
Project Explorer under the selected Model and Module.

Partition Symbol

& Parttiont”
[=

Partitions are associated with (or connected to) Publishers and Subscribers using the Partition Connection Tool,
instructions are in Using the Connection Tool for Partitions.

5.2.6 Listeners

The Vortex OpenSplice Modeler supports the modeling of listeners. Listeners enable the application to asyn-
chronously become aware of DCPS communication status changes. Using listeners is an alternative method to
using conditions and WaitSets. A detailed description of each communication status is given in the OMG’s Data
Distribution Service for Real-time Systems Specification, Version 1.2, formal/07-01-01.

The communication statuses, whose changes can be communicated to the application, depend on the specific
Entity being communicated with. A listener can be attached to any DDS Entity.

Modeled listeners are associated with entities within an application or a Topic. When modeling listeners, users
can choose which communication statuses that their application is interested in by selecting the Listener, opening
the Properties view and modifying the Status Mask entries.

The user can also define the Listener type; this affects the values appearing in the Status Mask field.

The Listener Type property defines values for each type of DDS Entity that a listener can be connected to (Topic,
DomainParticipant, Publisher, Subscriber, DataReader or DataWriter). These values are defined as:

¢ Derived

If and only if the Listener is connected to an Entity of this type, will the Status Mask assume the Status
Mask properties of this type of entity.

For example, if the Listener is connected to a DataReader and the Listener Type property value for
DataReader is set to Derived, then the Status Mask for the Listener will include all Status values for
a DataReader and we will be able to model an interest in those statuses.

Derived is the default value since it only provides Status Mask properties for any entities that the listener
is actually connected to.

5.2. Application Modeling 31

Modeling Guide, Release 2.5.x

¢ Enabled

This value ensures that the Starus Mask properties for this type of entity always appear in the Status Mask
for the Listener, regardless of whether the Listener is connected to an Entity of that type.

This is useful, for example, if it is desirable to express an interest in Listening to an Entity that has not been
modeled using the tool.

¢ Disabled

This value ensures that the Listener can not listen to Entities of that type. If an Entity is Disabled, then
the user will not be able to connect the Listener to an Entity of that type using the Listener Connection Tool.
Similarly, if a connection already exists to an Entity of that type, then the user will receive an Error in the
Problems view.

A Listener can be created in the tool by
EITHER
Step 1
Opening a Model in the Diagram Editor.
Step 2
Choosing the Listener tool from the Diagram Editor’s Palette.
Step 3

Clicking on the Application which the Listener should be associated with (in the Diagram
Editor).

OR
Step 1
Right-click on an Application in the Project Explorer.
Step 2
Select New Listener.

Listeners are associated with entities by using the Listener Connection Tool. (See Using the Connection Tool for
Listeners for details.)

5.2.7 WaitSets

WaitSets are contained within an Application and are associated with certain Condition objects. WaitSets enable
applications to be made synchronously aware of DCPS communication status changes and are an alternative
method to using Listeners (see Listeners).

A WaitSet is a wait-based scheme. It is used in conjunction with Condition objects (see Conditions) to block the
current thread of the application until a specified condition is satisfied or until the timeout expires. This is the
alternative to the listener-based scheme which uses notification for awareness of status changes.

ﬂ A WaitSet can be associated with one or more Condition objects.

Modeling WaitSets

A WaitSet can be created using either the Diagram Editor or the Project Explorer.
Using the Diagram Editor
Step 1
Open a model in the Diagram Editor.

Step 2

5.2. Application Modeling 32

Modeling Guide, Release 2.5.x

Select the WaitSet tool from the Diagram Editor’s Tool palette.
Step 3

Click on the Application symbol which the WaitSet should be associated with in the Dia-
gram Editor. This will add a WaitSet symbol to the diagram.

Using the Project Explorer
Step 1
Right-click on an Application in the Project Explorer. A pop-up dialog will appear.
Step 2
Select New WaitSet in the pop-up dialog. Provide the requested details.

Condition objects now need to be created and associated with the WaitSet.

5.2.8 Conditions

WaitSets use Condition objects to determine which status changes an application should be notified of.

There are different types of Condition object (referred to herein simply as Conditions for brevity). The follow-
ing Condition types are specified in the OMG’s DDS Specification and are supported by the Vortex OpenSplice
Modeler.

StatusCondition
A StatusCondition defines a specific condition which is associated with each Entity.

The StatusCondition’s status mask determines which status changes the application is notified of (for
its associated Entity).

The StatusCondition contains properties of type boolean. These properties determine the communi-
cation statuses. The properties can be set in the Status Mask field of the Properties View. Further,
when associating a StatusCondition with a Topic, the related Domain Participant for that Topic must
be specified in the Properties View.

See the OMG’s DDS Specification for detailed information about communication statuses.
ReadCondition
ReadCondition objects are conditions specifically dedicated to read operations.

An application can specify the data samples it is interested in by setting a ReadCondition’s sample,
view and instance states. More than one ReadCondition can be associated with a DataReader. A
ReadCondition’s states can be set in the Vortex OpenSplice Modeler Properties View.

QueryCondition

QueryCondition objects are specialized ReadCondition objects. A subset of an SQL expression can
be used to allow the application to filter out newly-arrived data, in addition to the notification of new
arrivals.

GuardCondition
Unlike the other conditions, the GuardCondition is completely under the control of the application.

The application has the functionality to manually wake a WaitSet by attaching the GuardCondition
to it and setting the trigger value of the Condition. See the OMG’s DDS Specification for detailed
information.

Modeling Conditions

Conditions are created, in a similar way to WaitSets, by using either the Diagram Editor or the Project Explorer.

Using the Diagram Editor

5.2. Application Modeling 33

Modeling Guide, Release 2.5.x

Step 1

Open a model in the Diagram Editor.
Step 2

Select the desired Condition tool from the Diagram Editor’s Tool palette
Step 3

Click on the Application symbol which the Condition should be associated with in the
Diagram Editor. This will add the appropriate Condition symbol to the diagram.

Using the Project Explorer
Step 1
Right-click on an Application in the Project Explorer. A pop-up dialog will appear.
Step 2

Choose the desired New Condition option in the pop-up dialog. Provide the requested
details.

5.2.9 Connecting Components

The Diagram Editor has a single generic connection tool. This tool is selected by clicking it in the Diagram
Editor’s Tool Palette.

The connection tool connects:

 Topics to DataWriters and DataReaders, and specifies which data that the DataWriter or DataReader will
write or read, respectively

* Partitions to Publishers and Subscribers, and specifies where the data will be written to or read from, re-
spectively

* Listeners to Domain Participants, Publishers, Subscribers, DataReaders, DataWriters and Topics
* StatusConditions to DomainParticipants, Publishers, Subscribers, DataReaders, DataWriters and Topics
* ReadConditions and QueryConditions to DataReaders

* Conditions (GuardCondition, StatusCondition, ReadCondition and QueryCondition) to WaitSets

Using the Connection Tool for Topics

Step 1
Select the Connection Tool from the Diagram Editor’s palette.
Step 2

Click on the topic to be connected, then click on the entity (for example, a data writer) that the topic
is to be connected to.

ﬂ An entity can only be connected to one topic; an existing connection between a topic and an entity will be
removed whenever the entity is connected to another topic.

Using the Connection Tool for Partitions

Step 1
Select the Connection Tool from the Diagram Editor’s palette.

Step 2

5.2. Application Modeling 34

Modeling Guide, Release 2.5.x

Start the connection from the Partition to the publisher or subscriber.
Step 3

Click on the Partition to be connected, then click on the Publisher or Subscriber that the Partition is
to be connected to.

ﬂ Publishers and Subscribers can be connected to more than one Partition.

Using the Connection Tool for Listeners

Step 1
Select the Connection Tool from the Diagram Editor’s palette.
Step 2

Click on the Listener to be connected, then click on the Topic, DomainParticipant, Publisher, Sub-
scriber, DataReader or DataWriter that the Listener is to be connected to.

ﬂ Listeners can be connected to more than one entity.

Using the Connection Tool to connect StatusConditions to an Entity

Step 1
Select the Connection Tool from the Diagram Editor’s palette.
Step 2
Click on the StatusCondition to be connected, then click on the Topic, DomainParticipant, Publisher,

Subscriber, DataReader or DataWriter that the Listener is to be connected to.

ﬂ Only one StatusCondition can be attached to DomainParticipants, Publishers, Subscribers, DataWriters and
DataReaders.

ﬂ Multiple StatusConditions may be attached to a Topic but each StatusCondition must have a different related
DomainParticipant specified.

Using the Connection Tool to connect ReadConditions and QueryConditions to a DataReader

Step 1
Select the Connection Tool from the Diagram Editor’s palette.
Step 2

Click on the ReadConditions or QueryConditions to be connected, then click on the DataReader or
DataWriter that the Condition is to be connected to.

ﬂ Multiple ReadConditions and QueryConditions can be attached to each DataReader.

Using the Connection Tool to connect Conditions to a WaitSet

Step 1
Select the Connection Tool from the Diagram Editor’s palette.
Step 2

Click on the Condition to be connected, then click on the WaitSet that the Condition is to be connected
to.

5.2. Application Modeling 35

Code Generation

This section describes how to use the Vortex OpenSplice Modeler for generating DDS-compliant source code. The
DDS code generated by the Vortex OpenSplice Modeler removes the need for programmers to manually write the
DDS components of their applications; the Modeler does it for them using an easy-to-use, Eclipse-based graphical
interface.

The Vortex OpenSplice HDE (version 6.1 or above) must be installed and configured in order to

A generate code for Vortex OpenSplice from Vortex OpenSplice Modeler.

Vortex Lite (version 1.2 or above) must be installed and configured in order to generate code targeting
Vortex Lite from Vortex OpenSplice Modeler.

The principal purpose of the Vortex OpenSplice Modeler is to generate DDS-compliant source code. The Modeler
achieves this aim and is able to generate:

* code for DDS data types, including
— IDL specifications for Vortex OpenSplice Data Types

— Native language interfaces for Vortex OpenSplice Data Types (via the Vortex OpenSplice IDL Pre-
Processor)

— Typed interface code
* Native Language code, in Java or C++, for Applications

The Modeler can generate code either at the Module or Application level. If a Module is exported, then this
simply exports all Applications within the Module. This will automatically generate the Vortex OpenSplice IDL
and typed interfaces for any data types used by that Application when generating code for an Application.

Code generation can be set to target either of the following DDS Implementations:
* Vortex OpenSplice

¢ Vortex Lite.

6.1 Saving to Eclipse Projects

The code generated by the Modeler can be saved to either a Java or C++ Project within the user’s workspace.

These folders are created in Java-based projects:

src - an empty folder where users can place their own source code

generated - contains the generated DDS type and application code

A The generated folder and its contents must not be edited by users.

id1 - contains generated IDL specification files

These folders are created in C++-based projects:

36

Modeling Guide, Release 2.5.x

src - an empty folder where users can place their own source code

generated - contains the generated DDS type and application code

A The generated folder and its contents must not be edited by users.

idl - contains generated IDL specification files

Additionally for Windows, the code generated by the Modeler can be saved to a Visual Studio Project ! .

The folders created are exactly the same as described above. However, additional Visual Studio-specific files are
created that allow the project to be imported into Visual Studio. These files are:

¢ For Visual Studio 2005 and 2008:

<project_name>.vcproj
OBJS .mak

Makefile
Makefile.release

¢ For Visual Studio 2013:

<project_name>.vcxproj
<project_name>.vcxproj.filters

6.2 Exporting Applications

An application can be exported by:
Step 1
Right-clicking on the Application in the Project Explorer OR the Diagram Editor.
Step 2
Choosing Generate Application Code.
All of the Applications within a module can be exported by:
Step 1
Right-clicking on the Module containing the Applications to be exported.
Step 2

Choosing Export Module. The Export Application dialog will be displayed (whether one or more
applications are selected for code exportation).

Export Application dialog

! Refer to the Modeler Release Notes for the Visual Studio supported versions.

6.2. Exporting Applications 37

Modeling Guide, Release 2.5.x

Export an Application
Choaose the Language Options and click Finish.

Project name: | NewProject
Target DDS Implementation: | Vortex OpenSplice v

Target Language: | C++ v
Contents
(®) Create new project

Merge with existing project

Overwrite existing project

Directory: | C:\Pregram Files\ ADLINK\Vortex_v2\Tools\VortexModelert2.5.16%eclip kspace Browse...

Generate main method

= C++ Options
() Create Linux Eclipse Project

() Create Elin0S 5 Project for x86
() Create PikeOS 3.2 Project for x26
) Create Lynx0S 5.0 Project

(L) Create Windows Visual Studio 2003 Project
(®)Create Windows Visual Studio 2008 Project:

Create Windows Visual Studio 2013 Project
() Create WinCE Visual Studio 2005 Project

() Create WinCE Visual Studio 2008 Project

(7) Create Wind River workbench 2.6 project for V¥Works 6.5 Target
() Create Wind River workbench 3.0 project for ViWorks 6.6
() Create Wind River workbench 3.1 project for V¥Works 6.7
() Create Wind River workbench 3.2 project for ViWorks 6.3

» IDL Options

®

Step 3

The Project Name text box contains the name of the export project. Accept the default name or enter
a new project name.

Step 4

Select the desired DDS target platform from the Target DDS Implementation drop-down menu.
Step 5

Select the desired target language from the Target Language drop-down menu.
Step 6

In the Contents panel, choose to create a new project, to merge with an exisiting project, or to over-
write an existing project.

A Note that a ‘merge’ will only overwrite the generated folder, whereas an ‘overwrite’ will
overwrite the whole project.

Step 7

When creating a project with a new name you can save the project in a location of your choice. Do
this by using the Browse button or by directly changing the fields in the Directory text box.

Step 8

Check the Generate main method check box to generate a class containing a main method for the
chosen language.

Step 9

The Language Options expandable gives additional options for the project creation.

6.2. Exporting Applications 38

Modeling Guide, Release 2.5.x

Step 10

The IDL Options expandable enables you to export additional IDL Types that have not been associated
with any entities in the model. To do this you must:

1. Expand IDL Options
2. Click the Add button

3. Choose the IDL Types to be exported (supported Types are Struct, Constant, and Enum) in the
Selection dialog

4. Click the OK button.
Step 11
Click the Finish button to accept the options and export the Application.

6.3 Java Code Generation

The conditions and details relating to the generation of the Java source code for each model component is described
in this section.

All generated entities (except Partitions, Topics, ContentFilteredTopics and code generated by the Vortex Open-
Splice IDL Pre-Processor) exist in a single Java c1ass file. This class file has the same name as the Application
that it represents, and it contains static wrapper classes for all of the DDS entities contained by that Application
in the model.

The class hierarchy within an Application class file closely follows the hierarchy which appears in the model.
The following conditions apply for all generated entities:

e All underlying DDS Entities (DomainParticipants, Publishers, Subscribers, DataReaders, DataWriters,
Fartitions, Topics) in an application can be obtained by using accessor methods on the relevant generated
wrapper.

* When the code for an Application component is generated, all DDS entities that are associated to or
contained within it are created and configured, including DomainParticipants, Publishers, Subscribers,
DataReaders, DataWriters and associated Topics.

» Each generated entity is set to the QoS policy values of its associated QoSSet (from the model).
* Default QoSSet policy values are also set on the relevant Entities.

* A specific entity’s QoS policy values are set when the entity is started (when the start () method is
invoked on the Application class).

6.3.1 Applications
An Application component contains the configured DDS entities that you wish to use in your own application
code.

Code can only be generated for modeled DDS entities such as DomainParticipants, Publishers, Subscribers,
Listeners, DataReaders, DataWriters, Partitions, Waitsets and Conditions if they are contained or connected to
entities within the Application component.

Each Application is generated into its own Eclipse Java project, with both project name and Java class name
reflecting the fully scoped name of the Application in the model.

Example 1

6.3. Java Code Generation 39

Modeling Guide, Release 2.5.x

For example, an Application called MyApplication located in the com/prismtech module would result in a Java
project called MyApplication. Within that project, located in the generated folder, there would be a source file
called MyApplication. java under the com.prismtech package.

There are a number of generated artefacts in the Application class, itself:

* static classes for all Listeners, Waitsets and Conditions associated with the Application and its contained
Entities

* static classes for all DomainParticipants contained by that Application (these classes, in turn, contain static
classes for the entities that they contain - this is explained in subsequent sections)

* astatic WrapperException Wrapper class for error handling at runtime

* astart () method for creating and initializing all Entities contained by the Application

ﬂ Although Topics and ContentFilteredTopics are not directly contained within an Application, any
DataReaders or DataWriters that use them will create them.

* a stop () method for deleting all Entities contained by the Application

Listeners are explained under Listeners.

Waitsets and Conditions are explained under WaitSets.

The nested classes generated for DomainParticipants and their contained entities are explained under
DomainParticipants.

The WrapperException class is described under Error Handling.

The start () and stop () methods are used to control Application lifecycle. The start () method will con-
figure and start all contained Entities, whilst the st op () method will attempt to cleanly shutdown the Application
and delete all Entities.

Example 2
The following code would be used to start an Application called com.prismtech.MyApplication:

com.prismtech.MyApplication.start ();

Alternatively, the MyApplication class can be imported using a Java import statement, simplifying the code:

MyApplication.start ();

All DDS entities contained by the Application should be configured and ready to use after invoking the start ()
method. The QoS Policy values for these entities will be set, according to values of their QoS Sets, and any default
QoS policy values will be set on the appropriate Entities.

6.3.2 DomainParticipants

DomainParticipants are generated as nested static classes contained directly by the generated Application class.
A DomainParticipant wrapper class contains:

* agetDomainParticipant () method for access to the DDS Entity

* static wrapper classes for all contained Publishers and Subscribers

e typed attach () and detach () methods for any associated Listeners

The getDomainParticipant () method will return the underlying DDS DomainParticipant Entity. This
method is statically invoked.

Example

Continuing with the com.prismtech.MyApplication Application class example from above, if this
class contains a DomainParticipant called MyAppDP, then the code to access the DomainParticipant would be:

6.3. Java Code Generation 40

Modeling Guide, Release 2.5.x

DDS.DomainParticipant participant =
com.prismtech.MyApplication.MyAppDP.getDomainParticipant ();

A The containing Application must have been started via its start () method, otherwise a null object reference
will be returned.

The typed attach () and detach () listener methods are described under Listeners.

6.3.3 Publishers

Publishers are generated as nested static classes contained directly by a generated DomainParticipant class.
A Publisher wrapper class contains :

* agetPublisher () method for gaining access to the DDS Entity

* static wrapper classes for all contained DataWriters

* typed attach () and detach () methods for any associated Listeners

The getPublisher () method will return the underlying DDS Publisher Entity. This method is statically
invoked.

Example

Continuing with the com.prismtech.MyApplication Application class from above, if this class contains a
DomainParticipant called MyAppDP, and a Publisher called MyPublisher, then the code to access the Publisher
would be:

DDS.Publisher publisher =
com.prismtech.MyApplication.MyAppDP.MyPublisher.getPublisher ();

A The containing Application must have been started via its start () method, otherwise a null object reference
will be returned.

6.3.4 Subscribers

Subscribers are generated as nested static classes contained directly by a generated DomainParticipant class.
A Subscriber wrapper class contains:

* agetSubscriber () method for access to the DDS Entity

* static wrapper classes for all contained DataReaders

 typed attach () and detach () methods for any associated Listeners

The get Subscriber () method will return the underlying DDS Subscriber Entity. This method is statically
invoked.

Example

Continuing with the com.prismtech.MyApplication Application class from above, if this class contained
a DomainParticipant called MyAppDP, and a Subscriber called MySubscriber, then the code to access the
Subscriber would be:

DDS.Subscriber subscriber =
com.prismtech.MyApplication.MyAppDP.MySubscriber.
getSubscriber ();

A The containing Application must have been started via its start () method, otherwise a null object reference
will be returned.

6.3. Java Code Generation 41

Modeling Guide, Release 2.5.x

6.3.5 Data Readers

DataReaders are generated as nested static classes contained directly by a generated Subscriber class.
A DataReader wrapper class contains:

* agetDataReader () method for access to the DDS Entity

e typed attach () and detach () methods for any associated Listeners

The getDataReader () method will return the typed underlying DDS DataReader Entity. This method is
statically invoked.

Example

Continuing with the com.prismtech.MyApplication Application class from above, if this class con-
tained a DomainParticipant called MyAppDP, a Subscriber called MySubscriber, and a DataReader called
MyReader, then the code to access the DataReader would be:

<typed DataReader class> reader =
com.prismtech.MyApplication.MyAppDP.MySubscriber.
MyReader.getDataReader ();

A The containing Application must have been started via its start () method, otherwise a null object reference
will be returned.

6.3.6 Data Writers

DataWriters are generated as nested static classes contained directly by a generated Publisher class.
A DataWriter wrapper class contains:

* agetDataWriter () method for access to the DDS Entity

 typed attach () and detach () methods for any associated Listeners

The getDataWriter () method will return the typed underlying DDS DataWriter Entity. This method is
statically invoked.

Example

Continuing with the com.prismtech.MyApplication Application class from above, if this class con-
tained a DomainParticipant called MyAppDP, a Subscriber called MySubscriber, and a DataWriter called
MyWriter, then the code to access the DataWriter would be:

<typed DataWriter class> writer =
com.prismtech.MyApplication.MyAppDP.MySubscriber.
MyWriter.getDataWriter ();

A The containing Application must have been started via its start () method, otherwise a null object reference
will be returned.

6.3.7 Listeners

Listeners are generated as abstract nested static classes contained directly by the generated Application class. This
class acts as a base class for the user’s Listener implementation.

The user must:
* extend the generated Listener class and implement all abstract methods.

* attach an instance of the class to the appropriate Entity via the typed ‘attach’ method on the wrapper class
for that Entity.

6.3. Java Code Generation 42

Modeling Guide, Release 2.5.x

e detach the Listener if notifications are no longer required, via the typed ‘detach’ method on the wrapper
class for that Entity.

Each Listener class contains:

* abstract methods for each status condition in which an interest was expressed. Other communication status
callback methods do nothing and are defined as ‘final’ so that they cannot be overridden.

* a status mask indicating which statuses the Listener is interested in.

ﬂ For each generated Application that contained Entities with associated listeners, typed methods for attaching
and detaching listeners will be generated on that Entity’s nested wrapper class.

The user must extend the generated Listener class, then instantiate the class within their own application code, and
finally install the listener on the relevant entity via the appropriate typed attach () method.

