A _ADLINK

R EX
PLICE

Vortex OpenSplice
RnR APl Reference

Release 6.x

Contents

Preface

1.1 About The Record and Replay API Reference
1.2 Intended Audience
1.3 Organisation o vt i e e e e e e e e e e e e e e e
1.4 ConventionS v i v i v i e e e e e e e e e e e e e e
Introduction

2.1 Features o o i e e e e e e
Scenarios

3.1 Different versions of the scenario topic e
3.2 BuiltinScenario e e
33 Commanddurability e
Topic API Overview

4.1 Record & Replay topics o o e e e e e e
4.2 Relevant QoS settings L e
43 Command Type o o e e e
4.4 Status TYPES . . o o o e e e e
4.5 Storage StatiStiCsS o L. e e e e e e
4.6 Miscellaneous Types o o o e e e e e e

Known Issues
5.1 Ability to create topiCs v v vt e

Impact on DDS Domain
6.1 INMrUSIVENESS v v v o e

Appendix A
7.1 RnR Topic API IDL specification it

References

Contacts & Notices
0.1 ContactS v e e e e e e e
0.2 NOUCES . . o v e e e e e e

— e e

15
15

16
16

17
17

25

Preface

1.1 About The Record and Replay API Reference

The Record and Replay (RnR) API Reference provides a complete description of the functions available via the
API of the OpenSplice Record and Replay Service (RnR Service).

This API Reference is intended to be used after the Vortex OpenSplice software including the RnR Service has
been installed on the network and configured according to the instructions in the Vortex OpenSplice Getting
Started Guide.

1.2 Intended Audience

The API Reference is intended to be used by all Record and Replay Service users, including programmers, testers,
system designers and system integrators.

1.3 Organisation

The Introduction gives an overview of the purpose and design of the Record and Replay Service.

The Scenarios section explains the key concept of the ‘scenario’ used in the RnR Service.

All of the functions of the RnR Service are then described in full detail.

There is a (very short) list of known issues which describes current limitations of the RnR Service.

The next section describes how the RnR Service is designed to minimize its infrusiveness on existing systems.
The RnR Topic API IDL specification contains the complete IDL definition of the RnR Service API.

Finally, there is a bibliography which lists all of the publications referred to in this Guide.

1.4 Conventions

The icons shown below are used in ADLINK product documentation to help readers to quickly identify informa-
tion relevant to their specific use of Vortex OpenSplice.

Vortex OpenSplice RnR API Reference, Release 6.x

Meaning

Q
S
3

Item of special significance or where caution needs to be taken.

Item contains helpful hint or special information.

Windows Information applies to Windows (e.g. XP, 2003, Windows 7) only.

Information applies to Unix-based systems (e.g. Solaris) only.

Information applies to Linux-based systems (e.g. Ubuntu) only.

C language specific.

+

C++ language specific.

o)
+*

C# language specific.

SEREAGRE

Java

Java language specific.

1.4. Conventions 2

Introduction

The Vortex OpenSplice * Record and Replay Service *is a pluggable service of the Vortex OpenSplice middleware

which is capable of recording and/or replaying DDS data-sets (i.e. topic-samples) in a DDS system.

As a DDS service, the Record and Replay Service (RnR Service, or just RnR) benefits from the inherent ‘decou-
pling in time and space’ that the DDS architecture offers, with respect to automatic discovery of the service’s
dynamic interest in subscribing or publishing data as well as the transparent routing of information to/from the

service.

The RnR Service operates in conjunction with storages, which can be configured statically in a configuration file
or dynamically through interaction with the service. To interact with the service, a command-topic and various

status-topics are available.

2.1

Features

You can use the Record and Replay Service to:

Control and monitor the