Example

For a listener called Listenerl, with an interest in the communication status on_data_available, the
following base class would be generated:

public abstract class Listenerl implements DDS.DomainParticipantListener ({
public final int STATUS_MASK =
DDS.DATA_AVAILABLE_STATUS.value;

public final void on_data_on_readers (DDS.Subscriber subscriber) {

}

public final void on_offered_incompatible_gos (
DDS.DataWriter dataWriter,
DDS.OfferedIncompatibleQosStatus status) {

public abstract void on_data_available (DDS.DataReader dataReader) ;

public final void on_requested_incompatible_gos (
DDS.DataReader dataReader,
DDS.RequestedIncompatibleQosStatus status) {

public final void on_subscription_match (
DDS.DataReader dataReader,
DDS.SubscriptionMatchStatus status) {

public final void on_requested_deadline_missed (
DDS.DataReader dataReader,
DDS.RequestedDeadlineMissedStatus status) {

public final void on_offered_deadline_missed (
DDS.DataWriter dataWriter,
DDS.OfferedDeadlineMissedStatus status) {

public final void on_sample_rejected(
DDS.DataReader dataReader,
DDS.SampleRejectedStatus status) {

public final void on_liveliness_lost (
DDS.DataWriter dataWriter,
DDS.LivelinessLostStatus status) {

6.3. Java Code Generation 43

Modeling Guide, Release 2.5.x

public final void on_inconsistent_topic(
DDS.Topic topic,
DDS.InconsistentTopicStatus status) {

public final void on_publication_match (
DDS.DataWriter dataWriter,
DDS.PublicationMatchStatus status) {

public final void on_sample_lost (
DDS.DataReader dataReader,
DDS.SamplelLostStatus status) {

public final void on_liveliness_changed(
DDS.DataReader dataReader,
DDS.LivelinessChangedStatus status) {

}

The user should then extend this class and implement the on_data_available () method.

If the Listener is attached to the DomainParticipant MyParticipant in the model, then within the class, for the
application containing MyParticipant, we would find a static wrapper class representing MyParticipant
containing the methods :

public static int attach (Listenerl listener);
public static int detach (Listenerl listener);

The user would instantiate the class that they implemented before passing the object reference to the attach ()
method to connect the listener. The user would call the detach () method to disconnect the listener.

6.3.8 WaitSets

WaitSets are generated as nested static classes contained directly in the generated Application class.
A WaitSet wrapper class has:

* agetWaitSet () method for access to the DDS Entity

* astart () method which creates the WaitSet and attaches the appropriate Conditions

* a stop () method which detaches the WaitSet’s Conditions and deletes the WaitSet itself
Example

Continuing with the com.prismtech.MyApplication Application class example from above, if this class
contains a WaitSet called MyWait Set, then the code to access the WaitSet would be:

DDS.WaitSet waitset =
com.prismtech.MyApplication.MyWaitSet.getWaitSet () ;

A The Application must be running before the WaitSet is started. Also, the WaitSet must be started using the
start () method or a null object reference will be returned by the getWaitSet () method.

6.3.9 Conditions

All Conditions are generated as nested static classes contained directly in the generated Application class.

6.3. Java Code Generation 44

Modeling Guide, Release 2.5.x

StatusCondition

A StatusCondition wrapper class has:
e astart () method for accessing the DDS StatusCondition
* agetStatusCondition () method for accessing the wrapped StatusCondition

* a setDefaultStatusMask () method returns the value of the Status Mask to its original (modelled)
state

* a stop () method to set the StatusCondition back to null, allowing for a future garbage collection
Example

In DDS, each Entity owns exactly one StatusCondition. Therefore, a StatusCondition does not need to be created,
but only retrieved through the Entity which it is associated within the model. (Note that the start () method
does not start the statusCondition; it just gets a handle on the DDS entity.)

Continuing with the com.prismtech.MyApplication Application class example from above, if this
class contains a StatusCondition called MySC, a DomainParticipant called MyAppDP and a Subscriber called
MySubscriber which is associated with the My SC, then the code for accessing the StatusCondition would be:

DDS.StatusCondition statusCondition =
com.prismtech.MyApplication.MySC.
getStatusCondition () ;

ReadCondition

A ReadCondition wrapper class has:
e astart () method for creating the DDS ReadCondition
* agetReadCondition () method for accessing the wrapped ReadCondition

* a stop () method for deleting the ReadCondition from its associated DataReader and setting the Read-
Condition to null

Example

Continuing with the com.prismtech.MyApplication Application class example, if this class contained a
DomainParticipant called MyAddDP, a Subscriber called MySubscriber, a WaitSet called MyWait Set, and a
ReadCondition called MyRC, then the code to access the ReadCondition would be:

DDS.ReadCondition readCondition =
com.prismtech.MyApplication.MyRC.getReadCondition () ;

All ReadConditions are created lazily when the getReadCondition () method is called.

QueryCondition

A QueryCondition wrapper class has:
e astart () method for creating the DDS QueryCondition
* agetQueryCondition () method for accessing the wrapped QueryCondition

* a stop () method for deleting the QueryCondition from its associated DataReader and setting the
QueryCondition to null

* a setQueryParameter () method for setting the parameters for the QueryExpression associated with
the QueryCondition

6.3. Java Code Generation 45

Modeling Guide, Release 2.5.x

Example

Continuing with the com.prismtech.MyApplication Application class example, if this class contained a
DomainParticipant called MyAddDP, a Subscriber called MySubscriber, a WaitSet called MyWait Set, and a
QueryCondition called MyQC, then the code to access the QueryCondition would be:

DDS.QueryCondition queryCondition =
com.prismtech.MyApplication.MyQC.getQueryCondition() ;

QueryConditions are created lazily when the getQueryCondition () method is called, like the ReadCondi-
tion.

A The setQueryParameters () method must be called with the appropriate argument before the
getQueryCondition () method is called, otherwise an exception is raised.

GuardCondition

A GuardCondition wrapper class contains:

* astart () method for creating the DDS GuardCondition

* agetGuardCondition () method that returns the wrapped GuardCondition

* a stop () method that sets the value of the GuardCondition to null allowing a future garbage collection
Example

Continuing with the com.prismtech.MyApplication Application class example, if this class contained
a WaitSet called MyWaitSet, and a GuardCondition called MyGC, then the code to access the GuardCondition
would be:

DDS.GuardCondition guardCondition =
com.prismtech.MyApplication.MyGC.getGuardCondition() ;

The GuardConditions are created lazily by the get GuardCondition () method.

6.3.10 Partitions

The Java code for the Modeler Partition component (in the model) is generated as an abstract class; this class can
be used to get and set a name in the Partition QoS of connected Publishers and Subscribers.

The generated Partition class is assigned the name of the Partition used in the name model.

A class containing static methods to get and set the name of that Partition is generated for each Partition connected
to a Publisher or Subscriber, as defined in the model. The methods listed below are defined in this class:

public static void setName (String partitionName) - This method sets the Partition’s QoS for all registered
DDS Publishers and Subscribers when it is invoked.

public static String getName () - Return the current DDS name for this partition.
The Partition wrapper class also contains the following methods:

* an addPublisher () /Subscriber () method that adds a publisher/subscriber to the list of publish-
ers/subscribers connected to the partition.

* aremovePublisher () /Subscriber () method that removes a publisher/subscriber from the list of
publishers/subscribers connected to the partition.

6.3.11 Error Handling

Exceptions are used to handle errors in the Wrappers. Most Entity Wrappers’ methods can throw a
WrapperException.

6.3. Java Code Generation 46

Modeling Guide, Release 2.5.x

A WrapperException is thrown when an error is encountered while performing a DDS API call or, less
frequently, when an internal error in the Wrapper occurs.

An example of the first case is when a Wrapper must create a DomainParticipant but a call to
create_participant fails.

An example of the second case is when the user starts a QueryCondition Wrapper but the QueryParameters have
not been defined.

In all cases, WrapperException provides enough information to know where the errors occurred; for example,
what was the error code returned by the DDS call.

The WrapperException class is generated as a direct nested class in generated Application and Topic wrapper
classes.

6.4 C++ Code Generation

C++

The C++ generated files are placed in a project’s generated folder. All modules, entities and other (scoped)
items placed in this folder will correspond to a folder in the Project Manager tree.

ﬂ All entity names are postfixed by the word Wrapper in order to avoid conflicts between C++ name spaces
and class names.

Three files are generated for each entity. Their filenames use a convention whereby they take the entity’s name
and add it to a suffix associated with the file type. The generated files and their filename conventions are:

¢ An abstract base class called Wrapper.h.

An entity called Publisherl, for example, would produce PublisherlWrapper.h.
PublisherlWrapper.h is the interface that the application developer should use.

A class header file called WrapperImplementation.h.

PublisherlWrapperImplementation.h would be produced for a Publisherl entity. This class
implements the abstract base class and should not be used by application developers.

* An implementation file called WrapperImplementation.cpp.

PublisherlWrapperImplementation.cpp would be generated for a Publisherl entity. This
file contains the class method’s implementations.

The following conditions apply for all generated entities:

All underlying DDS Entities (DomainParticipants, Publishers, Subscribers, DataReaders, DataWriters,
Fartitions, Topics) in an application can be obtained by using accessor member functions on the relevant
generated wrapper.

When the code for an Application component is generated, all DDS Entities that are associated to or
contained within it are created and configured, including DomainParticipants, Publishers, Subscribers,
DataReaders, DataWriters and associated Topics.

Each generated entity is set to the QoS policy values of its associated QoSSet (from the model). Default
QoSSet policy values are also set on the relevant Entities.

A specific entity’s QoS policy values are set when the entity is started (in other words, when the start ()
member function is invoked on the Application class).

The default behaviour for error handling is to call the stop () member function and throw a
WrapperException. The WrapperException is always generated within the application’s name
space.

6.4. C++ Code Generation 47

Modeling Guide, Release 2.5.x

6.4.1 Applications

An Application component contains the configured DDS Entities that you wish to use in your application code.
Each application is generated into its own Eclipse C++, Visual Studio 2005, or Visual Studio 2008 project.

For example, an application called MyApplication located in the com/prismtech module would result in a
source file called MyApplicationWrapper.h inthe com: : prismtech namespace.

The Application class contains several generated methods:

* aget<entity_name>Wrapper () member function for all entities that are the application’s children,
including partitions and topics

* astart () member function which creates and initializes all Entities contained by the Application
* a stop () member function which deletes all Entities contained by the Application

The start () and stop () methods are used to control the Application’s lifecycle. The start () member
function configures and starts all contained Entities, whilst the st op () member function attempts to cleanly shut
down the Application and delete all Entities.

Example
The following code starts an Application called com: :prismtech: :MyApplication:

com: :prismtech: :MyApplicationWrapper* myApp =
new com: :prismtech: :MyApplicationWrapperImplementation;
myApp->start () ;

ﬂ It is important to note that for all entities in the model, only the generated abstract base classes
(*Wrapper .h) should be included in the business logic. The only exception is when the application wrapper has
to be instantiated, then the application wrapper implementation header must be included. For example:

#include "com/prismtech/MyApplicationWrapperImplementation.h"
#include "com/prismtech/MyApplicationWrapper.h"

All DDS entities contained by the Application should be configured and ready to use after the start () member
function is invoked. The QoS Policy values for these entities are set according to values of their QoS Sets. Any
default QoS policy values will be set on the appropriate Entities.

6.4.2 DomainParticipants

DomainParticipants are generated in the <domainparticipant_name>Wrapper.h,
<domainparticipant_name>WrapperImplementation.hand <domainparticipant_name>WrapperImpleme
class files.

A DomainParticipant wrapper class contains:
* agetDomainParticipant () member function for accessing the DDS Entity

* aget<entity_name>Wrapper () member function for retrieving the DomainParticipant’s Publishers
and Subscribers and their associated Topics

e typed attach () and detach () member functions for attaching a Listener to and detaching it from the
DDS Entity.

The getDomainParticipant () member function returns the underlying DDS DomainParticipant Entity.

The get<entity_name>Wrapper () member function returns the modeled entity’s wrappers, which are then
used, in turn, to retrieve the underlying DDS Entity.

The attach () member function can either be used on the corresponding wrapper class or on the desired DDS
entity directly.

Listeners are described in Listeners.

6.4. C++ Code Generation 48

Modeling Guide, Release 2.5.x

Example

Continuing with the com: :prismtech: :MyApplication Application class example from above, if the
MyApplication model contains a DomainParticipant called MyDP, then the code to access the DomainParticipant
would be:

DDS: :DomainParticipant+ domainparticipant =
myApp->getMyDPWrapper () —>getDomainParticipant () ;

A The containing Application must have been started with its start () member function or a null pointer will
be returned.

6.4.3 Publishers

Publishers are generated in the <publisher_name>Wrapper.h,<publisher_name>WrapperImplementation.h
and <publisher_ name>WrapperImplementation.cpp class files.

A Publisher wrapper class contains:
* agetPublisher () member function for gaining access to the DDS Entity
* aget<datawriter_name>Wrapper () member function for retrieving the data writer

e typed attach () and detach () member functions for attaching a Listener to and detaching it from the
DDS Entity.

The getPublisher () member function returns the underlying DDS Publisher Entity.

The get<entity_name>Wrapper () member function returns the modeled entity’s wrapper, which is used
in turn to retrieve the underlying DDS Entity.

The attach () member function can either be used on the corresponding wrapper class or called on the desired
DDS entity directly.

Listeners are described in Listeners.
Example

Continuing with the com: :prismtech: :MyApplication Application class example from above, if this
class contains a DomainParticipant called MyDP and a Publisher called MyPublisher, then the code to access
the Publisher is:

DDS: :Publisher* publisher =
myApp->getMyDPWrapper () —>getMyPublisherWrapper () —>
getPublisher () ;

A The containing Application must have been started with its start () member function or a null pointer will
be returned.

6.4.4 Subscribers

Subscribers are generated in the <subscriber_name>Wrapper.h,<subscriber_name>WrapperImplementation.l
and <subscriber_name>WrapperImplementation.cpp class files.

A Subscriber wrapper class contains:
* agetSubscriber () member function for access to the DDS Entity
* aget<reader_name>Wrapper () member function for retrieving the data reader

e typed attach () and detach () member functions for attaching a Listener to and detaching it from the
DDS Entity.

6.4. C++ Code Generation 49

Modeling Guide, Release 2.5.x

The get Subscriber () member function returns the underlying DDS Subscriber Entity.

get<entity_name>Wrapper () returns the modeled entity’s wrapper with which the underlying DDS Entity
can be retrieved.

The attach () member function can either be used on the corresponding wrapper class, or called on the desired
DDS entity directly.

Listeners are described in Listeners.
Example

Continuing with the com: :prismtech: :MyApplication Application class from above, if this class con-
tains a DomainParticipant called MyDP, and a Subscriber called MySubscriber, then the code to access the
Subscriber would be:

DDS: :Subscriber+ subscriber =
myApp->getMyDPWrapper () —>getMySubscriberWrapper () —>
getSubscriber () ;

A The containing Application must have been started with its start () member function or a null pointer will
be returned.

6.4.5 Data Readers

DataReaders are generated in the <reader_name>Wrapper.h, <reader_name>WrapperImplementation.h
and <reader_name>WrapperImplementation.cpp class files.

A DataReader wrapper class contains:
* agetDataReader () member function for access to the DDS Entity

e typed attach () and detach () member functions for attaching a Listener to and detaching it from the
DDS Entity.

The getDataReader () member function returns the typed underlying DDS DataReader Entity.

The attach () member function can either be used on the corresponding wrapper class or called on the desired
DDS entity directly.

Listeners are described in Listeners.
Example

Continuing with the com: :prismtech: :MyApplication Application class from above, if this class
contains a DomainParticipant called MyDP, a Subscriber called MySubscriber, and a DataReader called
MyReader, then the code to access the DataReader would be:

DDS: :DataReaderx reader =
myApp->getMyDPWrapper () —>getMySubscriberWrapper () —>
getMyReaderWrapper () —>getDataReader () ;

A The containing Application must have been started with its start () member function or a null pointer will
be returned.

6.4.6 Data Writers

DataWriters are generated in the <writer_ name>Wrapper.h,<writer_name>WrapperImplementation.h
and <writer_name>WrapperImplementation.cpp class files.

A DataWriterswrapper class contains:

* agetDataWriter () member function for access to the DDS Entity

6.4. C++ Code Generation 50

Modeling Guide, Release 2.5.x

* typed attach () and detach () member functions for attaching a Listener to and detaching it from the
DDS Entity.

The getDataWriter () member function returns the typed underlying DDS DataWriters Entity.

The attach () member function can either be used on the corresponding wrapper class or called on the desired
DDS entity directly.

Listeners are described in Listeners.
Example

Continuing with the com: :prismtech: :MyApplication Application class from above, if this class con-
tains a DomainParticipant called MyDP, a Publisher called MyPublisher and a DataWriter called MyWriter,
then the code to access the DataWriter would be:

DDS: :DataWriterx writer =
myApp->getMyDPWrapper (
getMyWriterWrapper (

) —>getMyPublisherWrapper () —>
) —>getDataWriter () ;

A The containing Application must have been started with its start () member function or a null pointer will
be returned.

6.4.7 Listeners

Each listener that is defined in the model has a file, <l1istener name>.h 2, generated for it which acts as a
base class for the user’s listener implementation. This class must be subclassed.

The generated class subclasses the corresponding entity listener from the OMG DDS DCPS API for the DDS
entity that the listener is connected to in the model.

Function declarations are inserted as comments for all the enabled listener functions. These serve as an easy
reference for what users must provide in their implementation.

The generated listener class also contains the status mask (as defined in the model). The value is accessible through
the get StatusMask () member function.

A dummy implementation is inserted for all disabled listener member functions so these functions do not need to
be present in the user’s listener implementations.

These listeners can be used by either invoking the attach () member function on the corresponding wrapper
class or directly on the desired DDS entity.

When the listener must be attached to the DDS entity at its creation time, then the wrapper’s attach () member
function should be used. In this case, it must be called before invoking start (), so as to be aware of all triggered
events.

ﬂ Please note that when calling attach () on the wrapper class, the listener will be duplicated and held in a
_var auto pointer. Once the user’s code is not interested any more in receiving notifications through a listener,
detach () should be called.

Example

For a listener called Listenerl, with an interest in the communication status on_data_available, the
following base class will be generated:

#ifndef _MODULE1 APPLICATIONI LISTENERI H_
#define _MODULE1 APPLICATIONI_LISTENERI_H_

#include <ccpp_dds_dcps.h>

namespace Modulel

{

2 Where <listener name> is the name of the listener.

6.4. C++ Code Generation 51

Modeling Guide, Release 2.5.x

namespace Applicationl

{

class Listenerl : virtual public DDS::DataReaderListener
{
public:

Listenerl ()

m_statusMask (0 DDS: :DATA_AVAILABLE_STATUS)

int getStatusMask () const
{

return m_statusMask;

DDS: :Boolean _local_is_a (const char * repositryID)
{

return false DDS::DataReaderListener::_local_is_a (repositryID);

// DO NOT OVERRIDE THIS METHOD
// It is disabled in the status mask
void on_sample_rejected (DDS::DataReader_ptr dataReader,
const DDS::SampleRejectedStatus& status)

// Implement this method, it’s enabled in the status mask
// void on_data_available (DDS::DataReader_ptr dataReader)

// DO NOT OVERRIDE THIS METHOD
// It is disabled in the status mask
void on_subscription_matched (DDS::DataReader_ptr dataReader,
const DDS::SubscriptionMatchedStatus& status)

// DO NOT OVERRIDE THIS METHOD

// It is disabled in the status mask

void on_requested_incompatible_gos (
DDS::DataReader_ptr dataReader,
const DDS::RequestedIncompatibleQosStatusé& status)

// DO NOT OVERRIDE THIS METHOD
// It is disabled in the status mask
void on_sample_lost (DDS::DataReader_ptr dataReader,
const DDS::SamplelLostStatusé& status)

// DO NOT OVERRIDE THIS METHOD
// It is disabled in the status mask
void on_liveliness_changed (DDS::DataReader_ptr dataReader,
const DDS::LivelinessChangedStatusé& status)

// DO NOT OVERRIDE THIS METHOD
// It is disabled in the status mask

6.4. C++ Code Generation 52

Modeling Guide, Release 2.5.x

void on_requested_deadline_missed (DDS: :DataReader_ptr dataReader,
const DDS::RequestedDeadlineMissedStatusé& status)

private:
const DDS::StatusMask m_statusMask;
}i

}i
}i

#endif
// _MODULEl APPLICATION] LISTENERI H

The user should now inherit from this class and implement the on_data_available () method.

If the Listener is attached to the DomainParticipant Participantl in the model, then within the generated
wrapper implementation class, for Participant1, we would find a method:

virtual void attach (Modulel: :Applicationl::Listenerlx listener) = 0;

The user would call the detach () member function to disconnect the listener.

6.4.8 WaitSets

Waitsets are generated in the <waitset_name>Wrapper.h,<waitset_name>WrapperImplementation.h
and <waitset_name>WrapperImplementation.cpp class files.

A WaitSet wrapper class has:

* agetWaitSet () member function for accessing the DDS Entity

* a start () member function which creates the WaitSet and attaches the appropriate Conditions

* a stop () member function which detaches the WaitSet’s Conditions and deletes the WaitSet itself
Example

Continuing the com: :prismtech: :MyApplication Application class example from above, if this class
contains a WaitSet called MyWait Set, then the code to access the WaitSet would be:

DDS::WaitSet* waitset =
myApp->getMyWaitSetWrapper () —>getWaitSet () ;

6.4.9 Conditions

All Conditions are generated in the <condition_name>Wrapper.h,
<condition_name>WrapperImplementation.hand <condition_name>WrapperImplementation.cpp
class files.

A It is important to note that before accessing the DDS Condition with the getCondition () member func-
tion, the condition wrapper must have been started with start (). If the condition is attached to a WaitSets, it
will be started upon the start of the WaitSet.

StatusCondition

A StatusCondition wrapper class has:
* agetCondition () member function for accessing the DDS StatusCondition

* agetStatusMask () member function which returns the value of the Status Mask

6.4. C++ Code Generation 53

Modeling Guide, Release 2.5.x

e astart () member function which creates the Condition
e a stop () member function which detaches the Condition
Example

Each Entity owns exactly one StatusCondition in DDS. Therefore, a StatusCondition does not need to be created,
but only retrieved through the Entity which it is associated with, within the model.

Continuing the com: :prismtech: :MyApplication Application class example from above, if this class
contains a StatusCondition called My SC then the code for accessing the StatusCondtion would be:

DDS::StatusCondition* statusCondition =
myApp->getMySCWrapper () —>getCondition () ;

ReadCondition

A ReadCondition wrapper class has:

* agetCondition () member function for accessing the DDS ReadCondition

* agetInstanceStateMask () member function for accessing the instance state mask

* agetSampleStateMask () member function for accessing the sample state mask

* agetViewStateMask () member function for accessing the view state mask

e astart () member function for attaching the ReadCondition to its associated DataReader

* a stop () member function for deleting the ReadCondition from its associated DataReader
Example

Continuing the com: :prismtech: :MyApplication Application class example from above, if the MyAp-
plication model has a ReadCondition called MyRC, then the code to access the ReadCondition would be:

DDS: :ReadCondition* readCondition =
myApp->getMyRCWrapper () —>getCondition () ;

QueryCondition

A QueryCondition wrapper class has:
* agetCondition () member function for accessing the DDS ReadCondition
* agetInstanceStateMask () member function for accessing the instance state mask
* agetSampleStateMask () member function for accessing the sample state mask
* agetViewStateMaks () member function for accessing the view state mask
* a start () member function for attaching the ReadCondition to its associated DataReader
* a stop () member function for deleting the ReadCondition from its associated DataReader

* a setQueryParameters () member function for setting the parameters for the QueryExpression asso-
ciated with the QueryCondition

Example

Continuing the com: :prismtech: :MyApplication Application class example from above, if the MyAp-
plication model contains a QueryCondition called MyQC, then the code to access the QueryCondition would be:

DDS: :QueryCondition* queryCondition =
myApp->getMyQCWrapper () —>getCondition () ;

A The setQueryParameters () member function must be called with the appropriate argument before the
getCondition () member function is called or an exception will be raised.

6.4. C++ Code Generation 54

Modeling Guide, Release 2.5.x

GuardCondition

A GuardCondition wrapper class contains:
¢ agetCondition () member function that returns the DDS GuardCondition
* astart () member function for creating the GuardCondition
e a stop () member function that sets the value of the GuardCondition to 0
Example

Continuing the com: :prismtech::MyApplication Application class example, if the MyApplication
model contains a GuardCondition called MyGC, then the code to access the GuardCondition would be:

DDS: :GuardCondition* guardCondition =
myApp->getMyGCWrapper () —>getCondition () ;

6.4.10 Partitions

The C++ code for the Modeler Partition component (in the model) is generated in the Wrapper.h,
WrapperImplementation.h and WrapperImplementation. cpp class files.

The generated code can be used to ger and set the names of connected Publishers and Subscribers in the Partition

QoS.

The generated Partition class is assigned the same name as the name of the Partition in the model.
This class defines the following methods:

* agetName () member function which retrieves the partition name

* a setName () member function which sets the partition name

* an addPublisher () /Subscriber () member function that adds a publisher/subscriber to the list of
publishers/subscribers connected to the partition

* aremovePublisher () /Subscriber () member function that removes a publisher/subscriber from
the list of publishers/subscribers connected to the partition

6.4. C++ Code Generation 55

Creating Launch Configurations

This section describes how to set up ‘launch configurations’ for the Vortex OpenSplice Modeler which provide
additional convenient ways to run and control the Modeler.

A Vortex OpenSplice daemon must be running on the host where your code will be run and for the domain within
which your code will operate.

Starting a Vortex OpenSplice daemon is only required when running a Shared Memory Deployment.
For more details about starting Vortex OpenSplice, please see the Vortex OpenSplice Deployment
Guide.

The Modeler includes an HDE icon ¥ (located in the Eclipse Icon Bar) which can start and stop the Vortex
OpenSplice daemon. However, configurations can be manually created to start and stop the daemon if desired or
if the daemon does not start when using the HDE tool from the icon bar.

The instructions provided in this section describe how to manually create, start, and stop configurations for the
Vortex OpenSplice (OSPL) daemon.

7.1

It is recommended that Vortex OpenSplice launch configurations are created which can start and stop
the Vortex OpenSplice daemon: this will enable Vortex OpenSplice code to be run from within Eclipse.
These instructions assume that the environment is configured for the version of Vortex OpenSplice that
will be used. Refer to the Vortex OpenSplice Getting Started Guide for configuration information.
Environment variables can be set for specific launch configurations by selecting the launch
configuration and clicking on the Environment tab.

Creating and Running an OSPL start Launch Configuration

7.1.1 Creating the start Configuration

Step 1

Choose Run > External Tools > External Tools from the Eclipse Menu Bar. This will open the
External Tools dialog.

Step 2

Right-click on the Program item located in tree view (located on the left-hand side of the External
Tools dialog) and choose New. This will create a new item under the Program item.

Step 3

Enter OSPI, start in the Name text field (located near the top of the dialog); this is for the launch
configuration.

Step 4

In the Location text box, use the Browse File System button to locate the OSPL executable
(ospl.exe on Windows platforms). The full pathname for the OSPL executable should appear
in the Location text box.

56

Modeling Guide, Release 2.5.x

For example, on ‘Windows this could be "C:\Program Files
(x86) \ADLINK\Vortex_v2\Device\VortexOpenSplice\6.6.0pl\HDE\x86.win32\bin\ospl.exe".

Step 5

Enter the word start in the Arguments text box. This will instruct the OSPL executable to start the
daemon.

Step 6
Click the Apply button to apply the changes.
Step 7

Click the Close button to close the dialog.

7.1.2 Running the start Configuration

Running the start launch configuration executes the ospl start command and starts the daemon.
Step 1

Choose Run > External Tools > External Tools from the Eclipse Menu Bar. This will open the
External Tools dialog.

Step 2

Select the OSPI. start item (located under the Program item) in tree view (located on the left-hand
side of the External Tools dialog).

Step 3
Click the Run button (located at the bottom of the dialog). This will start the daemon.
Step 4

Click the Close button to close the dialog.

7.2 Creating and Running an 0SPL stop Launch Configuration

7.2.1 Creating the stop Configuration

Either:

Repeat all of the steps shown under Section 3.8.1.1, Creating the start Configuration, above, but use OSPL stop
for the launch configuration’s name, and enter st op in the Arguments text box instead of start.

OR:
Step 1

Right-click on the launch configuration created under Section 3.8.1.1, Creating the start Configura-
tion.

Step 2
Click Duplicate.
Step 3
Select Duplicate Launch Configuration.
Step 4
Rename it from OSPL start (1) to OSPL stop by entering the new name in the Name field
Step 5

7.2. Creating and Running an OSPL stop Launch Configuration 57

Modeling Guide, Release 2.5.x

Replace start with stop in the argument field.
Step 6
Click Apply.

7.2.2 Running the stop Configuration

Running the st op launch configuration executes the ospl stop command and stops the daemon.
Step 1

Choose Run > External Tools > External Tools from the Eclipse Menu Bar. This will open the
External Tools dialog.

Step 2

Select the OSPL stop item (located under the Program item) in tree view (located on the left-hand
side of the External Tools dialog).

Step 3

Click the Run button. This will stop the daemon.
Step 4

Click the Close button to close the dialog.

7.2. Creating and Running an 0SPL stop Launch Configuration 58

Compiling and Running

This section describes how Vortex OpenSplice Modeler and Eclipse Workbench are used to compile and run
applications.

8.1 Compiling

The Eclipse Workbench can be used to compile the native code by either

* manually invoking the Eclipse Builder by choosing Project > Build Project, Project > Build All from the
Menu Bar

OR

* enabling the Project > Build Automatically option (a tick mark is displayed)

8.2 Running

8.2.1 Java

Right-click on the Java source and choose Run As > Java Application to run the application (a Vortex OpenSplice
daemon is expected to be running).

A The Java application must contain a main () method for this option to be available.

This facility requires the environment to be configured for Vortex OpenSplice. If not, Vortex OpenSplice Modeler
comes with a handy Java run configuration preset targeting Vortex OpenSplice deployments, according to the
Vortex OpenSplice preferences (see Section on Setting Vortex OpenSplice Preferences). To make use of it, choose
Run As > OpenSplice Java Application.

If you need to have additional configuration settings for your run, simply create a Java run configuration for
the specific Java source file containing the main () method, then edit the variables from the Environment tab
(right-click on the source file, choose Run As > Run, then create new run configuration).

8.2.2 C++

C++

Right-click on the C++ source and choose Run As > Local C++ Application to run the application against the
selected target DDS platform. Note that if the target is Vortex OpenSplice, the Vortex OpenSplice daemon needs
to be running.

Additionally, for Vortex OpenSplice targets, this facility requires that the environment be configured.

59

Modeling Guide, Release 2.5.x

Otherwise, there is a handy C++ run configuration preset available under Run As > Vortex OpenSplice C++
Application, which utilizes the values set in the Vortex OpenSplice preferences (see Section on Setting Vortex
OpenSplice Preferences).

You can also create a C++ run configuration for the specific C++ executable, then edit the variables from the
Environment tab (right-click on the source file, choose Run As > Run, then create new run configuration).

To run a C++ application targeting Vortex Lite, you can choose Run As > Local C++ Application. However, you
will need to manually configure the required environment variables.

There is also a handy C++ run configuration preset available under Run As > Vortex Lite C++ Application.
Otherwise, You can also create a C++ run configuration for the specific C++ executable, then edit the variables
from the Environment tab (right-click on the source file, choose Run As > Run, then create new run configuration).

8.2. Running 60

Tutorial

This tutorial uses an example DDS-based chatroom system consisting of three autonomous applications (the Ap-
plication Model) plus data type definitions (the Information Model) to demonstrate how to use the basic features
of the Vortex OpenSplice Modeler modeling tool.

The purpose of this tutorial is not to describe DDS nor the example application’s in-depth logic and architecture,
but rather to show how a project can be created, modeled and implemented using the Vortex OpenSplice Modeler.

9.1

A completed Chatroom example project is included with Vortex OpenSplice Modeler. The completed
example can be opened by right-clicking in the Project Explorer, choosing New > Example to open the
New Example dialog, selecting Chatroom, then clicking the Finish button. The Chatroom project and
three other projects, which contains the Chatroom’s generated and (example) user-written code, should
open in the Project Explorer.

Java and C++ versions of the Chatroom example are covered in this tutorial. The source code, for Java
and C++, is provided in Appendix A Chatroom Example Java Source Code, and Appendix B Chatroom
Example C++ Source Code.

A thorough tutorial on DDS, including a detailed description of the Chatroom example, is provided in
the Vortex OpenSplice C Tutorial Guide * .

Example Chatroom Overview

The tutorial example, Chatroom, is a simple system which enables people to chat with each other. The system
consists of autonomous applications, distributed amongst the system’s peers, which transmit messages between
the system’s users (see Basic Chatroom Architecture).

This tutorial uses the Chatroom example to demonstrate how to:

create a Vortex OpenSplice project which can generate the source code and interfaces for a DDS-based
distributed application

add Modeler’s components, DDS entities, and resources to the project
create a model which establishes the relationships between the application’s entities
generate Vortex OpenSplice-compliant source code

implement the applications business logic and associated interfaces which use the generated code

The services or functions that the Chatroom provides includes:

enabling users to log on and off the chatroom

— the users, called chatters, have unique IDs to identify them
controlling user load by tracking who logs on and off of the chatroom
enabling users to see which users are logged on to the chatroom

enabling users to post messages to other chatters

! Although the Tutorial Guide is written for the C language, the descriptions and information provided are useful generally.
2 Although the Tutorial Guide is written for the C language, the descriptions and information provided are useful generally.

61

Modeling Guide, Release 2.5.x

* enabling users to subscribe to the messages being published by other users
— messages are transmitted directly from the message publishers to all subscribers

The Chatroom employs the DDS-DCPS architectural approach, which is similar to a peer-to-peer architecture.
Individual chatroom application nodes are distributed across hosts in a network (see Basic Chatroom Architecture).

Each chatroom application communicates directly with each of the others. This architecture is scalable and has a
degree of fault tolerance (the chatroom system will continue to operate even if a node fails).

Basic Chatroom Architecture

DomainParticipant DomainParticipant DomainParticipant

Node1 Node?2 Node3

Network Domain

The Chatroom system consists of’
 autonomous applications which perform specific tasks (the Application Model):

— Chatter - responsible for publishing the identity of the user, followed by all chat messages he or she
wishes to transmit. (This application is write-only.)

— MessageBoard - responsible for subscribing itself to all chat messages and for displaying them in the
order in which they are received. (This application is read-only).

— UserLoad - This part is responsible for continuously keeping track of users that join and leave the
Chatroom. (This application is read-only).

Each of these applications are modeled as separate processes. They use the standard output to print their
messages (output has been kept rudimentary in order to enable the example to remain focused on the efficient
utilization of the DCPS).

* data types which define the structure of the data or information which constitute the messages that users
transmit between each other (the Information Model).

The Chatroom’s applications are constructed from:
« standard DDS entities, including
— DomainParticipants
— Publishers
— Subscribers
— Topics
— Content Filter Topics
— Listeners
— Partitions
— DataWriters and DataReaders

— WaitSets

9.1. Example Chatroom Overview 62

Modeling Guide, Release 2.5.x

— Conditions

* interfaces, implemented by the developer, which provide the Chatroom’s business logic

ﬂ The DDS-specific parts of the applications are generated by Vortex OpenSplice Modeler and do not need to
be implemented by the developer.

9.2 Creating the Chatroom

ﬂ The pathnames shown here use Unix forward slash (/) delimiters: Windows users should replace the
forward slashes (/) in the pathnames with back slashes (\) as well as adding the drive letter (for
example, c:\).

Here is an outline of the steps to follow to create the Chatroom in the Modeler:
Step 1

Create a Project to contain the Chatroom application and information models.
Step 2

Import an IDL specification which defines the structure and Topic types (the Information Model) into
the Tutorial project.

Step 3
Create a Chat module to hold the Chatroom components.
Step 4

Create the ChatMessage_topic, NamedMessage_topic and the NameService_topic (part of the Infor-
mation Model) that the Chatroom requires.

Step 5

Set QoS policy values for the DDS entities.
Step 6

Create a partition which application’s subscribers and publishers will be associated with.
Step 7

Use the Diagram Editor to model the Chatroom’s applications.
Step 8

Generate the DDS-related source code from the application and information models.
Step 9

Implement the Chatter, MessageBoard and UserLoad applications’ business logic.
Step 10

Compile the code.
Step 11

Run and test the application.

These steps are described in detail below.

9.2.1 Step 1: Create a Project

Create a Project which will contain the information model and the applications (Chatter, MessageBoard and
UserLoad) that will be modeled for the Chatroom.

9.2. Creating the Chatroom 63

Modeling Guide, Release 2.5.x

1. If the Vortex OpenSplice Design Perspective is not open, then open it by clicking on the Window menu icon

2] (located in the upper right-hand corner of the Workbench, above the Outline Section), then choosing
Other > Open Perspective > Vortex OpenSplice Design.

2. Create a new project by choosing File > New > Vortex OpenSplice Project from the Menu Bar.

3. Enter the name Tutorial into the Project Name text box: this will be the project’s name.
ﬂ If you clear the Use Default Location check box, then you can save to your project to any directory by
entering its location into the Location text box.

4. Click the Finish button to create the Tutorial project. The Tutorial project should now appear in the Project
Explorer window (located on the left-hand side of the Eclipse Workbench).

Clicking the tree expansion icon X! will reveal the project’s model and default module components.
ﬂ Eclipse only auto-saves the project when the project is created. Eclipse does not auto-save any subsequent

changes to a project. Remember to save any changes or additions to your project using File > Save from the
menu or the [Ctrl]+[S] short-cut key combination.

New Project in Vortex OpenSplice Design Perspective

roject Bun Window Help
O-HES BEEEREERe B %0 - if-Homar o 3 3 Vertex Gpen. |
[Project Explorer 52 =0 Welcome &3 =

2 & 8% 7| vortex OpenSplice Modeler

& Tutorial
3 model Vortex OpenSplice Modeler is a productivity suite for DDS Developers cansisting of:
8 (default A graphical modeling tool providing a fast visual approach to DDS Architecture design.

Code generators to greatly enhance productivity through efficient code generatio

5 Start New Vortex OpenSplice Project
To start a new Vortex OpenSplice Project, click here.

5 Learn mor

re or work through the tutorial you can browse the Vortex OpenSplice Modeler User Guide.

=/ Latest information
For the most up to date information on Vortex OpenSplice Modeler visit www. prismtech.com

5 Release Notes
View the release notes for Vortex OpenSplice Modeler.

[E Problems [Properties 3%

Property Value

[=]

P
3
£
q

i
o

9.2.2 Step 2: Provide an Information Model

Import an Interface Definition Language (IDL) specification which defines the data types and Topic types for the
messages and other data the Chatroom needs (the Information Model).

ﬂ Vortex OpenSplice distributes data using structured data types. The data types are transported using Topics.
The OMG’s Interface Definition Language (IDL), which is platform- and implementation language-independent,
is used by Vortex OpenSplice Modeler to define the data types. The IDL definitions imported into the project
provide the data type definitions which constitute the project’s information model.

To import the IDL definitions for the Tutorial project:

9.2. Creating the Chatroom 64

Modeling Guide, Release 2.5.x

1. Choose File > Import > Vortex OpenSplice > Vortex OpenSplice IDL Import Wizard, then click the Next
button.

2. In the Vortex OpenSplice IDL Import Wizard:

a) Enter Tutorial into the Destination Folder entry box by using the Browse button (located adjacent to
the box) to navigate to the Tutorial folder.

b) Enter <ospl>/examples/dcps/tutorial/idl/chat.idl into the IDL Source text box (or
use the adjacent Browse button to navigate to the file), where:

<ospl> is your Vortex OpenSplice installation’s home directory

<lang> is the target language (Java or C++)

Windows users should replace the forward slashes (/) in the pathname with back
slashes (\).

¢) Click Finish when done.

A new model, called Chat, should appear (provided Eclipse is set to automatically build projects: this is the default
behaviour). The Chat model will contain the Chat module and its data types (ChatMessage, NamedMessage and
NameService).

A The Chatroom’s NameService data type should not be confused with the OMG’s CORBA Naming
Service of the same name; they are not related in any way.

ChatMessage - Contains the message to be published, a message index and the ID of the user publishing the
message.

NamedMessage - Contains the user name, user ID, message and message index, information that the Message-
Board application requires.

NameService - Contains the details of a single user, their userID and name.
The IDL definitions for these data types are shown in the following code extract.

/*k\k*\k*********k\k*\k***

* Copyright (c) 2006 to 2018
* ADLINK Technology Limited
* All rights Reserved.

* LOGICAL_NAME: Chat.idl

x FUNCTION: Vortex OpenSplice Tutorial example code.

* MODULE : Tutorial for the Java programming language.
« DATE june 2006.

R RS S S S S S S S SEE RS SRS SRR R R R R R SRR R SRR EE R R R SRR RS SR RS SR RS SR RS S S S
x» This file contains the data definitions for the tutorial examples.
*kx/

module Chat {

const long MAX NAME = 32;
typedef string<MAX_NAME> nameType;

struct ChatMessage {

long userlD; // owner of message
long index; // message number
string content; // message body

}i
#pragma keylist ChatMessage userID

struct NameService {

9.2. Creating the Chatroom 65

Modeling Guide, Release 2.5.x

long userlD; // unique user identification
nameType name; // name of the user
}i

#pragma keylist NameService userID

struct NamedMessage {

long userlD; // unique user identification
nameType userName; // user name

long index; // message number

string content; // message body

i
#fpragma keylist NamedMessage userID

}i

9.2.3 Step 3: Create a Chat module

Create a Chat module for containing the Chatroom components.

1. Expand the model called model in the Project Explorer to show the default module. Right-click on the
default module to display the context menu. Choose the New Module option from the context menu.

2. In the New Module wizard:
a) Enter Chat into the Name field.
b) Click Finish when done.

The Chat module should now appear as a child node of the default module.

9.2.4 Step 4: Create the Topics

Create the ChatMessage_topic, NamedMessage_topic and NameService_topic (part of the Information Model)
that the Chatroom requires.

To create the ChatMessage_topic:

1. Expand the model called model in the Project Explorer to display the Chat module. Right-click the Chat
module to display the context menu. Choose the New Topic option from the context menu.

2. In the New Topic wizard:
a) Enter ChatMessage_topic into the Name field.

b) Click the Browse button adjacent to the Data Type text box; this opens the Data Type Selection dialog.
Navigate to the ChatMessage struct in the Chat module within the Chat model, then select the Chat struct,
then click the OK button to confirm.

¢) Click Finish when done.
The ChatMessage_topic should now appear as a child of the module under the default model.

Repeat these steps for the NamedMessage_topic and NameService_topic, but selecting the NamedMessage struct
or the NameService struct, respectively, in the Data Type Selection dialog.

The Tutorial project should now contain the Chat Model, Chat Module, structs and topics as shown in the illus-
tration below.

Tutorial’s Data Types and Associated Topics

9.2. Creating the Chatroom 66

Modeling Guide, Release 2.5.x

Eile Edit MNavigate Search Project Run Window Help
i~ RS i EdERR o B0
8%~ -0

[Project Explorer &3
4 [Tutorial
4 [J Chat
a B (default)
4 B Chat
[§= ChatMessage
P MAX_MAME
> MarmedMessage
=
> | Typedef nameType|
4 [J model
4 7 (default)
4 f# Chat
[ChatMessage_topic
> MarmedMessage_topic
[MarneService_topic
b [or] Chat.idl

T T

MameService

9.2.5 Step 5: Set the QoS policy values

Each DDS entity instance is automatically assigned a set of QoS policies, appropriately named the QoS Set. A
QoS Set contains only the policies which are appropriate for the particular entity instance’s type. A QoS Set’s
policy values are given pre-defined default values. These values can be changed using the QoS Set Editor.

A QoS policy consists of one or more properties, each property has a value. Strictly speaking, the value
should be referred to as a policy’s property value. However, for brevity, the term policy value is used here to mean
the policy’s property value.

The Topics associated with the NameService and ChatMessage information models will be used to demonstrate
how to set QoS policy values. The policies and their property values are:

Policy Values for the Chatroom Topics

Topic Name Policy Property: Value
ChatMessage_topic RELIABILITY Kind: RELIABLE
Lo Carainn fein DURABILITY Kind: TRANSIENT
T RELIABILITY Kind: RELIABLE
NamedMessage_topic RELIABILITY Kind: RELIABLE

A Note that NamedMessage_topic must have its QoS values set identically to ChatMessage_topic.
The Reliability policy’s Kind property will be changed to RELIABLE. To change this policy value:

1. Select ChatMessage_topic in the Project Explorer, then expand it to display its QoS Set component (dis-
played with the QoS icon &7 22%),

2. Select the QoS Set component.
3. Open the Vortex OpenSplice QoS Editor.
a) Double-click the QoS Set component
OR
b) Right-click the QoS Set component, then choose Splice QoS Set Editor from the pop-up menu.
The QoS Editor is shown below.

9.2. Creating the Chatroom 67

Modeling Guide, Release 2.5.x

QoS Editor’s Overview page

File Edit Navigate Search Project Run Window Help

b §= NemeService
b (@ Typedef nameType
4 1 model
4 [(default)
4 B Chat
Chathessage topic
Chathlessage
»
NemedMessage_topic
NemeService_topic

b [Chatidl

~ Imports

An ordered list of QoS sets which are imported into this QoS set.

& DefaultTopicQoSSet [1

@ History [:DefaultTopicQoSSet]

@ Latency Budget [:DefaultTopicQoSSet]
& Lifespan [:DefaultTopicQoSSet]

& Liveliness [:DefaultTopicQoSSet]

@ Ownership [:DefaultTopicQoSSet]

G Reliability [:Default TopicQoSSet]

@ Resource Limits [:Default TopicQoSSet]
@ Topic Data [:DefaultTopicQoSSet]

@ Transport Priority [:DefaultTopicQoSSet]

Show Default Policies

rHBO HfEesEERew By 0@ Gy
[*Project Explorer 3 & ¥ = O|[¢®*q0s 22 =8
4 & Tutorial (oo e ~ Resultant QoS Set ~
a [Chat General information about this QoS set. The QoS Policies provided by this QoS Set.
4 @B (default)
4 @ Chat Name: | QoS 4 Deadline [zDefaultTopicQoSSet]
b i ChatMessage Path: [xChataCl topicaioS G Destination Order [:DefaultTopicQoSSet]
b 4 MAX_NAME 4 Durability [::Default TopicQoSSet]
b IS NemedMessage Parent: | C} - topic 4 Durability Service [z DefaultTopicQoSSet]

Overview| Values| Imports|

@ Problems 62 . I Properties|

ﬂ The QoS Editor consists of three pages, Overview, Values and Imports, which are accessed by using the tabs
located along the bottom of the editor’s window.

4. Choose the Values tab to display the Edit QoS Policy Values page. The screen contains:

* QoS Policies list - users can alter the property values of the policies which appear in this list

* Resultant QoS Set - lists all QoS policies for the entity which this QoS Set is assigned to

ﬂ The Show Default Values check box, located below the Resultant QoS Set, enables policies and their
default values to be shown in the list when the check box is set.

5. Click the Add button adjacent to the list; this displays the New QoS Policy dialog.

Select Reliability from the drop-down list; this will add the policy to the QoS Policies list.

ﬂ The dialog’s drop-down list contains only the policies which are appropriate for the entity. For example, this
QoS Set is assigned to a Topic entity, therefore only the policies which are appropriate for a Topic appear in the

list.

The Reliability policy should appear in the QoS Policies as shown in the illustration below.

QoS Editor and Reliability Policy’s Property Value

9.2. Creating the Chatroom

68

Modeling Guide, Release 2.5.x

Flle Edit Mavigate Search Project Run Window Help

H-ORE HEAEBEXEBSRe M G- R P R o
[*Project Explorer 12 & ¥ = O|(g®qos 52
e Edit QoS Policy Values
i (defoult = QoS Policied + Resultant QoS Set
i Chat The oS Policies specified in this QoS Set. The oS Palicies provided by this oS Set.
IS ChatMessage
& MAX_NAME @ Reliability Add.. 4 Deadline [::DefaultTopicQoSSet]
P Destination Order [:DefsultTopicQoSSet]
i= NamedMessage S
= R G Durability [:DefaultTopicQoSset]
(3) Typedef nameType @ Durability Service [:DefaultTopicQoSSet]
@ model i) & History [:DefaultTopicGoSSet]
B8 (default) & Latency Budget [:DefaultTepicQoSSet]
8 Chat & Lifespan [:DefaultTopicQoSSet]
ChatMessage_topic G Liveliness [zDefaultTopicQoSSet]
IE ChathMessage @ Ownership [:DefaultTopicQosSet]
QDS . @ Reliability
> Imports § Resource Limits [:DefaultTopicQoSSet]
@ Deadline § Topic Data [xDefault TopicQoSSet]
& Destination Order @ Transport Priority [:DefaultTopicQoSSet]
@ Durability
@ Durability Service
® History
@ Latency Budget
@ Lifespan = Reliability Value
@ Liveliness Edit the value of the selected QoS Palicy.
& Ounership
@ Reliability Kind: [RELIABLE v|
@ Resource Limits Max Blocking Time: | 100000000 | ns
@ Topic Data
@ Transport Priority
NamedMessage topic
NameService topic
Chatidl

Overview | Values [Imports|

6. Select Reliability from the QoS Policies list; a Reliability Values screen will be displayed in the lower left-
hand corner of the page. The Reliability Details screen enables the property values for the selected QoS
policy to be changed.

Set the Kind value to RELIABLE. The Resultant QoS Set will be updated automatically to show the new
QoS policy value (see QoS Editor and Reliability Policy’s Property Value).

ﬂ Clear the Show Default Values check box to hide or show the policy values which are inherited from
Default QoS Set’s. The value will always be shown if the policy value has been added to a non-default
imported set or the current set.

7. Save the changes (using File > Save or [Ctrl]+[S]). Close the QoS Editor by clicking on the X in the QoS
tab located at the top of the editor.

Repeat the above steps to set the NamedMessage_topic‘s Reliability and Durability policies, plus the NameSer-
vice_topic‘s Reliability policy as shown in the table Policy Values for the Chatroom Topics.

9.2.6 Step 6: Create the ChatRoom Partition

The ChatRoom partition is used to ensure that only topics published to that partition are received by the system’s
subscribers; all other topics are ignored. This allows other applications to publish and subscribe to the same topics
without interfering with the ChatRoom applications.

Right-click the Chat module and choose New Partition. Change both the Name and Partition name fields to read
ChatRoom.

Click Finish and the ChatRoom partition will be added to the Chat module.

9.2.7 Step 7: Create the Application Models

Add required entities using the Project Explorer and Diagram Editor, then model the Chatroom’s ChatterApplica-
tion, MessageBoardApplication and UserLoadApplication applications. All applications should be created within
the Model called model.

9.2. Creating the Chatroom 69

Modeling Guide, Release 2.5.x

ﬂ The steps given below generally use the Project Explorer to add entities, although entities can also be added
using the Diagram editor.

1. A Vortex OpenSplice Modeler Application component represents an executable application.
To add an Application component that represents the Chatroom’s ChatterApplication application:

a) Right-click on the Chat module in the Project Explorer, then choose New Application from the pop-up
dialog; this will display the New Splice Application dialog.

b) Enter ChatterApplication into the Name text box.

c¢) Click the Finish button. The new ChatterApplication Application component should appear in the Project
Explorer under the Chat module.

d) Save the changes.

2. DomainParticpants provide connections to information. To add a DomainParticpant to the ChatterApplica-
tion:

a) Right-click on the ChatterApplication in the Project Explorer, then choose New Domain Participant from
the pop-up dialog; this will display the New Domain Participant dialog.

b) Enter Participant in the Name text box; this will be the DomainParticipant’s name.

¢) Click the Finish button. The new Participant component should appear in the Project Explorer under the
ChatterApplication application.

d) Save the changes (as before, use File > Save or [Ctrl]+[S]).
3. Diagram components are used to model the applications. To add a diagram component to the project:
a) Choose File > New > Diagram from the Eclipse menu; this opens the New Splice Diagram dialog.

b) Click the Browse button adjacent to the Module text box; this opens the Select Module dialog. Navigate
to and select the Chat module, then click the OK button.

¢) Enter ChatDiagram into the Name text box; this will be the diagram’s name.

d) Click the Finish button. The new ChatDiagram component should appear in the Project Explorer under
the Chat module.

4. Add the remaining entities using the Diagram Editor and ChatDiagram.

a) Double-click on the ChatDiagram component OR right-click it and choose Edit Diagram in the pop-up
dialog; this opens ChatDiagram in the Diagram Editor.

ﬂ The Diagram Editor’s tool palette appears on the left-hand side of the editor. This palette can be used
to add the entities to the project.

Entities which have been added to the project, but do not appear in the diagram can be placed in the diagram
by locating the entity in the Project Explorer, then dragging the entity into the Diagram Editor’s canvas area
(the large area located to the right side of the palette, in central area of the Eclipse Workbench).

b) Locate the ChatterApplication component in the Project Explorer, then drag ? it to the Diagram Editor’s
canvas; a rectangular box should appear with ChatterApplication name displayed in the top section of the
box. The Application box symbol is used as a container for other entities.

ﬂ Symbols and containers can be moved or resized by selecting the container then, respectively, clicking
and dragging inside the container or clicking a control point (the small, solid boxes located along the con-
tainer’s perimeter and corners) then dragging it until the desired size is achieved, then releasing the mouse
button.

ﬂ The view of the Diagram’s canvas can be zoomed in or out using View > Zoom In or Zoom Out, OR by
using the [Ctrl]+[=] or [Ctrl]+[-] shortcut key combinations.

3 Using the mouse, left-click on the component, drag it to the desired location, then release the mouse button.

9.2. Creating the Chatroom 70

Modeling Guide, Release 2.5.x

Move the ChatterApplication container to the upper left-hand corner of the diagram canvas; this is to provide
space in the canvas to add other entities.

Save the project.

¢) Choose the Publisher tool from the Diagram Editor’s tool palette. Drag the Publisher tool to the Par-
ticipant container; a new Publisher symbol, called Publisherl, should appear inside Participant. Rename
Publisherl to Publisher by right-clicking on the Publisher] symbol, choosing Rename on the pop-up dialog
which opens, then changing the name in the Rename Vortex OpenSplice Object dialog.

d) A DataWriter must be added to Publisher. Choose the DataWriter tool, then drag it to Publisher; new
DataWriter symbols should appear in Publisher.

e) Save the project.
The ChatDiagram should now appear as shown below.

Initial ChatDiagram and Chatter

(u;} ChatDiagram &3 . = El]
[Select
"1 Marquee
\ Connection Tool - ChatterApplication
[= DDSElements < -gf Participant
[&] Application m
<> Partition
@ Participant
|| Topic

|55 Content Filtered
Topic

27 DataWriter

& DataReader

B Publisher

4 Subscriber

5 Listener

(L) WaitSet

OC['Q StatusCondition
g GuardConditicn
5"@ ReadCondition
£ QueryCondition

5. The Chatroom’s Topics, ChatMessage_topic and NameService_topic, need to be associated with Publisher.
Topics communicate with Publishers and Subscribers through DataWriters and DataReaders, respectively.

a) Drag the ChatMessage_topic and NameService_topic from the Project Explorer to a free area of the
ChatDiagram canvas.

b) Choose the Connection Tool N located in the Diagram Editor’s tool palette.

c) Click on the ChatMessage_topic symbol, drag the cursor to the DataWriter symbol in Publisher, then
release the mouse button; a connection line, with an arrow pointing to the ChatMessage_topic, will be
created. Rename the DataWriter to ChatMessageDataWriter (right-click on the DataWriter symbol, choose
Rename in the pop-up dialog, then change the name in the Rename Vortex OpenSplice Object dialog).

d) Click on the NameService_topic symbol, drag the cursor to Publisher - not to the DataWriter symbol -
then release the mouse button; a new DataWriter will be created in Publisher and a line will connect it with
the NameService_topic. Rename the new DataWriter as NameServiceDataWriter.

ﬂ DataWriters and DataReaders are created automatically when dragging the Topic Connection Tool
cursor from Topic to Publisher or Subscriber symbols.

e) Add the ChatRoom Partition using the Partition tool, then connect it to Publisher using the Partition
Connection Tool.

f) Save the project. The ChatDiagram should appear as shown below.

ChatterApplication with Connected Topics

9.2. Creating the Chatroom 71

Modeling Guide, Release 2.5.x

K-.‘:“u ChatDiagram 3
[% Select

roq
L.+ Marquee

\ Connection Tool - ChatterApplication | ChatMessage_topic
I = 3 :|
(= DDS Elements < - @ Participant

Applicatiun

<&> Partition & Publisher 4

© Participant

|5 Topic
|5 Content Filtered
Topic

£ DataWriter

&d” DataReader

B> Publisher

4@ Subscriber

i Listener
WaitSet

@ StatusCondition
g GuardCondition
5"@ ReadCondition
44 QueryCondition

6. The Application models for the MessageBoardApplication and UserLoadApplication programs need to be
added to the project, along with their related entities and connections. The instructions given in the previous
steps and sub-steps can be used as a guide to adding the entities and connections.

a) For the MessageBoardApplication, add an Application component called MessageBoardApplication to
the Chat module and DomainParticipants called Participant and PrivateParticipant to the MessageBoard-
Application Application.

PrivateParticipant is used to simulate a multi-topic * . The PrivateParticipant subscribes to ChatMes-
sage_topic and NameService_topic, as well as re-publishing them as a NamedMessage.

ﬂ The view of the Diagram’s canvas can be zoomed out to provide more visible space using View > Zoom
Out or by using the [Ctrl]+[-] shortcut key combination. Also, when the diagram is larger than the visible
part of the canvas, the visible part can be moved by selecting the Outline view, then dragging the light-blue
transparent rectangle (which represents the visible part of the canvas) until the required part of the diagram
is visible.

Drag MessageBoardApplication into the ChatDiagram.

The message board application ignores messages from its own user. In order to perform message filtering,
a Content Filtered Topic will be used to filter out messages with a particular userID.

A Content Filtered Topic is added to a diagram by choosing the Content Filtered Topic Tool from the
Tool palette, then dragging and dropping it onto the diagram. A wizard dialog will then open. Enter
NamedMessageFilteredTopic as the name. Select ::Chat as the module. Choose the related topic
by clicking the Browse button beside the Topic field. Set the related topic to NamedMessage_topic in the
::Chat module. Finally, enter userID <> %0 as the Filter Expression.

Drag the NamedMessage_topic, ChatMessage_topic and NameService_topic into the ChatDiagram from
the Project Explorer.

Add a Subscriber instance to the Participant, rename it to Subscriber (right-click on its symbol, choose Re-
name and change the name in the Rename Vortex OpenSplice Object dialog), then create a connection from
the NamedMessage_topic to the Participant’s Subscriber instance (the connection will be linked through a
DataReader). Rename this DataReader to NamedMessageDataReader.

Connect the Subscriber entity to the ChatRoom Partition.

Add a Subscriber to the PrivateParticipant and rename it as Subscriber. Connect this Subscriber to the
NameService_topic, renaming the created DataReader to NameServiceDataReader. Connect the Subscriber
to the ChatMessage_topic, again renaming the created DataReader to ChatMessageDataReader.

4 Vortex OpenSplice Modeler does not currently support multi-topics.

9.2. Creating the Chatroom 72

Modeling Guide, Release 2.5.x

Next, add a Publisher named Publisher to the PrivateParticipant. Connect this Publisher to the NamedMes-
sage_topic, renaming the created DataWriter to NamedMessageDataWriter.

Next, connect both the Subscriber and the Publisher to the ChatRoom partition using the Partition Connec-
tion Tool.

Listeners need to be added to the MessageBoardApplication application in order to listen for new messages.
Add a listener by choosing the Listener Tool from the Diagram Editor’s Tool palette. Drop a listener into the
MessageBoardApplication application. Rename the listener as NamedMessageDataReaderListener. Con-
nect the listener to the NamedMessageDataReader located inside the Participant’s Subscriber symbol by
using the Listener Connection Tool.

Add a second listener. Rename this listener as ChatMessageDataReaderListener. Connect this listener to
the ChatMessageDataReader located in the PrivateParticipant’s Subscriber.

The status mask must now be set on both listeners.

Select each listener in turn. In the Properties View, expand the Status Mask section, then set the
DATA_AVAILABLE status to True using the drop-down list.

b) For the UserLoadApplication, add an Application called UserLoadApplication to the Chat module and a
DomainParticipant called Participant to the UserLoadApplication.

Drag UserLoadApplication into the ChatDiagram.

Add a Subscriber instance, to be named Subscriber, to the Participant, create connections from the
ChatMessage_topic and NameService_topic to the Participant’s Subscriber instance (the connection will
be linked through DataReaders). Rename the DataReaders to be ChatMessageDataReader and Name-
ServiceDataReader, respectively. Edit the QoS Set associated with the ChatMessageDataReader. Add a
History policy to the set, changing the kind to KEEP_ALL.

In the ChatDiagram, drag a WaitSet and place it into the UserLoadApplication application.
Right-click the WaitSet figure and rename it to UserLoadWaitSet.

Drag a GuardCondition into the application. Rename it to GuardCondition.

Choose the Connection Tool and connect the GuardCondition to the UserLoadWaitSet.

Drag a StatusCondition object into the application. Rename the StatusCondition object to StatusCondition
and connect it to the UserLoadWaitSet.

Choose the Connection Tool again and connect the ChatMessageDataReader to the newly-created Status-
Condition object.

Drag a ReadCondition object into the application. Rename the ReadCondition object to ReadCondition and
connect it to the UserLoadWaitSet and the NameServiceDataReader.

Drag a QueryCondition into the application. Rename it to QueryCondition and connect it to the UserLoad-
WaitSet as well as to the ChatMessageDataReader.

Open the QueryCondition’s Properties dialog to set the filter expressions. Click on the arrow next to Query
Expression to display the properties for the expression. Nexrt, click on the Sub Query Expression; this
displays a button. Click the button and enter "userID=%0" in the Expression text box. Click the OK
button to finish.

Set the state masks for the Query and ReadCondition as well as the status mask for the StatusCondition as
shown in the table below.

Condition States

9.2. Creating the Chatroom 73

Modeling Guide, Release 2.5.x

Mask | Name | Value
StatusCondition

Status Mask | LIVELINESS_CHANGED_STATE | True
QueryCondition

Instance State Mask ANY_INSTANCE_STATE True
Sample State Mask ANY_SAMPLE_STATE True
View State Mask ANY_VIEW_STATE True
ReadCondition

Instance State Mask ALIVE_INSTANCE_STATE True
Sample State Mask NOT_READ_SAMPLE_STATE True
View State Mask NEW_VIEW_STATE True

Finally, connect the Subscriber to the ChatRoom Partition and save the project.

The ChatDiagram and the Chatroom Application model are now complete. The entities and connections should
appear in the ChatDiagram as shown in the following illustration.

Chatroom Application Model

C:“n *ChatDiagram &4

:uﬁ]

% Select

{:i Marquee

"\, Connection Tool
= DDS Elements <

[&] Application

<i> Partition

@ Participant

[E=] Topic

|5 Content Filtered
Topic

/' DataWriter

& DataReader

B Publisher

4@ Subscriber

o Listener
WaitSet

éj StatusCondition
= GuardCondition
5"@ ReadCondition
& QueryCondition

B Chato

ChatRogm

dm
9

- [&) UserLoadApplication

- @ Participant

bscriber.”

- [&] ChatterApplication

- @ Participant

£+ Publisher

. - = MessageBoardApplication

Tl -, @ PrivateParticipant,

¥ ChatMessage_topic

|i| MameService topic

|57 NamedMessageFilteredTopic

p—F]
@ 5u b?criber

‘ o Ch_atMessageData ReaderListener

‘ a0 Name‘d‘MEssageDataReaderListener
R\
- @ Paicipant

h \
—]
41 Subscriber

|| MamedMessage _topic

9.2.8 Step 8: Generate the source code

Generate the DDS-related source code from the application and information models.

A Vortex OpenSplice must be installed and configured on the system in order to generate the source code.

9.2. Creating the Chatroom

74

Modeling Guide, Release 2.5.x

The source code for the applications can be generated by right-clicking on the Chat module within the Chat model
in the Tutorial project, then choosing Export Module from the context menu. The Export Wizard dialog should be
displayed. Perform the following:

1. The Project Name text box contains the name of the exported project. Enter a project name in the text box.
2. Choose the desired target language from the Target Language drop-down menu.
3. Click the Finish button to accept the options and generate the source code.

Three additional projects should be generated. The default values for the project name in the Export Wiz-
ard are: ChatterApplication, UserLoadApplication and MessageBoardApplication. Each
project will contain two source folders, src and generated. The src folders are for user-written code and the
generated folders contain the code generated by the Modeler.

In addition, a required jar file from Vortex OpenSplice, which contains the DDS Java libraries, are automatically
added to each project’s build path. The added jar file is and dcpssaj. jar.

9.2.9 Step 9: Implement the applications’ business logic

Implement the Chatter, Message Board and User Load applications’ business logic.

The generated code simplifies development work through the creation of entities and by establishing the correct
QoS values.

Java Implementation

The only Java files that users need to reference from their manually written code are located in the Chat package
within a source folder called generated. The simplest way to access these generated files is to declare the
import Chat. « in their Java code:

import Chat. *;

Each application is represented by a single class. These are:
* ChatterApplication
e UserLoadApplication
* MessageBoardApplication

The application and its contained entities are set up by statically calling the start () method on the application
classes. For example:

ChatterApplication.start ();

Contained entities can then be retrieved from the application using get = () methods. For example, the following
call would be made to retrieve the ChatMessageDataWriter from the Chatter application:

ChatMessageDataWriter talker =
ChatterApplication.Participant.Publisher.
ChatMessageDataWriter.getDataWriter () ;

Users should develop their application code in a chatroom module located in the relevant
project’s src folder. It is suggested, for this tutorial example, using Chatter.java,
MessageBoard. java, UserlLoad.java, ChatMessageDataReaderListenerImpl.java and
NamedMessageDataReaderListenerImple. java as the program names.

The code for these programs, as well as a ErrorHandler. java utility class, is located in the Chatroom
example project and in Appendix A: Chatroom Example Java Source Code.

9.2. Creating the Chatroom 75

Modeling Guide, Release 2.5.x

C++ Implementation

C++
The only C++ files that users need to reference from their manually written code are located in the Chat namespace
within the source folder called generated.

For all entities in the model, only the generated abstract base classes (xWrapper . h) should be included in the
business logic. The only exception is the application wrapper implementation header which needs to be included
when the application wrapper must be instantiated. These implementation headers are:

#include "Chat/ChatterApplicationWrapperImplementation.h"
#include "Chat/ChatterApplication/MyAppDPWrapper.h"
#include "Chat/ChatterApplication/MyAppDP/MyPublisherWrapper.h"
Each application is represented by a single class. These are:
* ChatterApplication
* UserLoadApplication
* MessageBoardApplication

The application and its contained entities are instantiated by calling the start () method on an application
instance. For example:

Chat::ChatterApplicationWrapper* chatApp = new
Chat::ChatterApplicationWrapperImplementation;
chatApp->start ();

Contained entities can then be retrieved from the application using get <entity_name>Wrapper () methods.
For example, the following call would be made to retrieve the publisher from the ChatterApplication:

DDS:Publisherx publisher =
chatApp->getParticipantWrapper () —>
getPublisherWrapper () —>getPublisher () ;

Users should develop their application code in a chatroom module located in the rele-
vant project’s src folder. It is suggested, for this tutorial example, using Chatter.cpp,
MessageBoard. cpp, UserLoad.cpp, ChatMessageDataReaderListenerImpl.cpp and
NamedMessageDataReaderListenerImple.cpp as the program names.

The code for these programs is located in the Chatroom C++ example project in Appendix B: Chatroom Example
C++ Source Code.

9.2.10 Step 10: Compile the code

Vortex OpenSplice Modeler is configured to automatically compile and build the code in a user’s workspace: users
do not need to do anything to compile their code, plus real-time feedback about errors is automatically provided.

ﬂ It is suggested the default Eclipse setting for automatic building is retained (in other words, enabled).

However, the automatic building can be disabled, if desired, by clicking the Project menu and then de-selecting
the Build Automatically option.

When automatic building is disabled the Project can then be built by choosing Clean. .. from the Project menu.
Projects are rebuilt after they are cleaned. A dialog is shown for cleaning all projects or selected projects.

9.2. Creating the Chatroom 76

Modeling Guide, Release 2.5.x

9.2.11 Step 11: Run and test the Chatroom application

The Vortex OpenSplice daemon must be started before running Vortex OpenSplice applications in Eclipse. The

daemon can be started, as well as stopped, using the HDE icon’s drop-down menu ¥ located on the Eclipse
Icon Bar.

ﬂ Starting an Vortex OpenSplice daemon is only required when running a Shared Memory Deployment.
For more details about starting OpenSplice, please see the OpenSplice Deployment Guide.

The HDE icon drop-down menu contains:
e Start OSPL - starts the daemon - note no feedback given
* Stop OSPL - stops the daemon - note no feedback given
* Run Tuner - launches the Vortex OpenSplice Tuner
* Run Configurator - launches the Vortex OpenSplice configurator

After the daemon is started each application can run by right-clicking on the Java or C++ class in the Project
Explorer (for example Chatter. java or Chatter. cpp), choosing Run As > Vortex OpenSplice Java Appli-
cation or Run As > Vortex OpenSplice Local C++ Application. The output of the application is displayed in the
console.

It is suggested that, for this example, MessageBoard is run first, followed by UserLoad and finally Chatter
in order for the applications to correctly interact.

Each application is run in its own console. The Console View, located at the bottom of the Eclipse screen, has a
button for selecting the active console.

The daemon should be shut down when finished running the applications by using the tool bar button and drop-
down menu.

Application Output

The output of each application should be as shown below:

Chatter

Writing message: "Hi there, I will send you 10 more messages."
Writing message: "Message no. 1"
Writing message: "Message no. 2"
Writing message: "Message no. 3"
Writing message: "Message no. 4"
Writing message: "Message no. 5"
Writing message: "Message no. 6"
Writing message: "Message no. 7"
Writing message: "Message no. 8"
Writing message: "Message no. 9"
Writing message: "Message no. 10"

MessageBoard

MessageBoard has opened: send a ChatMessage with userID = -1
to close it....

Chatterl: Hi there, I will send you 10 more messages.
Chatterl: Message no. 1

Chatterl: Message no.
Chatterl: Message no.
Chatterl: Message no.
Chatterl: Message no.
Chatterl: Message no.
Chatterl: Message no.
Chatterl: Message no.

QO J oy U b W

9.2. Creating the Chatroom 77

Modeling Guide, Release 2.5.x

Chatterl: Message no. 9
Chatterl: Message no. 10

Termination message received: exiting...

UserLoad

New User: Chatterl
Departed user Chatterl had sent 11 messages.
UserLoad has terminated.

9.2. Creating the Chatroom 78

10

Appendix A

This appendix contains the example, user-written Java source code included with the Vortex OpenSplice Modeler
Chatroom example. The Chatroom system is the example used in the Tutorial.

The source code is given in the following order:
Chatter Application
MessageBoard Application
UserLoad Application

Error Handler

10.1 A Chatroom Example, Java Source Code

10.1.1 Chatter Application

ChatterApplication. java

/***
* Copyright (c) 2012 to 2018 ADLINK Technology Limited. All rights Reserved.
* LOGICAL NAME: ChatterApplication. java

* FUNCTION: Vortex OpenSplice Modeler Tutorial example code.
* MODULE : Tutorial for the Java programming language.
+ DATE: January 2012.

L b i b b i b b i b e S b e S i b b b b b i b b b b i b b e b i i b b e b b S b b b b b b i b b b b g b b b b b i b b b b i

* This file contains the implementation for the ’Chatter’ executable.

**/
package Chat;

import Chat.ChatMessage;

import Chat.ChatMessageDataWriter;

import Chat.NameService;

import Chat.NameServiceDataWriter;

import Chat.ChatterApplicationWrapper;

import Chat.ChatterApplicationWrapper.WrapperException;
import DDS.HANDLE NIL;

public class ChatterApplication
{
public static final int NUM_MSG = 10;
public static final int TERMINATION_MESSAGE = -1;

public static void main (String[] args)

79

Modeling Guide, Release 2.5.x

try

{
/+ Initialize the application */
ChatterApplicationWrapper.start ();

}

catch (WrapperException e)

{
System.out.println ("Error while starting the application:");
System.out.println (e.getReason ());
return;

/* Type-specific DDS entities #*/

ChatMessageDataWriter talker =
ChatterApplicationWrapper.ParticipantWrapper.PublisherWrapper.
ChatMessageDataWriterWrapper
.getDataWriter ();

NameServiceDataWriter nameServer =
ChatterApplicationWrapper.ParticipantWrapper.PublisherWrapper.
NameServiceDataWriterWrapper
.getDataWriter ();

/% DDS Identifiers =/
long userHandle;
int status;

/+* Sample definitions x/
ChatMessage msg = new ChatMessage () ;
NameService ns = new NameService ();

/% Others */
int ownID = 1;
String chatterName;

/* Options: Chatter [ownID [name]] */
if (args.length > 0)
{

ownID = Integer.parselnt (argsl[0]);
}
if (args.length > 1)
{

chatterName = args[1l];
}
else
{
chatterName = "Chatter" + ownID;

/% Initialize the NameServer attributes =*/

ns.userID = ownID;
ns.name = chatterName;
/%

* Write the user—-information into the system
* (registering the instance implicitly)

*/
status = nameServer.write (ns, HANDLE_NIL.value);
ErrorHandler.checkStatus (status, "Chat.NameServiceDataWriter.write");

/#* Initialize the chat messages */

10.1. A Chatroom Example, Java Source Code 80

Modeling Guide, Release 2.5.x

msg.userID = ownID;

msg.index = 0;
if (ownID == TERMINATION_MESSAGE)
{
msg.content = "Termination message.";
}
else
{
msg.content = "Hi there, I will send you " + NUM_MSG + " more messages.";
}
System.out.println ("Writing message: \"" + msg.content + "\"");
/ *

* Register a chat message for this user (pre—-allocating resources for
* it!!)
*/

userHandle = talker.register_instance (msg);

/* Write a message using the pre—-generated instance handle =/
status = talker.write (msg, userHandle);
ErrorHandler.checkStatus (status, "Chat.ChatMessageDataWriter.write");

/+* Write any number of messages */
for (int i1 = 1; i <= NUM_MSG && ownID != TERMINATION_MESSAGE; i++)
{

try

{

Thread.sleep (1000); /* do not run so fast! */
}
catch (InterruptedException e)

{

e.printStackTrace ();
}
msg.index = 1i;
msg.content = "Message no. " + 1i;
System.out.println ("Writing message: \"" + msg.content + "\"");

status = talker.write (msg, userHandle);
ErrorHandler.checkStatus (status, "Chat.ChatMessageDataWriter.write");

/#* Unregister the message instance for this user explicitly */

status = talker.dispose (msg, userHandle);
ErrorHandler.checkStatus (status, "Chat.ChatMessageDataWriter.dispose");
status = talker.unregister_instance (msg, userHandle);

ErrorHandler.checkStatus (status,
"Chat .ChatMessageDataWriter.unregister_instance");

/+ Leave the room */
status = nameServer.unregister_instance (ns, HANDLE_NIL.value);
ErrorHandler.checkStatus (status, "Chat.NameServiceDataWriter.dispose");

try
{
/+ Stop the application #*/
ChatterApplicationWrapper.stop ();
}
catch (WrapperException e)
{

System.out.println ("Error while stopping the application:");
System.out.println (e.getReason ());
return;

10.1. A Chatroom Example, Java Source Code

81

Modeling Guide, Release 2.5.x

10.1.2 MessageBoard Application

MessageBoardApplication. java

/**
*
+ Copyright (c) 2012 to 2018
* ADLINK Technology Limited
+ All rights Reserved.

* LOGICAIL_NAME: MessageBoardApplication. java

* FUNCTION: Vortex OpenSplice Modeler Tutorial example code.
* MODULE : Tutorial for the Java programming language.

* DATE January 2012.

ER R e e b b b b b b b b i b b b b b b b b b b b b b b e b b b e b b b b b b b b b b e b b e b b g b b i b i
*

* This file contains the implementation for the ’"MessageBoardApplication’
* executable.

*

* %k /)
package Chat;

import Chat.NamedMessageFilteredTopicWrapper;
import Chat.MessageBoardApplicationWrapper;
import Chat.MessageBoardApplicationWrapper.WrapperException;

public class MessageBoardApplication extends Thread
{
public static void main (String[] args)
{
/+ DDS Identifiers x/
String ownID = "0";

/* Options: MessageBoard [ownID] #*/

/% Messages having owner ownID will be ignored #*/
if (args.length > 0)

{

ownID = args[0];

/+ Initialize the content filtered topics expression parameters */
try
{
NamedMessageFilteredTopicWrapper.setExpressionParameters (new Stringl]
{
ownID
P
}
catch (NamedMessageFilteredTopicWrapper.WrapperException e)
{
System.out.println (
"Exception occurred while setting the expression parameters:");
System.out.println (e.getReason ());
return;

10.1. A Chatroom Example, Java Source Code 82

Modeling Guide, Release 2.5.x

/+ Initialize the application #*/

try

{
MessageBoardApplicationWrapper.start ();

}

catch (WrapperException e)

{
System.out.println ("Exception occurred while starting

the application:");

System.out.println (e.getReason ());
return;

/+ Create the listeners for the MessageBoard application #*/
ChatMessageDataReaderListenerImpl chatMessageDataReaderListener =
new ChatMessageDataReaderListenerImpl ();

NamedMessageDataReaderListenerImpl namedMessageDataReaderListener =
new NamedMessageDataReaderListenerImpl ();

/+ Print a message that the MessageBoard has opened. */
System.out.println (

"MessageBoard has opened: send ChatMessage with userID = -1 to close it.");
System.out.println ();

try
{
/+ Attach the ChatMessageDataReaderListener to the
ChatMessageDataReader =/
MessageBoardApplicationWrapper.PrivateParticipantWrapper
.SubscriberWrapper.ChatMessageDataReaderWrapper.attach (
chatMessageDataReaderListener) ;

/%
* Attach the NamedMessageDataReaderListener to the
* NamedMessageDataReader
*/
MessageBoardApplicationWrapper.ParticipantWrapper.SubscriberWrapper.
NamedMessageDataReaderWrapper.attach (namedMessageDataReaderListener);

}
catch (WrapperException e)
{
System.out.println ("Exception occured while attaching a listener:");
System.out.println (e.getReason ());
try
{
MessageBoardApplicationWrapper.stop ();
}
catch (WrapperException eStop)
{
System.out.println ("Exception occured while stopping application:");
System.out.println (eStop.getReason ());
}

return;

/* Wait for the ChatMessageDataReaderListener to finish x/
while (!chatMessageDataReaderListener.isTerminated ())
{

/%

* Sleep for some amount of time, as not to consume too much CPU

10.1. A Chatroom Example, Java Source Code 83

Modeling Guide, Release 2.5.x

* cycles.

*/
try
{

Thread.sleep (1000);

}
catch (InterruptedException e)
{

e.printStackTrace ();

/* Wait for the NamedMessageDataReaderListener to finish */
while (!namedMessageDataReaderListener.isTerminated ())
{
/%
* Sleep for some amount of time, as not to consume too much CPU
* cycles.
*/
try
{
Thread.sleep (1000);
}
catch (InterruptedException e)
{

e.printStackTrace ();

/#* Print a message that the MessageBoard has terminated */
System.out.println ("Termination message received: exiting...");

try
{
/+ Detach the ChatMessageDataReaderListener to ChatMessageDataReader */
MessageBoardApplicationWrapper.PrivateParticipantWrapper
.SubscriberWrapper.ChatMessageDataReaderWrapper.detach (
chatMessageDataReaderListener) ;

/%
* Detach the NamedMessageDataReaderListener to the
* NamedMessageDataReader
*/
MessageBoardApplicationWrapper.ParticipantWrapper.SubscriberWrapper.
NamedMessageDataReaderWrapper.detach (namedMessageDataReaderListener);
}
catch (WrapperException e)
{

System.out.println ("Exception occurred while detaching the listeners:");
System.out.println (e.getReason ());

/* Cleanup listener */
chatMessageDataReaderListener.cleanup ();

/* Stop the application x/
try
{
MessageBoardApplicationWrapper.stop ();
}
catch (WrapperException e)
{

System.out.println ("Exception occurred while stopping application:");

10.1. A Chatroom Example, Java Source Code 84

Modeling Guide, Release 2.5.x

System.out.println (e.getReason ());

ChatMessageDataReaderListenerlmpl.java

ChatMessageDataReaderListenerImpl. java

/**

*

*

*

*

*

*

Copyright (c) 2012 to 2018 ADLINK Technology Limited. All rights Reserved.
LOGICAI_NAME: ChatMessageDataReaderListenerImpl. java

FUNCTION: Vortex OpenSplice Modeler Tutorial example code
MODULE : Tutorial for the Java programming language
DATE: January 2012

This file contains the implementation for the ’MessageBoard’ executable

** /)

package Chat;

import Chat.ChatMessageDataReader;

import Chat.ChatMessageSeqHolder;

import Chat.NameServiceDataReader;

import Chat.NameServiceSegHolder;

import Chat.NamedMessage;

import Chat.NamedMessageDataWriter;

import DDS.ANY_ INSTANCE_STATE;

import DDS.ANY SAMPLE_STATE;

import DDS.ANY VIEW_ STATE;

import DDS.DataReader;

import DDS.HANDLE NIL;

import DDS.LENGTH_UNLIMITED;

import DDS.QueryCondition;

import DDS.RETCODE_NO_DATA;

import DDS.ReadCondition;

import DDS.SampleInfoSeqHolder;

import Chat.MessageBoardApplicationWrapper;
import Chat.MessageBoardApplicationWrapper.ChatMessageDataReaderListener;

public class ChatMessageDataReaderListenerImpl extends
ChatMessageDataReaderListener

{

private static final int TERMINATION_MESSAGE = -1;
private boolean isTerminated;

/% Generic DDS entities x/
private QueryCondition nameFinder;

private ReadCondition newMessages;

/+ Type-specific DDS entities x/
private ChatMessageDataReader chatMsgReader;

private NameServiceDataReader nameServiceReader;
private NamedMessageDataWriter namedMessageWriter;

private ChatMessageSegHolder chatMsgSeq;

10.1. A Chatroom Example, Java Source Code 85

Modeling Guide, Release 2.5.x

private SampleInfoSeqgHolder chatMsgInfoSeq;
private NameServiceSegHolder nameServiceSeq;
private SampleInfoSegHolder nameServiceInfoSeq;

/# Others #*/
private String nameFinderExpr;

private String[] nameFinderParams;
private String userName;
private int previousID;

/* DDS Identifiers */
private int status;

/* Sample definitions #*/
NamedMessage namedMsg;

public ChatMessageDataReaderListenerImpl ()
{

/+ Initialize termination flag */
setTerminated (false);

/+* Type-specific DDS entities */

chatMsgReader = MessageBoardApplicationWrapper.PrivateParticipantWrapper
.SubscriberWrapper.ChatMessageDataReaderWrapper.getDataReader
nameServiceReader = MessageBoardApplicationWrapper.PrivateParticipantWrapper
.SubscriberWrapper.NameServiceDataReaderWrapper.getDataReader

namedMessageWriter = MessageBoardApplicationWrapper

.PrivateParticipantWrapper.PublisherWrapper.NamedMessageDataWriterWrapper

.getDataWriter ();
chatMsgSeq = new ChatMessageSegHolder () ;
chatMsgInfoSeq = new SampleInfoSegHolder () ;
nameServiceSeq = new NameServiceSegHolder () ;
nameServiceInfoSeq = new SampleInfoSeqHolder ();

/* Others #*/

nameFinderExpr = "userID = %0";
nameFinderParams = new String|]
{

IIO"
}i
userName = "";
previousID = -1;

/* Sample definitions x/
namedMsg = new NamedMessage () ;

J *

* Create a QueryCondition that will look up the userName for a

* specified userID
*/

nameFinder = nameServiceReader.create_querycondition (

ANY_SAMPLE_STATE.value, ANY_VIEW_STATE.value, ANY_INSTANCE_STATE.value,

nameFinderExpr, nameFinderParams) ;
ErrorHandler.checkHandle (nameFinder,
"Chat .NameServiceDataReader.create_querycondition") ;

newMessages = chatMsgReader.create_readcondition (ANY_SAMPLE_STATE.value,

ANY_VIEW_STATE.value, ANY_INSTANCE_STATE.value);

10.1. A Chatroom Example, Java Source Code

86

Modeling Guide, Release 2.5.x

ErrorHandler.checkHandle (newMessages,
"Chat .ChatMessageDataReader.create_readcondition") ;

@Override
public void on_data_available (DataReader dataReader) {
/+ Ignore new data 1f termination message already received #*/
if (isTerminated) {
return;

boolean terminationReceived = false;

if (dataReader.equals (chatMsgReader)) {

status = chatMsgReader.take_w_condition (chatMsgSeq, chatMsgInfoSeq,

LENGTH_UNLIMITED.value, newMessages) ;
ErrorHandler.checkStatus (status,
"Chat .ChatMessageDataReader.take_w_condition");

/%
* For each message, extract the key-field and find the
* corresponding name
*/
for (int i = 0; i < chatMsgSeqg.value.length; i++) {
/ *
* Set program termination flag 1f termination message 1s
* received

*/
if (chatMsgSeqg.value[i].userID == TERMINATION_MESSAGE) {
terminationReceived = true;
break;

/% Find the corresponding named message */

if (chatMsgSeqg.value[i].userID != previousID) {
previousID = chatMsgSeqg.value[i] .userID;
nameFinderParams[0] = Integer.toString(previousID) ;

status = nameFinder.set_query_parameters (nameFinderParams) ;

ErrorHandler
.checkStatus (status,

"QueryCondition.set_query_arguments (nameFinderParams)");
status = nameServiceReader.read_w_condition (nameServiceSeq,

nameServiceInfoSeq, LENGTH_UNLIMITED.value,
nameFinder) ;

ErrorHandler.checkStatus (status,
"Chat .NameServiceDataReader.read_w_condition");

/+ Extract Name (there should only be one result) =*/

if (status == RETCODE_NO_DATA.value) {
userName = "Name not found!! id = " + previousID;
} else {

userName = nameServiceSeqg.value[0].name;

/* Release the name sample again */
status = nameServiceReader.return_loan (nameServiceSedq,
nameServiceInfoSeq) ;
ErrorHandler.checkStatus (status,
"Chat .NameServiceDataReader.return_loan");
}
/% Write merged Topic with userName instead of userID */
namedMsg.userName = userName;
namedMsg.userID = previousID;

10.1. A Chatroom Example, Java Source Code

87

Modeling Guide, Release 2.5.x

namedMsg.index = chatMsgSeqg.value[i].index;
namedMsg.content = chatMsgSeqg.value[i].content;

if (chatMsgInfoSeqg.value[i].valid_data)
{
status = namedMessageWriter.write (namedMsg, HANDLE_NIL.value);
ErrorHandler.checkStatus (status,
"Chat .NamedMessageDataWriter.write");

status = chatMsgReader.return_loan (chatMsgSeq, chatMsgInfoSeq);
ErrorHandler.checkStatus (status,
"Chat .ChatMessageDataReader.return_loan");

if (terminationReceived) {
setTerminated (true) ;

public void cleanup ()

{

/* Remove all Read Conditions from the DataReaders =/

status = nameServiceReader.delete_readcondition (nameFinder);
ErrorHandler.checkStatus (status, "Chat.NameServiceDataReader
.delete_readcondition (nameFinder)");

status = chatMsgReader.delete_readcondition (newMessages);
ErrorHandler.checkStatus (status, "Chat.ChatMessageDataReader
.delete_readcondition (newMessages)") ;

public synchronized boolean isTerminated ()

{

return isTerminated;

private synchronized void setTerminated (boolean isTerminated)

{

this.isTerminated = isTerminated;

NamedMessageDataReaderListenerimpl.java

NamedMessageDataReaderListenerImpl. java

/**
*
* Copyright (c) 2012 to 2018
* ADLINK Technology Limited
* All rights Reserved.

* LOGICAI_NAME : NamedMessageDataReaderListenerImpl. java

* FUNCTION: Vortex OpenSplice Modeler Tutorial example code.
* MODULE : Tutorial for the Java programming language.

* DATE January 2012.

FAAKAAAAA A AA A A A A A A A A A A A A A AL A AR A d A A A AR A A A A A A A A A A A kAKX
*
* This file contains the implementation for the ’'MessageBoard’ executable.

*

10.1. A Chatroom Example, Java Source Code 88

Modeling Guide, Release 2.5.x

* %/
packag

import
import
import
import
import
import
import
import
import
import

public
pri

J *
pri
J *
pri
pri

pri

pub

@Qowv
pub

pub

e Chat;

Chat . NamedMessageDataReader;

Chat . NamedMessageSeqHolder;

DDS.ALIVE_INSTANCE_STATE;

DDS.ANY VIEW_STATE;

DDS.DataReader;

DDS.LENGTH_UNLIMITED;

DDS.NOT_ READ_ SAMPLE_STATE;

DDS.SampleInfoSeqHolder;

Chat .MessageBoardApplicationWrapper;

Chat .MessageBoardApplicationWrapper.NamedMessageDataReaderListener;

class NamedMessageDataReaderListenerImpl extends
NamedMessageDataReaderListener {
vate boolean isTerminated;

DDS Identifiers */
vate int status;

Type-specific DDS entities */

vate NamedMessageDataReader namedMsgReader;
vate NamedMessageSegHolder namedMsgSeq;
vate SampleInfoSegHolder infoSeq;

lic NamedMessageDataReaderListenerImpl () {

namedMsgReader = MessageBoardApplicationWrapper.ParticipantWrapper
.SubscriberWrapper.NamedMessageDataReaderWrapper
.getDataReader () ;

namedMsgSeq = new NamedMessageSegHolder () ;

infoSeq = new SampleInfoSegHolder () ;

erride

lic void on_data_available (DataReader dataReader) {
/+ Set termination flag */

setTerminated (false) ;

status = namedMsgReader.take (namedMsgSeq, infoSeq,
LENGTH_UNLIMITED.value, NOT_READ_SAMPLE_STATE.value,
ANY_VIEW_STATE.value, ALIVE_INSTANCE_STATE.value);

ErrorHandler.checkStatus (status, "Chat.NamedMessageDataReader.read");

/* For each message, print the message #*/
for (int 1 = 0; i < namedMsgSeqg.value.length; i++) {
System.out.println (namedMsgSeqg.value[i] .userName + ": "
+ namedMsgSeqg.value[i].content);

status = namedMsgReader.return_loan (namedMsgSeq, infoSeq);
ErrorHandler.checkStatus (status,
"Chat .NamedMessageDataReader.return_loan");

namedMsgSeq.value = null;
infoSeqg.value = null;

/% Unset termination flag */
setTerminated (true) ;

lic synchronized boolean isTerminated() {

10.1. A Chatroom Example, Java Source Code

89

Modeling Guide, Release 2.5.x

return isTerminated;

private synchronized void setTerminated (boolean isTerminated) {
this.isTerminated = isTerminated;

10.1.3 UserLoad Application

UserLoadApplication. java

/***

* Copyright (c) 2012 to 2018
* ADLINK Technology Limited
* All rights Reserved.

* LOGICAL NAME: UserLoadApplication. java

* FUNCTION: Vortex OpenSplice Modeler Tutorial example code.
* MODULE: Tutorial for the Java programming language.
* DATE January 2012.

A A AR A A A A A A A A A A A A AR A A A A A A A A A A A A A A A A AR AR A

* This file contains the implementation for the ’UserLoadApplication’ executable.
*

**/

package Chat;

import Chat.UserlLoadApplicationWrapper.WrapperException;
import DDS.*;

public class UserLoadApplication extends Thread

{
/* entities required by all threads */
private static GuardCondition escape;

J *k
* Sleeper thread: sleeps 60 seconds and then triggers the WaitSet
*/

public void run ()

{

int status;

try
{
sleep (60000);
}
catch (InterruptedException e)
{
e.printStackTrace ();
}
status = escape.set_trigger_value (true);
ErrorHandler.checkStatus (status, "DDS.GuardCondition.set_trigger_value");

public static void main (String[] args)

{

10.1. A Chatroom Example, Java Source Code 90

Modeling Guide, Release 2.5.x

boolean closed = false;
int prevCount = 0;

try

{
/+ Initialize the application x/
UserLoadApplicationWrapper.start ();

}

catch (WrapperException e)

{
System.out.println ("Error while starting the application:");
System.out.println (e.getReason ());
return;

/* Initialize the arguments and params for the QueryCondition */
String[] params;

params = new Stringl]

{
non

UserlLoadApplicationWrapper.QueryConditionWrapper.setQueryParameters (
params) ;

/+ start the ChatMessageDataReaderWaitSet */
UserLoadApplicationWrapper.UserLoadWaitSetWrapper.start ();

}

catch (WrapperException e)

{
System.out.println ("Error while initializing the application:");
System.out.println (e.getReason ());
return;

WaitSet userLoadWS = UserlLoadApplicationWrapper.UserLoadWaitSetWrapper
.getWaitSet ();

/#* Generic DDS entities #*/

escape = UserloadApplicationWrapper.GuardConditionWrapper
.getGuardCondition ();

QueryCondition singleUser = UserLoadApplicationWrapper
.QueryConditionWrapper.getQueryCondition ();

ReadCondition newUser = UserLoadApplicationWrapper.ReadConditionWrapper
.getReadCondition ();

StatusCondition leftUser = UserLoadApplicationWrapper.StatusConditionWrapper
.getStatusCondition ();

LivelinessChangedStatusHolder livChangedStatusHolder = new
LivelinessChangedStatusHolder () ;

/+* DDS Identifiers x/
int status;
ConditionSegHolder guardList = new ConditionSegHolder ();

/+ Type-specific DDS entities x/

NameServiceDataReader nameServer = UserLoadApplicationWrapper
.ParticipantWrapper.SubscriberWrapper.NameServiceDataReaderWrapper
.getDataReader ();

ChatMessageDataReader loadAdmin = UserLoadApplicationWrapper

10.1. A Chatroom Example, Java Source Code 91

Modeling Guide, Release 2.5.x

.ParticipantWrapper.SubscriberWrapper.ChatMessageDataReaderWrapper
.getDataReader ();
ChatMessageSegHolder msgList = new ChatMessageSegHolder ();
NameServiceSegHolder nslList = new NameServiceSeqgHolder ();
SampleInfoSeqgHolder infoSeqg = new SampleInfoSegHolder ();
SampleInfoSegHolder infoSeg2 = new SampleInfoSegHolder ();

J *
* Initialize and pre—-allocate the GuardList used to obtain the triggered
* Conditions.
*/

guardList.value = new Condition[3];

/* Remove all known Users that are not currently active. */

status = nameServer.take (nsList, infoSeq, LENGTH_UNLIMITED.value,
ANY_SAMPLE_STATE.value, ANY_VIEW_STATE.value,
NOT_ALIVE_INSTANCE_STATE.value);

ErrorHandler.checkStatus (status, "Chat.NameServiceDataReader.take");
status = nameServer.return_loan (nsList, infoSeq);
ErrorHandler.checkStatus (status, "Chat.NameServiceDataReader.return_loan");

/+ Start the sleeper thread +/
new UserLoadApplication () .start ();

while (!closed)

{
/+ Wait until at least one of the Conditions in the waitset triggers x/
status = userLoadWS._ wait (guardList, DURATION_INFINITE.value);
ErrorHandler.checkStatus (status, "DDS.WaitSet._ wait");

/* Walk over all the guards to display information x/
for (int i = 0; i < guardList.value.length; i++)
{
if (guardList.value[i] == newUser)
{
/% The newUser ReadCondition contains data =/
status = nameServer.read_w_condition (nsList, infoSeq,
LENGTH_UNLIMITED.value, newUser);
ErrorHandler.checkStatus (status,
"Chat .NameServiceDataReader.read_w_condition");

for (int j = 0; j < nslist.value.length; 3j++)
{
System.out.println ("New User: " + nsList.value[j].name);
}
status = nameServer.return_loan (nsList, infoSeq);

ErrorHandler.checkStatus (status,
"Chat .NameServiceDataReader.return_loan");
}
else if (guardList.value[i] == leftUser)
{
/ *
* Some liveliness has changed (either because a DataWriter
* joined or a DataWriter left
*/
status = loadAdmin.get_liveliness_changed_status (
livChangedStatusHolder) ;
ErrorHandler.checkStatus (status,
"Chat .ChatMessageDataReader.get_liveliness_changed_status");

if (livChangedStatusHolder.value.alive_count < prevCount)

{
/%

10.1. A Chatroom Example, Java Source Code 92

Modeling Guide, Release 2.5.x

* A user has left the ChatRoom, since a DataWriter lost 1its
* liveliness
*/
J
* Take the effected users so they will not appear in the 1list
* later on
*/
status = nameServer.take (nsList, infoSeq,
LENGTH_UNLIMITED.value, ANY SAMPLE_STATE.value,
ANY_VIEW_STATE.value, NOT_ALIVE_INSTANCE_STATE.value);
ErrorHandler.checkStatus (status,
"Chat .NameServiceDataReader.take");

for (int j = 0; j < nslist.value.length; Jj++)
{
/* re—apply query arguments #*/
params[0] = Integer.toString (nsList.value[]j].userID);
status = singleUser.set_query_parameters (params);
ErrorHandler.checkStatus (status,
"DDS.QueryCondition.set_query_arguments");

/* Read this users history =*/
status = loadAdmin.take_w_condition (msgList, infoSeqg2,
LENGTH_UNLIMITED.value, singleUser);
ErrorHandler.checkStatus (status,
"Chat .ChatMessageDataReader.read_w_condition");

/+ Display the user and his history =/
System.out.println ("Departed user " + nsList.value[j].name +
" had sent " + msglList.value.length + " messages.");
status = loadAdmin.return_loan (msgList, infoSeqg2);
ErrorHandler.checkStatus (status,
"Chat .ChatMessageDataReader.return_loan");
msglist.value = null;
infoSeg2.value = null;
}
status = nameServer.return_loan (nsList, infoSeq);
ErrorHandler.checkStatus (status,
"Chat .NameServiceDataReader.return_loan");
nsList.value = null;
infoSeqg.value = null;
}

prevCount = livChangedStatusHolder.value.alive_count;

t

else if (guardList.value[i] == escape)

{
System.out.println ("UserLoad has terminated.");
closed = true;

}

else

{
assert false : "Unknown Condition";

t

} /% for */
} /+ while (!closed) =/

try
{

/+ Stop the application and free all resources #*/
UserLoadApplicationWrapper.stop ();

}
catch (WrapperException e)

{

10.1. A Chatroom Example, Java Source Code 93

Modeling Guide, Release 2.5.x

System.out.println ("Error while stopping the application:");
System.out.println (e.getReason ());
return;

10.1.4 Error Handler

ErrorHandler. java

/**
*
* Copyright (c) 2012 to 2018
* ADLINK Technology Limited
* All rights Reserved.

* LOGICAIL_NAME: ErrorHandler. java

* FUNCTION: Vortex OpenSplice Modeler Tutorial example code.
* MODULE: Tutorial for the Java programming language.

* DATE: January 2012.

ok ok ko ok ok ok b ok ok ok b ok ok ok ok ok ok ok b b ok ok ok b ok ok ok b ok ok ok b b ok ok ok ok ok ok ok b ok ok b ok ok ok b b ok ok ok b ok ok ok b ok ok ok ok ok ok b ke ok

+ This file contains the implementation for the error handling operations.
*

* %k)
package Chatroom;
import DDS.RETCODE_NO_DATA;

import DDS.RETCODE_OK;

public class ErrorHandler

{
public static final int NR_ERROR_CODES = 12;

/+* Array to hold the names for all ReturnCodes. #*/
public static String[] RetCodeName = new String[NR_ERROR_CODES];

static
{
RetCodeName [0] = new String ("DDS_RETCODE_OK") ;
RetCodeName[l] = new String ("DDS_RETCODE_ERROR") ;
RetCodeName [2] = new String ("DDS_RETCODE_UNSUPPORTED") ;
RetCodeName [3] = new String ("DDS_RETCODE_BAD_PARAMETER") ;
RetCodeName [4] = new String ("DDS_RETCODE_PRECONDITION_NOT_MET");
RetCodeName [5] = new String ("DDS_RETCODE_OUT_OF_RESOURCES") ;
RetCodeName [6] = new String ("DDS_RETCODE_NOT_ENABLED") ;
RetCodeName[7] = new String ("DDS_RETCODE_IMMUTABLE_POLICY");
RetCodeName [8] = new String ("DDS_RETCODE_INCONSISTENT_POLICY");
RetCodeName[9] = new String ("DDS_RETCODE_ALREADY_ DELETED");
RetCodeName [10] = new String ("DDS_RETCODE_TIMEOUT") ;
RetCodeName[1l1l] = new String ("DDS_RETCODE_NO_DATA") ;
}
J *k
* Returns the name of an error code.
*/

public static String getErrorName (int status)

{

10.1. A Chatroom Example, Java Source Code 94

Modeling Guide, Release 2.5.x

return RetCodeName[status];

J *k
* Check the return status for errors. If there 1is an error, then terminate.
*/
public static void checkStatus (int status, String info)
{
if (status != RETCODE_OK.value && status != RETCODE_NO_DATA.value)

{

System.out.println ("Error in " + info + ": " + getErrorName (status));
System.exit (-1);

J hk
* Check whether a valid handle has been returned. If not, then terminate.
*/
public static void checkHandle (Object handle, String info)
{
if (handle == null)
{
System.out.println ("Error in " + info +
": Creation failed: invalid handle");
System.exit (-1);

10.1. A Chatroom Example, Java Source Code

95

11

Appendix B

C++
This appendix contains the example, user-written C++ source code included with the Vortex OpenSplice Modeler
Chatroom C++ example. The Chatroom system is the example used in the Tutorial.

There are two different versions of some of the Chatroom’s C++ modules, one version for Linux, the other for
Windows, in order to accommodate differences between these platforms.

The source code is given in the following order:

Chatter Application:
ChatterApplication.cpp, Linux Version
ChatterApplication.cpp, Windows Version

MessageBoard Application:
MessageBoardApplication.cpp, Linux Version
MessageBoardApplication.cpp, Windows Version
ChatMessageDataReaderListenerImpl.h, Linux version
ChatMessageDataReaderListenerImpl.h, Windows version
ChatMessageDataReaderListenerImpl.cpp
NamedMessageDataReaderListenerImpl.h, Linux Version
NamedMessageDataReaderListenerImpl.h, Windows Version
NamedMessageDataReaderListenerImpl.cpp

UserLoad Application:
UserLoadApplication.cpp, Linux Version
UserLoadApplication.cpp, Windows Version
CheckStatus.h
CheckStatus.cpp

11.1 Chatroom Example, C++ Source Code

11.1.1 Chatter Application

ChatterApplication.cpp, Linux Version

96

Modeling Guide, Release 2.5.x

ChatterApplication.cpp

/**
*
* Copyright (c) 2012 to 2018
* ADLINK Technology Limited
* All rights Reserved.

* LOGICAL NAME: ChatterApplication.cpp

* FUNCTION: Vortex OpenSplice Modeler Tutorial example code.
* MODULE : Example for the C++ programming language.

* DATE January 2012.

ER R i i b b b b b b b b e b e b b b b b b b b b b b b b e b b b b b i b i
*
* This file contains the implementation for the ’ChatterApplication’ executable.
*
* k%)
#include <string>
#include <sstream>
#include <iostream>
#include <unistd.h>

#include "ChatterApplication.h"
#include "CheckStatus.h"

#define NUM_MSG 10
#define TERMINATION_MESSAGE -1

using namespace std;
using namespace DDS;
using namespace Chat;

int main (int argc, char xargv[]) {
/* Sample definitions x/
ChatMessage *msg; /* Example on Heap */
NameService ns; /+ Example on Stack */

/% DDS Identifiers =/
InstanceHandle_t userHandle;
ReturnCode_t status;

/% Others #*/

int ownID = 1;

char *chatterName= NULL;
ostringstream buf;

/+ Initialize the application #*/
ChatterApplicationWrapperImplementation chatterApplication;

try {
chatterApplication.start ();

} catch (WrapperException& e) {
cout << "Exception occurred while starting the application:" << endl;
cout << e.what();
return -1;

/+ Type—-specific DDS entities =/
NameServiceDataWriter ptr nameServer =
chatterApplication.getParticipantWrapper () —>getPublisherWrapper ()
—->getNameServiceDataWriterWrapper () —>getDataWriter () ;
ChatMessageDataWriter_ptr talker =
chatterApplication.getParticipantWrapper () —>getPublisherWrapper ()

11.1. Chatroom Example, C++ Source Code 97

Modeling Guide, Release 2.5.x

—>getChatMessageDataWriterWrapper () —>getDataWriter () ;

/* Options: Chatter [ownID [name]] */
if (argc > 1) {
istringstream args(argv([1l]);
args >> ownlD;
if (argc > 2) {
chatterName = argv[2];

/% Initialize the NameServer attributes #*/

ns.userID = ownID;
if (chatterName) {
ns.name = string_dup (chatterName) ;
} else {
buf << "Chatter " << ownlID;
ns.name = string_dup (buf.str().c_str());

/+ Write the user-information into the system
(registering the instance implicitly). */

status = nameServer->write (ns, HANDLE_NIL);

checkStatus (status, "NameServiceDataWriter::write");

/+ Initialize the chat messages on Heap. x/
msg = new ChatMessage();
checkHandle (msg, "new ChatMessage");

msg—>userID = ownlIDj;
msg->index = 0;
buf.str(string(""));
if (ownID == TERMINATION_MESSAGE) {
buf << "Termination message.";
} else {
buf << "Hi there, I will send you " << NUM_MSG << " more messages.";
}
msg->content = string_dup(buf.str().c_str());
cout << "Writing message: \"" << msg->content << "\"" << endl;
/* Register a chat message for this user (pre-allocating resources for it!!) x/
userHandle = talker->register_instance (*msqg) ;
/* Write a message using the pre—-generated instance handle. #*/
status = talker->write (*msg, userHandle);
checkStatus (status, "ChatMessageDataWriter::write");
sleep(l); /#* do not run so fast! x/
/% Write any number of messages,
re-using the existing string-buffer: no leak!!. x/
for (int 1 = 1; i <= NUM_MSG && ownID != TERMINATION_MESSAGE; i++) {
buf.str(string(""));
msg—>index = 1i;
buf << "Message no. " << i;
msg->content = string_dup (buf.str().c_str());
cout << "Writing message: \"" << msg->content << "\"" << endl;
status = talker->write (*msg, userHandle);
checkStatus (status, "ChatMessageDataWriter::write");
sleep(l); /# do not run so fast! =/
}
/+ Leave the room by disposing and unregistering the message instance. x/
status = talker->dispose (*msg, userHandle);
11.1. Chatroom Example, C++ Source Code 98

Modeling Guide, Release 2.5.x

checkStatus (status, "ChatMessageDataWriter::dispose");
status = talker->unregister_instance (*msg, userHandle);
checkStatus (status, "ChatMessageDataWriter::unregister_instance");

/+ Also unregister our name. #*/
status = nameServer->unregister_instance (ns, HANDLE_NIL);
checkStatus (status, "NameServiceDataWriter::unregister_instance");

/+ Release the data-samples. #*/
delete msg; // msg allocated on heap: explicit de-allocation required!!

/+* stop application #*/
try {
chatterApplication.stop();
} catch (WrapperException& e) {
cout << "Exception occurred while stopping the application:" << endl;
cout << e.what();
return -1;

return 0O;

ChatterApplication.cpp, Windows Version

ChatterApplication.cpp

/**

*

*

*

*

*

*

Copyright (c) 2012 to 2018
ADLINK Technology Limited
All rights Reserved.

LOGICAIL_NAME: ChatterApplication.cpp

FUNCTION: Vortex OpenSplice Modeler Tutorial example code.
MODULE : Example for the C++ programming language.

DATE January 2012.

B e b b e b i b i b b e b b b b b b i b b b g i b b e b g b b b b i b b b e b b b i b b b b b e b b b i e b i b

*

*

*

This file contains the implementation for the ’ChatterApplication’ executable.

* %A/

#include <string>
#include <sstream>
#include <iostream>

#include "ChatterApplication.h"
#include "CheckStatus.h"

#define NUM_MSG 10
#define TERMINATION_MESSAGE -1

using namespace std;
using namespace DDS;
using namespace Chat;

int main(int argc, char xargv[]) {

/+ Sample definitions x/
ChatMessage *msg; /* Example on Heap */

11.1. Chatroom Example, C++ Source Code 99

Modeling Guide, Release 2.5.x

NameService ns; /# Example on Stack #*/

/+ DDS Identifiers x/
InstanceHandle_t userHandle;
ReturnCode_t status;

/% Others #*/

int ownID = 1;

char xchatterName= NULL;
ostringstream buf;

/+ Initialize the application */
ChatterApplicationWrapperImplementation chatterApplication;

try {
chatterApplication.start ();

} catch (WrapperException& e) {
cout << "Exception occurred while starting the application:" << endl;
cout << e.what();
return -1;

/+ Type—-specific DDS entities =/

NameServiceDataWriter_ptr nameServer =
chatterApplication.getParticipantWrapper () —>getPublisherWrapper ()
—>getNameServiceDataWriterWrapper () —>getDataWriter () ;

ChatMessageDataWriter_ptr talker =
chatterApplication.getParticipantWrapper () —>getPublisherWrapper ()
—->getChatMessageDataWriterWrapper () —>getDataWriter () ;

/+ Options: Chatter [ownID [name]] */
if (argc > 1) {
istringstream args(argv([l]);
args >> ownlID;
if (argc > 2) {
chatterName = argv[2];

/* Initialize the NameServer attributes =/

ns.userID = ownlID;
if (chatterName) {
ns.name = string_dup (chatterName) ;
} else {
buf << "Chatter " << ownlID;
ns.name = string_dup (buf.str().c_str());

/* Write the user—-information into the system
(registering the instance implicitly). =/

status = nameServer->write (ns, HANDLE_NIL);

checkStatus (status, "NameServiceDataWriter::write");

/* Initialize the chat messages on Heap. */
msg = new ChatMessage();
checkHandle (msg, "new ChatMessage");

msg—>userID = ownlID;
msg->index = 0;
buf.str(string(""));
if (ownID == TERMINATION_MESSAGE) {
buf << "Termination message.";
} else {
buf << "Hi there, I will send you " << NUM_MSG << " more messages.";

11.1. Chatroom Example, C++ Source Code

100

Modeling Guide, Release 2.5.x

}
msg->content = string_dup (buf.str().c_str());
cout << "Writing message: \"" << msg->content << "\"" << endl;

/* Register a chat message for this user (pre-allocating resources for it!!) x/
userHandle = talker->register_instance (*msqg) ;

/+ Write a message using the pre-generated instance handle. #*/
status = talker->write (*msg, userHandle);
checkStatus (status, "ChatMessageDataWriter::write");

sleep(l); /# do not run so fast! =/

/* Write any number of messages,

re-using the existing string-buffer: no leak!!. x/
for (int i = 1; i <= NUM_MSG && ownID != TERMINATION_MESSAGE; i++) {
buf.str(string(""));
msg->index = i;
buf << "Message no. " << i;
msg->content = string_dup (buf.str().c_str());
cout << "Writing message: \"" << msg->content << "\"" << endl;
status = talker->write (*msg, userHandle);

checkStatus (status, "ChatMessageDataWriter::write");
Sleep(1000); /# do not run so fast! =*/

/+ Leave the room by disposing and unregistering the message instance. */

status = talker->dispose (*msg, userHandle);
checkStatus (status, "ChatMessageDataWriter::dispose");
status = talker->unregister_instance (»msg, userHandle);

checkStatus (status, "ChatMessageDataWriter::unregister_instance");

/+ Also unregister our name. #*/
status = nameServer->unregister_instance (ns, HANDLE_NIL);
checkStatus (status, "NameServiceDataWriter::unregister_instance");

/* Release the data-samples. #*/
delete msg; // msg allocated on heap: explicit de-allocation required!!

/+ stop application =*/
try f
chatterApplication.stop();
} catch (WrapperException& e) {
cout << "Exception occurred while stopping the application:" << endl;

cout << e.what ();
return -1;

return 0;

11.1.2 MessageBoard Application
MessageBoardApplication.cpp, Linux Version

MessageBoardApplication.cpp

/**

11.1. Chatroom Example, C++ Source Code 101

Modeling Guide, Release 2.5.x

* Copyright (c) 2012 to 2018
* ADLINK Technology Limited
x All rights Reserved.

* LOGICAL NAME: MessageBoardApplication.cpp

* FUNCTION: Vortex OpenSplice Modeler Tutorial example code.
* MODULE : Tutorial for the C++ programming language.

* DATE January 2012.

FAAAAAAAAAA A A A A AL A AL A AL I AL A A A A A A A A A A A AR A A A A A A A A A AL A A A A A A A A A A A A A A A AKX

*

* This file contains the implementation for the

* "MessageBoardApplication’ executable.

*

* k)

#include
#include
#include
#include

#include
#include

#include
#include

<iostream>
<string>
<sstream>
<unistd.h>

"CheckStatus.h"
"MessageBoardApplication.h"

"ChatMessageDataReaderListenerImpl.h"
"NamedMessageDataReaderListenerImpl.h"

using namespace std;
using namespace DDS;
using namespace Chat;

#define TERMINATION _MESSAGE -1

int main (int argc, char xargv[]) {
/+ DDS Identifiers =/
string ownID = "O";

/+ Options: MessageBoard [ownID] =/
/* Messages having owner ownID will be ignored #*/
if (argc > 1) {

istringstream args(argv([1l]);

args >> ownlD;;

MessageBoardApplicationWrapperImplementation messageBoardApplication;

try {

StringSeq exprParams;
exprParams.length (1) ;
exprParams[0] = DDS::string_dup (ownID.c_str());
messageBoardApplication.getParticipantWrapper ()

—>getNamedMessageFilteredTopicWrapper () —>setExpressionParameters (

exprParams) ;

/+ Initialize the application x/
messageBoardApplication.start();

} catch (WrapperException& e) {
cout << "Exception occurred while initializing the application:"

<< endl;

cout << e.what();
return -1;

/+ Create the listeners for the MessageBoard application x/

11.1. Chatroom Example, C++ Source Code

102

Modeling Guide, Release 2.5.x

ChatMessageDataReaderListenerImpl+ chatMessageDataReaderListener =
new ChatMessageDataReaderListenerImpl (&émessageBoardApplication);

/% put the object in a smart pointer for resource management */
DDS: :DataReaderListener_var chatMessageDataReaderListenerVar (
chatMessageDataReaderListener) ;

NamedMessageDataReaderListenerImpl* namedMessageDataReaderListener =
new NamedMessageDataReaderListenerImpl (&émessageBoardApplication);

DDS: :DataReaderListener_var namedMessageDataReaderListenerVar (
namedMessageDataReaderListener) ;

try {
/+ Attach the ChatMessageDataReaderListener to the ChatMessageDataReader =/

messageBoardApplication.getPrivateParticipantWrapper ()
—->getSubscriberWrapper () —>getChatMessageDataReaderWrapper () —>attach (
chatMessageDataReaderListener) ;

/+ Attach the NamedMessageDataReaderListener to NamedMessageDataReader #*/
messageBoardApplication.getParticipantWrapper () —>getSubscriberWrapper ()
—>getNamedMessageDataReaderWrapper () —>attach (
namedMessageDataReaderListener);
} catch (WrapperException& e) {
cout << "Exception occurred while attaching a listener:" << endl;
cout << e.what();
return -1;

cout
<< "MessageBoard has opened: send ChatMessage with userID = -1 to close it."
<< endl << endl;

/* Wait for the ChatMessageDataReaderListener to finish */

while (!chatMessageDataReaderListener->isTerminated()) {
sleep(l);

/+ Wait for the NamedMessageDataReaderListener to finish #*/

while (!namedMessageDataReaderListener—->isTerminated()) {
sleep(l);

}

cout << "Termination message received: exiting..." << endl;

try {

/% Detach the ChatMessageDataReaderListener to the ChatMessageDataReader x/
messageBoardApplication.getPrivateParticipantWrapper ()
—->getSubscriberWrapper () —>getChatMessageDataReaderWrapper () —>detach (
chatMessageDataReaderListener);

/+ Detach the NamedMessageDataReaderListener to the NamedMessageDataReader */
messageBoardApplication.getParticipantWrapper () —>getSubscriberWrapper ()
—>getNamedMessageDataReaderWrapper () —>detach (
namedMessageDataReaderListener) ;
} catch (WrapperException& e) {
cout << "Exception occurred while detaching a listener:" << endl;
cout << e.what();
return -1;

chatMessageDataReaderListener—->cleanup () ;

11.1. Chatroom Example, C++ Source Code 103

Modeling Guide, Release 2.5.x

try {
/* Stop the application =/
messageBoardApplication.stop();
} catch (WrapperException& e) {
cout << "Exception occurred while stopping the application:" << endl;
cout << e.what ();
return -1;

return 0;

MessageBoardApplication.cpp, Windows Version

MessageBoardApplication.cpp

/**
*
* Copyright (c) 2012 to 2018
+ ADLINK Technology Limited
* All rights Reserved.

* LOGICAL NAME: MessageBoardApplication.cpp

* FUNCTION: Vortex OpenSplice Modeler Tutorial example code.
* MODULE : Tutorial for the C++ programming language.

* DATE January 2012.

R b e b b b i b i i b b e b b e b i b b i b b b b i b b e b i b i b i b b b e b b b b i b b b b b b i b b i b i b i b
*

+ This file contains the implementation for the ’MessageBoard’ executable.
*

* k%)

#include <iostream>
#include <string>
#include <sstream>

#include "ccpp_dds_dcps.h"

#include "CheckStatus.h"

#include "exported MessageBoardApplicationDcps.h"

#include "Chat/MessageBoardApplicationWrapperImplementation.h"
#include "Chat/NamedMessageFilteredTopicWrapper.h"

#include "Chat/MessageBoardApplication/ParticipantWrapper.h"
#include "Chat/MessageBoardApplication/Participant/SubscriberWrapper.h”
#include "Chat/MessageBoardApplication/Participant/Subscriber/NamedMessageDataReaderirapper.h"

#include "Chat/MessageBoardApplication/PrivateParticipantWrapper.h"
#include "Chat/MessageBoardApplication/PrivateParticipant/SubscriberWrapper.h"
#include "Chat/MessageBoardApplication/PrivateParticipant/Subscriber/ChatMessageDataReaderWrapper

#include "ChatMessageDataReaderListenerImpl.h"
#include "NamedMessageDataReaderListenerImpl.h"

using namespace std;
using namespace DDS;

using namespace Chat;

#define TERMINATION_MESSAGE -1

11.1. Chatroom Example, C++ Source Code 104

Modeling Guide, Release 2.5.x

int main (int argc, char xargv([])

{

/+ DDS Identifiers =/
string ownID = "Q0";

/* Options: MessageBoard [ownID] */
/* Messages having owner ownID will be ignored #*/
if (argc > 1)
{
istringstream args(argv([l]);
args >> ownlD;;

MessageBoardApplicationWrapperImplementation messageBoardApplication;

StringSeq exprParams;
exprParams.length(1l);
exprParams[0] = DDS::string_dup (ownID.c_str());

messageBoardApplication.getParticipantWrapper ()
—>getNamedMessageFilteredTopicWrapper () —>set_expression_parameters (
exprParams) ;

/+ Initialize the application */
messageBoardApplication.start () ;

/+ Create the listeners for the MessageBoard application #*/
ChatMessageDataReaderListenerImpl+ chatMessageDataReaderListener =
new ChatMessageDataReaderListenerImpl (&émessageBoardApplication);

/* put the object in a smart pointer for resource management */
DDS: :DataReaderListener_var
chatMessageDataReaderListenerVar (chatMessageDataReaderListener) ;

NamedMessageDataReaderListenerImpl* namedMessageDataReaderListener =
new NamedMessageDataReaderListenerImpl (&émessageBoardApplication);

DDS: :DataReaderListener_var
namedMessageDataReaderListenerVar (namedMessageDataReaderListener) ;

/+ Attach the ChatMessageDataReaderListener to the ChatMessageDataReader =/
ReturnCode_t status = messageBoardApplication.getPrivateParticipantWrapper ()
->getSubscriberWrapper () —>getChatMessageDataReaderWrapper ()
—>set_listener (chatMessageDataReaderListener,
chatMessageDataReaderListener—->getStatusMask ()) ;
checkStatus (status, "Chat::ChatMessageDataReader::set_listener");

/* Attach the NamedMessageDataReaderListener to the NamedMessageDataReader */
status = messageBoardApplication.getParticipantWrapper ()
—>getSubscriberWrapper () —>getNamedMessageDataReaderWrapper () —>getDataReader ()
—->set_listener (namedMessageDataReaderListener,
namedMessageDataReaderListener—->getStatusMask());
checkStatus (status, "Chat::ChatMessageDataReader::set_listener");

cout
<< "MessageBoard has opened: send ChatMessage with userID = -1 to close it."
<< endl << endl;

/* Wait for the ChatMessageDataReaderListener to finish x/
while (!chatMessageDataReaderListener—->isTerminated())

{
Sleep(1000);

11.1. Chatroom Example, C++ Source Code 105

Modeling Guide, Release 2.5.x

/* Wait for the NamedMessageDataReaderListener to finish */
while (!namedMessageDataReaderListener—>isTerminated())

{
Sleep (1000);

cout << "Termination message received: exiting..." << endl;

/+ Detach the ChatMessageDataReaderListener to the ChatMessageDataReader x/
messageBoardApplication.getPrivateParticipantWrapper () —>getSubscriberWrapper ()
->set_listener (0, 0);

/* Detach the NamedMessageDataReaderListener to the NamedMessageDataReader */
messageBoardApplication.getParticipantWrapper () —>getSubscriberWrapper ()
—>set_listener (0, 0);

chatMessageDataReaderListener—->cleanup () ;

/+ Stop the application */
messageBoardApplication.stop () ;

return 0;

ChatMessageDataReaderListenerlmpl.h, Linux version

ChatMessageDataReaderListenerImpl.h

/**)('*************************
*
*+ Copyright (c) 2012 to 2018
* ADLINK Technology Limited
x All rights Reserved.

* LOGICAL NAME : ChatMessageDataReaderListenerImpl.h

* FUNCTION: Vortex OpenSplice Modeler Tutorial example code.
* MODULE : Tutorial for the C++ programming language.

* DATE January 2012.

FAAAAAAAAAAA A A A A A A A AL A AL I AR A AR A A A A A A A A A A A A KA
*
* This file contains the implementation for the ’'MessageBoard’ executable.
*
* %/
#ifndef _CHATMESSAGEDATAREADERLISTENERIMPI, H_
#define _CHATMESSAGEDATAREADERLISTENERIMPI, H_

#include <string>
#include <pthread.h>

#include "Chat/MessageBoardApplication/ChatMessageDataReaderListener.h"
#include "Chat/MessageBoardApplicationWrapper.h"
#include "exported MessageBoardApplicationDcps.h"

class ChatMessageDataReaderListenerImpl
public Chat::MessageBoardApplication: :ChatMessageDataReaderListener

{
public:

11.1. Chatroom Example, C++ Source Code 106

Modeling Guide, Release 2.5.x

ChatMessageDataReaderListenerImpl (
const Chat::MessageBoardApplicationWrapper+ messageBoardApplication);

void on_data_available (DDS: :DataReader_ptr dataReader);
void cleanup();
bool isTerminated();

private:

class IsTerminated

{
public:
IsTerminated ()

{
m_isTerminated = false;
pthread_mutex_init (&m_mutex, 0);

virtual ~IsTerminated()

{

pthread_mutex_destroy (&m_mutex) ;

bool isTerminated ()

{

bool ret;

pthread_mutex_lock (&m_mutex) ;
ret = m_isTerminated;
pthread_mutex_unlock (&ém_mutex) ;

return ret;

void setTerminated (bool isTerminated)
{
pthread_mutex_lock (&m_mutex) ;
m_isTerminated = isTerminated;
pthread_mutex_unlock (&ém_mutex) ;

private:
pthread mutex_t m mutex;
bool m_isTerminated;

bi

IsTerminated m_isTerminated;

static int TERMINATION_MESSAGE;

const Chat::MessageBoardApplicationWrapper* m_messageBoardApplication;
Chat: :ChatMessageDataReader_ptr m_chatMsgReader;

Chat: :NameServiceDataReader_ptr m_nameServiceReader;

Chat: :NamedMessageDataWriter_ptr m_namedMessageWriter;

DDS: :QueryCondition_ptr m_nameFinder;
DDS::StringSeq m_nameFinderParams;

DDS: :ReadCondition_ptr m_newMessages;

int m_previousID;
DDS::String_mgr m_userName;

11.1. Chatroom Example, C++ Source Code 107

Modeling Guide, Release 2.5.x

}i

#endif // _CHATMESSAGEDATAREADERLISTENERIMPIL, H

ChatMessageDataReaderListenerimpl.h, Windows version

ChatMessageDataReaderListenerImpl.h

/**
*
* Copyright (c) 2012 to 2018
* ADLINK Technology Limited
* All rights Reserved.

* LOGICAL_NAME: ChatMessageDataReaderListenerImpl.h

* FUNCTION: Vortex OpenSplice Modeler Tutorial example code.
* MODULE : Tutorial for the C++ programming language.

* DATE January 2012.

EE b e e b e b b b e e e b b b b b e b P e b b e b b e b b b b e b b e b e b b e b e b b e b b e b b e b b e e b b b e b b g b e b b e
*
* This file contains the implementation for the ’MessageBoard’ executable.
*
* %/
#ifndef _CHATMESSAGEDATAREADERLISTENERIMPIL H_
#define _CHATMESSAGEDATAREADERLISTENERIMPI, H_

#include <string>

#include "Chat/MessageBoardApplication/ChatMessageDataReaderListener.h"”
#include "Chat/MessageBoardApplicationWrapper.h"

#include "exported MessageBoardApplicationDcps.h"

class ChatMessageDataReaderListenerImpl
public Chat::MessageBoardApplication: :ChatMessageDataReaderListener
{
public:
ChatMessageDataReaderListenerImpl (
const Chat::MessageBoardApplicationWrapper+ messageBoardApplication);

void on_data_available (DDS: :DataReader_ptr dataReader) ;
void cleanup();
bool isTerminated();

private:

class IsTerminated

{
public:
IsTerminated()

{
m_isTerminated = false;
m_mutex = CreateMutex (NULL, FALSE, NULL);

virtual ~IsTerminated()

{

CloseHandle (m_mutex) ;

bool isTerminated()

11.1. Chatroom Example, C++ Source Code 108

Modeling Guide, Release 2.5.x

bool ret;

WaitForSingleObject (m_mutex, INFINITE);
ret = m_isTerminated;
ReleaseMutex (m_mutex) ;

return ret;

void setTerminated (bool isTerminated)

{
WaitForSingleObject (m_mutex, INFINITE);
m_isTerminated = isTerminated;
ReleaseMutex (m_mutex) ;

private:
HANDLE m_mutex;
bool m_isTerminated;

bi
IsTerminated m_isTerminated;

static int TERMINATION_MESSAGE;

const Chat::MessageBoardApplicationWrapper* m_messageBoardApplication;

Chat::ChatMessageDataReader_ptr m_chatMsgReader;
Chat: :NameServiceDataReader_ptr m_nameServiceReader;
Chat: :NamedMessageDataWriter_ptr m_namedMessageWriter;

DDS: :QueryCondition_ptr m_nameFinder;
DDS: :StringSeq m_nameFinderParams;

DDS: :ReadCondition_ptr m_newMessages;

int m_previousID;
DDS::String_mgr m_userName;

}i

#endif // _CHATMESSAGEDATAREADERLISTENERIMPL H

ChatMessageDataReaderListenerimpl.cpp

ChatMessageDataReaderListenerImpl.cpp

/**

*

* Copyright (c) 2012 to 2018
* ADLINK Technology Limited
* All rights Reserved.

* LOGICAL_NAME: ChatMessageDataReaderListenerImpl.cpp

* FUNCTION: Vortex OpenSplice Modeler Tutorial example code.
* MODULE : Tutorial for the C++ programming language.

* DATE January 2012.

EE b b b b e b b b e b b b e b e e b P g b b e b b e b b b b e b b b e e b b e b b e b b e b b e b b e b b b e g b b i b b b e b b i

*

* This file contains the implementation for the ’MessageBoard’ executable.

*

11.1. Chatroom Example, C++ Source Code

109

Modeling Guide, Release 2.5.x

* %/
#include <sstream>

#include "ChatMessageDataReaderListenerImpl.h"
#include "ccpp_dds_dcps.h"

#include "Chat/MessageBoardApplication/PrivateParticipantWrapper.h"
#include "Chat/MessageBoardApplication/PrivateParticipant/SubscriberWrapper.h"

#include "Chat/MessageBoardApplication/PrivateParticipant/Subscriber/ChatMessageDataReaderWrapper
#include "Chat/MessageBoardApplication/PrivateParticipant/Subscriber/NameServiceDataReaderWrapper

#include "Chat/MessageBoardApplication/PrivateParticipant/PublisherWrapper.h”

#include "Chat/MessageBoardApplication/PrivateParticipant/Publisher/NamedMessageDatalriterWrapper

#include "CheckStatus.h"
int ChatMessageDataReaderListenerImpl::TERMINATION_MESSAGE = -1;

using namespace std;
using namespace DDS;
using namespace Chat;

ChatMessageDataReaderListenerImpl: :ChatMessageDataReaderListenerImpl (
const Chat::MessageBoardApplicationWrapper+ messageBoardApplication)
m_messageBoardApplication (messageBoardApplication),
m_chatMsgReader (
messageBoardApplication->getPrivateParticipantWrapper ()
—>getSubscriberWrapper () —>getChatMessageDataReaderWrapper ()
—>getDataReader ()),
m_nameServiceReader (
messageBoardApplication->getPrivateParticipantWrapper ()
—->getSubscriberWrapper () ~>getNameServiceDataReaderWrapper ()
—>getDataReader ()),
m_namedMessageWriter (
messageBoardApplication->getPrivateParticipantWrapper ()
—>getPublisherWrapper () ~—>getNamedMessageDataWriterWrapper ()
—->getDataWriter()),
m_previousID(-1) {
/+ Create a QueryCondition that will look up userName for a specified userID
m_nameFinderParams.length (1) ;
m_nameFinderParams[0] = string_dup("0");

m_nameFinder = m_nameServiceReader->create_qguerycondition (ANY_SAMPLE_STATE,
ANY VIEW_STATE, ANY_ INSTANCE_STATE, "userID = 30",
m_nameFinderParams) ;

checkHandle (m_nameFinder,
"Chat: :NameServiceDataReader: :create_querycondition");

m_newMessages = m_chatMsgReader->create_readcondition (ANY_SAMPLE_STATE,
ANY_VIEW_STATE, ANY_ INSTANCE_STATE) ;

checkHandle (m_newMessages,
"Chat: :ChatMessageDataReader: :create_readcondition");

void ChatMessageDataReaderListenerImpl::on_data_available (
DDS: :DataReader_ptr dataReader) {

/% Ignore new data 1f termination message already received #*/
if (m_isTerminated.isTerminated()) {
return;

bool terminationReceived = false;
int status;

*/

11.1. Chatroom Example, C++ Source Code

110

Modeling Guide, Release 2.5.x

if (dataReader == m_chatMsgReader) {
ChatMessageSeq chatMsgSeq;
SampleInfoSeq chatMsgInfoSeq;

status = m_chatMsgReader->take_w_condition (chatMsgSeq, chatMsgInfoSeq,
LENGTH_UNLIMITED, m_newMessages);
checkStatus (status, "Chat::ChatMessageDataReader::take_w_condition");

/* For each message, extract the key-field and find the corresponding name #*/
for (unsigned int i = 0; i < chatMsgSeqg.length(); i++) {

NameServiceSeq nameServiceSeq;

SampleInfoSeq nameServiceInfoSeq;

/+ Set program termination flag if termination message 1s received */

if (chatMsgSeq[i].userID == TERMINATION_MESSAGE) ({
terminationReceived = true;
break;

/+ Find the corresponding named message x/
if (chatMsgSeq[i].userID != m_previousID) ({
m_previousID = chatMsgSeq[i].userID;

ostringstream previousID;
previousID << m_previousID;
m_nameFinderParams[0] = string_dup (previousID.str () .c_str());

status = m_nameFinder->set_query_parameters (m_nameFinderParams) ;
checkStatus (status,
"QueryCondition: :set_query_arguments (m_nameFinderParams)");

status = m_nameServiceReader->read_w_condition (nameServiceSeq,
nameServiceInfoSeq, LENGTH_UNLIMITED, m_nameFinder);
checkStatus (status,
"Chat::NameServiceDataReader: :read_w_condition");

if (status == RETCODE_NO_DATA) {
ostringstream os;
0os << "Name not found!! id = " + m_previousID;
m_userName = string_dup(os.str().c_str());

} else {

m_userName = nameServiceSeq[0].name;

/% Release the name sample again */
status = m_nameServiceReader->return_loan (nameServiceSeq,
nameServiceInfoSeq) ;
checkStatus (status, "Chat::NameServiceDataReader: :return_loan");
NamedMessage namedMsg;

/+ Write merged Topic with userName instead of userID */

namedMsg.userName = m_userName;

namedMsg.userID = m_previousID;
namedMsg.index = chatMsgSeqg[i].index;
namedMsg.content = chatMsgSeqg[i].content;

if (chatMsgInfoSeqg[i].valid_data) {
status = m_namedMessageWriter->write (namedMsg, HANDLE_NIL) ;
checkStatus (status, "Chat::NamedMessageDataWriter::write");

11.1. Chatroom Example, C++ Source Code 111

Modeling Guide, Release 2.5.x

status = m_chatMsgReader—->return_loan (chatMsgSeq, chatMsgInfoSeq);
checkStatus (status, "Chat::ChatMessageDataReader::return_loan");

if (terminationReceived) {
m_isTerminated.setTerminated (true);

bool ChatMessageDataReaderListenerImpl::isTerminated() {
return m_isTerminated.isTerminated() ;

void ChatMessageDataReaderListenerImpl::cleanup() {
/% Remove all Read Conditions from the DataReaders */

int status = m_nameServiceReader->delete_readcondition (m_nameFinder) ;
checkStatus (status,
"Chat: :NameServiceDataReader: :delete_readcondition (nameFinder)");

status = m_chatMsgReader—->delete_readcondition (m_newMessages) ;
checkStatus (status,
"Chat::ChatMessageDataReader: :delete_readcondition (newMessages)") ;

NamedMessageDataReaderListenerimpl.h, Linux Version

NamedMessageDataReaderListenerImpl.h

/**
*
* Copyright (c) 2012 to 2018
* ADLINK Technology Limited
* All rights Reserved.

* LOGICAL_NAME: NamedMessageDataReaderListenerImpl.h

* FUNCTION: Vortex OpenSplice Modeler Tutorial example code.
* MODULE : Tutorial for the C++ programming language.

* DATE January 2012.

EE b b b e b b b e b b b b b b b P e b b e b b e e b e b e b b e b e b b e b e b b e b b b b e b b e b b b e b b g b e b b
*
* This file contains the implementation for the ’MessageBoard’ executable.
*
* %/
#ifndef _NAMEDMESSAGEDATAREADERLISTENERIMPI,_H
#define _NAMEDMESSAGEDATAREADERLISTENERIMPI,_H

#include <pthread.h>
#include "exported MessageBoardApplicationDcps.h"
#include "Chat/MessageBoardApplicationWrapper.h"

#include "Chat/MessageBoardApplication/NamedMessageDataReaderListener.h"

class NamedMessageDataReaderListenerImpl : public Chat::MessageBoardApplication: :NamedMessageDatal

11.1. Chatroom Example, C++ Source Code 112

Modeling Guide, Release 2.5.x

{

public:
NamedMessageDataReaderListenerImpl (const Chat::MessageBoardApplicationWrapper* messageBoardApp
void on_data_available (DDS::DataReader_ptr dataReader);
bool isTerminated();

private:
class IsTerminated

{
public:
IsTerminated ()

{
m_isTerminated = true;
pthread_mutex_init (&m_mutex, 0);

virtual ~IsTerminated ()

{

pthread_mutex_destroy (&m_mutex) ;

bool isTerminated ()

{
bool ret;

pthread_mutex_lock (&m_mutex) ;
ret = m_isTerminated;
pthread_mutex_unlock (&m_mutex) ;

return ret;

void setTerminated (bool isTerminated)

{
pthread_mutex_lock (&m_mutex) ;
m_isTerminated = isTerminated;
pthread_mutex_unlock (&m_mutex) ;

private:
pthread mutex_t m mutex;
bool m_isTerminated;

}i
IsTerminated m_isTerminated;
const Chat::MessageBoardApplicationWrapper* m_messageBoardApplication;

Chat: :NamedMessageDataReader_ptr m_namedMsgReader;

bi

#endif // _NAMEDMESSAGEDATAREADERLISTENERIMPIL,_H_

NamedMessageDataReaderListenerimpl.h, Windows Version

NamedMessageDataReaderListenerImpl.h

/**

*

11.1. Chatroom Example, C++ Source Code 113

Modeling Guide, Release 2.5.x

* Copyright (c) 2012 to 2018
+* ADLINK Technology Limited
* All rights Reserved.

* LOGICAL NAME: NamedMessageDataReaderListenerImpl.h

* FUNCTION: Vortex OpenSplice Modeler Tutorial example code.
* MODULE : Tutorial for the C++ programming language.

* DATE January 2012.

FAAAAAAAA A AL A AL A A A A AL A AL I A A A A AR A F A A AR A A A A A A A A A A A A A KA
*
+ This file contains the implementation for the ’MessageBoard’ executable.
*
* %/
#ifndef _NAMEDMESSAGEDATAREADERLISTENERIMPI,_H
#define _NAMEDMESSAGEDATAREADERLISTENERIMPI,_H

#include <Windows.h>

#include "exported MessageBoardApplicationDcps.h"
#include "Chat/MessageBoardApplicationWrapper.h"
#include "Chat/MessageBoardApplication/NamedMessageDataReaderListener.h"

class NamedMessageDataReaderListenerImpl : public Chat::MessageBoardApplication: :NamedMessageDatal
{
public:
NamedMessageDataReaderListenerImpl (const Chat::MessageBoardApplicationWrapper* messageBoardApp
void on_data_available (DDS::DataReader_ptr dataReader);
bool isTerminated();

private:
class IsTerminated

{
public:
IsTerminated ()

{

m_isTerminated = false;
m_mutex = CreateMutex (NULL, FALSE, NULL);

virtual ~IsTerminated()

{

CloseHandle (m_mutex) ;

bool isTerminated()

{
bool ret;

WaitForSingleObject (m_mutex, INFINITE);
ret = m_isTerminated;
ReleaseMutex (m_mutex) ;

return ret;

void setTerminated (bool isTerminated)

{
WaitForSingleObject (m_mutex, INFINITE);
m_isTerminated = isTerminated;
ReleaseMutex (m_mutex) ;

private:

11.1. Chatroom Example, C++ Source Code 114

Modeling Guide, Release 2.5.x

HANDLE m_mutex;
bool m_isTerminated;

}i
IsTerminated m_isTerminated;
const Chat::MessageBoardApplicationWrapper* m_messageBoardApplication;

Chat : :NamedMessageDataReader_ptr m_namedMsgReader;
}i

#endif // _NAMEDMESSAGEDATAREADERLISTENERIMPI,_H_

NamedMessageDataReaderListenerimpl.cpp

NamedMessageDataReaderListenerImpl.cpp

/**
*
+ Copyright (c) 2012 to 2018
* ADLINK Technology Limited
* All rights Reserved.

* LOGICAL_NAME: NamedMessageDataReaderListenerImpl.cpp

* FUNCTION: Vortex OpenSplice Modeler Tutorial example code.
* MODULE : Tutorial for the C++ programming language.

* DATE January 2012.

R e b b b b b b b b b b b i b g b b b b b b b b b b b b b b b b b b i g
*
* This file contains the implementation for the ’MessageBoard’ executable.
*
* %/
#include <iostream>

#include "NamedMessageDataReaderListenerImpl.h"
#include "Chat/MessageBoardApplication/ParticipantWrapper.h"
#include "Chat/MessageBoardApplication/Participant/SubscriberWrapper.h"
#include "Chat/MessageBoardApplication/Participant/Subscriber/NamedMessageDataReaderirapper.h"
#include "CheckStatus.h"
using namespace DDS;
using namespace Chat;
using namespace std;
NamedMessageDataReaderListenerImpl: :NamedMessageDataReaderListenerImpl (
const Chat::MessageBoardApplicationWrapper* messageBoardApplication)
m_messageBoardApplication (messageBoardApplication),
m_namedMsgReader (messageBoardApplication->getParticipantWrapper () —>getSubscriberWrapper (
m_isTerminated.setTerminated (true);
void NamedMessageDataReaderListenerImpl::on_data_available (

DDS: :DataReader_ptr dataReader)

NamedMessageSeq namedMsgSeq;
DDS: :SampleInfoSeq infoSeq;

m_isTerminated.setTerminated (false);

11.1. Chatroom Example, C++ Source Code 115

Modeling Guide, Release 2.5.x

int status = m_namedMsgReader->take (namedMsgSeq, infoSeq, LENGTH_UNLIMITED,
NOT_READ_SAMPLE_STATE, ANY VIEW_STATE, ALIVE_INSTANCE_STATE);
checkStatus (status, "Chat::NamedMessageDataReader::read");

/+ For each message, print the message */
for (unsigned int i = 0; i < namedMsgSeq.length(); 1i++)

{

cout << namedMsgSeq[i].userName << ": " << namedMsgSeq[i].content << endl;

status = m_namedMsgReader->return_loan (namedMsgSeq, infoSeq);
checkStatus (status, "Chat::NamedMessageDataReader::return_loan");

m_isTerminated.setTerminated (true);

bool NamedMessageDataReaderListenerImpl::isTerminated ()

{

return m_isTerminated.isTerminated();

11.1.3 UserLoad Application

UserLoadApplication.cpp, Linux Version

UserLoadApplication.cpp

/**
*
+ Copyright (c) 2012 to 2018
* ADLINK Technology Limited
* All rights Reserved.

* LOGICAL_NAME: UserLoadApplication.cpp

* FUNCTION: Vortex OpenSplice Modeler Tutorial example code.
* MODULE : Tutorial for the C++ programming language.

* DATE January 2012.

R e e b b b b b b b b b b i b g b b b b b b b b b g b b i b b b b b b o g

*

* This file contains the implementation for the ’UserLoadApplication’ executable.
*

* %/

#include <iostream>
#include <sstream>

#include <unistd.h>
#include <string.h>
#include <pthread.h>
#include <assert.h>

#include "UserLoadApplication.h"
#include "CheckStatus.h"

using namespace std;
using namespace DDS;

using namespace Chat;

/* entities required by all threads. x/

11.1. Chatroom Example, C++ Source Code 116

Modeling Guide, Release 2.5.x

static DDS::GuardCondition_ptr escape;

/+ Sleeper thread: sleeps 60 seconds and then triggers the WaitSet. */
void x delayedEscape (void xarg) {
DDS: :ReturnCode_t status;

sleep (60); /* wait for 60 sec. */
status = escape->set_trigger_value (TRUE) ;
checkStatus (status, "DDS::GuardCondition::set_trigger_value");

return NULL;

int main(int argc, char xargv([]) {
/+ DDS Identifiers x/
ReturnCode_t status;
ConditionSeqg guardList;

ChatMessageSeq msgList;
NameServiceSeq nsList;
SampleInfoSeq infoSeq;
SampleInfoSeq infoSeqg2;

/* Others */
StringSeq args;

bool closed = false;
Long prevCount = 0;
pthread t tid;

UserLoadApplicationWrapperImplementation userLoadApplication;

/+ Initialize the Query Arguments. */
args.length(1l);
args[0UL] = "O";

try {
userLoadApplication.getQueryConditionWrapper () —>setQueryParameters (args) ;

/#* Initialize the application */
userLoadApplication.start ();

} catch (WrapperException& e) {
cout << "Error while initializing the application:" << endl;
cout << e.what () << endl;
return -1;

try {

/* start the WaitSet «/

userLoadApplication.getUserLoadWaitSetWrapper () —>start () ;
} catch (WrapperException& e) {

cout << "Error while starting the WaitSet:" << endl;

cout << e.what () << endl;

userLoadApplication.stop();

return -1;

WaitSet_ptr userLoadWS = userLoadApplication.getUserLoadWaitSetWrapper () -—>getWaitSet ();

/* Generic DDS entities */
LivelinessChangedStatus livChangStatus;

escape = userLoadApplication.getGuardConditionWrapper () ->getCondition();

11.1. Chatroom Example, C++ Source Code 117

Modeling Guide, Release 2.5.x

/+ Type—-specific DDS entities =/

NameServiceDataReader_ptr nameServer = userlLoadApplication.getParticipantWrapper () ->getSubscril

ChatMessageDataReader_ptr loadAdmin = userLoadApplication.getParticipantWrapper ()->getSubscrib

QueryCondition_ptr singleUser = userLoadApplication.getQueryConditionWrapper ()->getCondition ()
ReadCondition_ptr newUser = userLoadApplication.getReadConditionWrapper () ->getCondition();
StatusCondition_ptr leftUser = userlLoadApplication.getStatusConditionWrapper () ->getCondition (

/+ Initialize and pre—allocate the GuardList used to obtain the triggered Conditions. #*/

guardList.length (3);

/+ Remove all known Users that are not currently active. #*/
status = nameServer—->take (

nsList,
infoSeq,

LENGTH_UNLIMITED,
ANY_SAMPLE_STATE,

ANY_VIEW_STATE,

NOT_ALIVE_INSTANCE_STATE) ;

checkStatus (status,

"Chat: :NameServiceDataReader: :take");

status = nameServer->return_loan (nsList, infoSeq);

checkStatus (status,

"Chat: :NameServiceDataReader: :return_loan");

/+ Start the sleeper thread #*/
pthread_create (&tid, NULL, delayedEscape, NULL);

while (!closed) {

/* Wait until at least one of the Conditions in the waitset triggers. */
status = userLoadWS->wait (guardList, DURATION_INFINITE) ;

checkStatus (status,

"DDS::WaitSet::wait");

/% Walk over all guards to display information #*/

for (ULong 1 = 0;

i < guardList.length(); i++) {

if (guardList[i].in() == newUser) {
/% The newUser ReadCondition contains data */
status = nameServer->read_w_condition (nsList, infoSeq,
LENGTH_UNLIMITED, newUser);
checkStatus (status,
"Chat::NameServiceDataReader: :read_w_condition");

for (ULong j = 0; j < nsList.length(); J++) {

cout <<

}

"New user: " << nsList[j].name << endl;

status = nameServer->return_loan(nsList, infoSeq);
checkStatus (status, "Chat::NameServiceDataReader::return_loan");

} else if (guardList[i].in() == leftUser) {
/+ Some liveliness has changed (either a DataWriter joined or a DataWriter left) x/

status

= loadAdmin->get_liveliness_changed_status (livChangStatus);

checkStatus (status,
"DDS: :DataReader::get_liveliness_changed_status");

if (livChangStatus.alive_count < prevCount) {
/+ A user has left the ChatRoom, since a DataWriter lost its liveliness */
/* Take the effected users so tey will not appear in the list later on. */

status =

nameServer—->take (nsList, infoSeq,

LENGTH_UNLIMITED, ANY_SAMPLE_STATE, ANY_VIEW_STATE,
NOT_ALIVE_INSTANCE_STATE) ;
checkStatus (status, "Chat::NameServiceDataReader::take");

for (ULong j

= 0; j < nsList.length(); j++) {

11.1. Chatroom Example, C++ Source Code 118

Modeling Guide, Release 2.5.x

} /% for x/

/* re—apply query arguments #*/
ostringstream numberString;
numberString << nsList[j].userID;
args[0UL] = numberString.str().c_str();
status = singleUser->set_query_parameters (args);
checkStatus (status,
"DDS: :QueryCondition: :set_query_parameters");

/* Read this users history =/

status = loadAdmin->take_w_condition (msgList, infoSeqg2,
LENGTH_UNLIMITED, singleUser);

checkStatus (status,
"Chat::ChatMessageDataReader: :take_w_condition");

/+* Display the user and his history x/
cout << "Departed user " << nsList[j].name
<< " has sent " << msgList.length ()
<< " messages." << endl;
status = loadAdmin->return_loan (msgList, infoSeqg2);
checkStatus (status,
"Chat::ChatMessageDataReader: :return_loan") ;

status = nameServer->return_loan(nsList, infoSeq);
checkStatus (status,

"Chat : :NameServiceDataReader: :return_loan");

prevCount = livChangStatus.alive_count;
} else if (guardList[i].in() == escape) {
cout << "UserLoad has terminated." << endl;

closed = true;

assert (0);

} /* while (!closed) =/

try {

/+* Stop the application #*/
userLoadApplication.stop ();
} catch (WrapperExceptioné& e) {

cout <<

"Error while stopping the application:" << endl;

cout << e.what () << endl;

return -1;

return 0;

UserLoadApplication.cpp, Windows Version

UserLoadApplication.cpp

/**

*

* Copyright (c) 2012 to 2018
* ADLINK Technology Limited
* All rights Reserved.

*

11.1. Chatroom Example, C++ Source Code

119

Modeling Guide, Release 2.5.x

* LOGICAL NAME: UserLoadApplication.cpp

* FUNCTION: Vortex OpenSplice Modeler Tutorial example code.
* MODULE : Tutorial for the C++ programming language.

* DATE January 2012.

EE i b b i b b b b b b i b b b b b b i b b i b i b b i b b b b b b b b i b i b b i b b i b g i b b b i b b i b b i b i i b i i
*

* This file contains the implementation for the ’UserLoadApplication’ executable.
*

* k%)

#include <iostream>
#include <sstream>
#include <string.h>
#include <assert.h>

#include "UserLoadApplication.h"
#include "CheckStatus.h"

using namespace std;
using namespace DDS;
using namespace Chat;

/+ entities required by all threads. x/
static DDS::GuardCondition_ptr escape;

/+ Sleeper thread: sleeps 60 seconds and then triggers the WaitSet. */
DWORD WINAPI
delayedEscape (

LPVOID arg)

DDS: :ReturnCode_t status;

Sleep (60000) ; /+ wait for 60 sec. =/
status = escape->set_trigger_value (TRUE) ;
checkStatus (status, "DDS::GuardCondition::set_trigger_value");

return 0;

int main(int argc, char xargv[]) {
/% DDS Identifiers =/
ReturnCode_t status;
ConditionSeqg guardList;

ChatMessageSeq msgList;
NameServiceSeq nsList;
SampleInfoSeq infoSeq;
SampleInfoSeq infoSeqg2;

/% Others #*/
StringSeq args;

bool closed = false;

Long prevCount = 0;

DWORD tid;

HANDLE tHandle = INVALID_HANDLE_VALUE;

UserLoadApplicationWrapperImplementation userLoadApplication;
/+ Initialize the Query Arguments. */

args.length(1l);
args[0UL] = "O";

11.1. Chatroom Example, C++ Source Code 120

Modeling Guide, Release 2.5.x

try {
userLoadApplication.getQueryConditionWrapper () —>setQueryParameters (args) ;

/#* Initialize the application */
userLoadApplication.start ();

} catch (WrapperException& e) {
cout << "Error while initializing the application:" << endl;
cout << e.what () << endl;
return -1;

try {

/* start the WaitSet «/

userLoadApplication.getUserLoadWaitSetWrapper () —>start () ;
} catch (WrapperException& e) {

cout << "Error while starting the WaitSet:" << endl;

cout << e.what () << endl;

userLoadApplication.stop();

return -1;

WaitSet_ptr userLoadWS = userLoadApplication.getUserLoadWaitSetWrapper () ->getWaitSet ();

/+ Generic DDS entities #*/
LivelinessChangedStatus livChangStatus;

escape = userlLoadApplication.getGuardConditionWrapper () ->getCondition();

/+ Type—-specific DDS entities x/

NameServiceDataReader_ptr nameServer = userLoadApplication.getParticipantWrapper ()->getSubscril
ChatMessageDataReader_ptr loadAdmin = userLoadApplication.getParticipantWrapper ()->getSubscrib
QueryCondition_ptr singleUser = userlLoadApplication.getQueryConditionWrapper () ->getCondition ()
ReadCondition_ptr newUser = userLoadApplication.getReadConditionWrapper () ->getCondition();
StatusCondition_ptr leftUser = userLoadApplication.getStatusConditionWrapper () ->getCondition ()

/+ Initialize and pre-allocate the GuardList used to obtain the triggered Conditions. #*/
guardList.length (3);

/+ Remove all known Users that are not currently active. #*/
status = nameServer—->take (

nsList,

infoSeq,

LENGTH_UNLIMITED,

ANY_SAMPLE_STATE,

ANY_VIEW_STATE,

NOT_ALIVE_INSTANCE_STATE) ;
checkStatus (status, "Chat::NameServiceDataReader::take");
status = nameServer->return_loan (nsList, infoSeq);
checkStatus (status, "Chat::NameServiceDataReader::return_loan");

/+ Start the sleeper thread */
tHandle = CreateThread(NULL, 0, delayedEscape, NULL, 0, &tid);

while (!closed) {
/* Wait until at least one of the Conditions in the waitset triggers. */
status = userLoadWS->wait (guardList, DURATION_INFINITE) ;
checkStatus (status, "DDS::WaitSet::wait");

/* Walk over all guards to display information #*/
for (ULong i = 0; i < guardList.length(); i++) {
if (guardList[i].in() == newUser) {
/% The newUser ReadCondition contains data */
status = nameServer->read_w_condition (nsList, infoSeq,

11.1. Chatroom Example, C++ Source Code 121

Modeling Guide, Release 2.5.x

LENGTH_UNLIMITED, newUser);
checkStatus (status,
"Chat: :NameServiceDataReader::read_w_condition");

for (ULong j = 0; J < nsList.length(); j++) {
cout << "New user: " << nsList[]j].name << endl;
}
status = nameServer->return_loan(nsList, infoSeq);
checkStatus (status, "Chat::NameServiceDataReader::return_loan");

} else if (guardList[i].in() == leftUser) {
/+ Some liveliness has changed (either a DataWriter joined or a DataWriter left) =/
status
= loadAdmin->get_liveliness_changed_status (livChangStatus);
checkStatus (status,
"DDS: :DataReader::get_liveliness_changed_status");

if (livChangStatus.alive_count < prevCount) {
/+ A user has left the ChatRoom, since a DataWriter lost its liveliness */
/* Take the effected users so tey will not appear in the list later on. */

status = nameServer->take (nsList, infoSeq,
LENGTH_UNLIMITED, ANY_SAMPLE_STATE, ANY_VIEW_STATE,
NOT_ALIVE_INSTANCE_STATE) ;

checkStatus (status, "Chat::NameServiceDataReader::take");

for (ULong j = 0; j < nslList.length(); j++) {
/* re—-apply query arguments */
ostringstream numberString;
numberString << nsList[j].userID;
args [0UL] = numberString.str().c_str();
status = singleUser->set_query_parameters (args);
checkStatus (status,
"DDS: :QueryCondition: :set_query_parameters");

/#* Read this users history */

status = loadAdmin->take_w_condition (msgList, infoSeqg2,
LENGTH_UNLIMITED, singleUser);

checkStatus (status,
"Chat::ChatMessageDataReader: :take_w_condition");

/+* Display the user and his history x/
cout << "Departed user " << nsList[j].name
<< " has sent " << msgList.length ()
<< " messages." << endl;
status = loadAdmin->return_loan (msgList, infoSeqg2);
checkStatus (status,
"Chat::ChatMessageDataReader: :return_loan") ;
}
status = nameServer->return_loan(nsList, infoSeq);
checkStatus (status,
"Chat: :NameServiceDataReader: :return_loan");
}

prevCount = livChangStatus.alive_count;

} else if (guardList[i].in() == escape) {
cout << "UserLoad has terminated." << endl;
closed = true;
} else {
assert (0);
}i
} /% for x/
} /+ while (!closed) =/

11.1. Chatroom Example, C++ Source Code 122

Modeling Guide, Release 2.5.x

try {
/* Stop the application x/
userLoadApplication.stop ();
} catch (WrapperException& e) {
cout << "Error while stopping the application:" << endl;
cout << e.what () << endl;
return -1;

CloseHandle (tHandle) ;

return 0O;

CheckStatus.h

CheckStatus.h

/**
*
* Copyright (c) 2012 to 2018
* ADLINK Technology Limited
* All rights Reserved.

* LOGICAIL NAME : CheckStatus.h

* FUNCTION: Vortex OpenSplice Modeler Tutorial example code.
* MODULE : Tutorial for the C++ programming language.

* DATE January 2012.

LR b i g b b b b b b b b b b b b b g b b b b b b b b g b b b b g b b b b b b b g b b b b g b b b b g b b b b b b b b b b b b g b b b g g

* This file contains the headers for the error handling operations.
*

YA

#ifndef _ CHECKSTATUS H
#define _ CHECKSTATUS H

#include "ccpp_dds_dcps.h"
#include <iostream>

J ok k
* Returns the name of an error code.
* %/

char *getErrorName (DDS::ReturnCode_t status);

Ve
* Check the return status for errors. If there is an error, then terminate.
* %/

void checkStatus (DDS: :ReturnCode_t status, const char *info);

J ko
* Check whether a valid handle has been returned. If not, then terminate.
* %/

void checkHandle (void xhandle, char xinfo);

#endif

11.1. Chatroom Example, C++ Source Code 123

Modeling Guide, Release 2.5.x

CheckStatus.cpp

CheckStatus.cpp

/**

Copyright (c) 2012 to 2018
ADLINK Technology Limited

* % %

+ All rights Reserved.

*

* LOGICAIL_NAME: CheckStatus. cpp

* FUNCTION: Vortex OpenSplice Modeler Tutorial example code.
* MODULE : Tutorial for the C++ programming language.

* DATE January 2012.

E b b b b b b b b b e b b b b b e b b e b b b b e b b b b e b b e b b b b e e e b e e b i e b b b b b b b b e b b b b b b b i i

*

* This file contains the implementation for the error handling operations.

*
*xk /)

#include "CheckStatus.h"
using namespace std;

/+ Array to hold the names for all ReturnCodes. */

char *RetCodeName[13] = {
"DDS_RETCODE_OK",
"DDS_RETCODE_ERROR",
"DDS_RETCODE_UNSUPPORTED",
"DDS_RETCODE_BAD_PARAMETER",
"DDS_RETCODE_PRECONDITION_NOT_MET",
"DDS_RETCODE_OUT_OF_RESOURCES",
"DDS_RETCODE_NOT_ENABLED",
"DDS_RETCODE_IMMUTABLE_POLICY",
"DDS_RETCODE_INCONSISTENT_POLICY",
"DDS_RETCODE_ALREADY_DELETED",
"DDS_RETCODE_TIMEOUT",
"DDS_RETCODE_NO_DATA",
"DDS_RETCODE_ILLEGAL_OPERATION" };

/%
* Returns the name of an error code.
* %/
char *getErrorName (DDS::ReturnCode_t status)

{

return RetCodeName [status];

J x
* Check the return status for errors. If there is
* %/
void checkStatus (
DDS: :ReturnCode_t status,

an error,

then terminate.

const char *info) {

if (status != DDS::RETCODE_OK && status != DDS::RETCODE_NO_DATA) {
cerr << "Error in " << info << ": " << getErrorName (status) << endl;
exit (0);

J ok k

11.1. Chatroom Example, C++ Source Code

124

Modeling Guide, Release 2.5.x

* Check whether a valid handle has been
* %/
void checkHandle (
void xhandle,

returned.

If not, then terminate.

char ~info) {
if (!'handle) {
cerr << "Error in " << info << ": Creation failed: invalid handle" << endl;
exit (0);
}
}
11.1. Chatroom Example, C++ Source Code 125

12

Contacts & Notices

12.1 Contacts

ADLINK Technology Corporation
400 TradeCenter

Suite 5900

Woburn, MA

01801

USA

Tel: +1 781 569 5819

ADLINK Technology Limited
The Edge

5th Avenue

Team Valley

Gateshead

NE11 0XA

UK

Tel: +44 (0)191 497 9900

ADLINK Technology SARL
28 rue Jean Rostand

91400 Orsay

France

Tel: +33 (1) 69 015354

Web: http://ist.adlinktech.com/

Contact: http://ist.adlinktech.com

E-mail: ist_info@adlinktech.com

LinkedIn: https://www.linkedin.com/company/79111/
Twitter: https://twitter.com/ADLINKTech_usa
Facebook: https://www.facebook.com/ADLINKTECH

12.2 Notices

Copyright © 2018 ADLINK Technology Limited. All rights reserved.

126

http://ist.adlinktech.com/
http://ist.adlinktech.com
mailto:ist_info@adlinktech.com
https://www.linkedin.com/company/79111/
https://twitter.com/ADLINKTech_usa
https://www.facebook.com/ADLINKTECH

Modeling Guide, Release 2.5.x

This document may be reproduced in whole but not in part. The information contained in this document is subject
to change without notice and is made available in good faith without liability on the part of ADLINK Technology
Limited. All trademarks acknowledged.

12.2. Notices 127

	Preface
	About The Modeling Guide
	Intended Audience
	Organisation
	Conventions

	Introduction
	Installation
	General Installation Instructions
	Setting Vortex OpenSplice Preferences
	Uninstallation Instructions

	Modeler Described
	Overview
	The Modeler GUI
	Creating and Using a Vortex OpenSplice Project
	Project Components
	Specialized Editors

	Modeling
	Information Modeling
	Application Modeling

	Code Generation
	Saving to Eclipse Projects
	Exporting Applications
	Java Code Generation
	C++ Code Generation

	Creating Launch Configurations
	Creating and Running an OSPL start Launch Configuration
	Creating and Running an OSPL stop Launch Configuration

	Compiling and Running
	Compiling
	Running

	Tutorial
	Example Chatroom Overview
	Creating the Chatroom

	Appendix A
	A Chatroom Example, Java Source Code

	Appendix B
	Chatroom Example, C++ Source Code

	Contacts & Notices
	Contacts
	Notices

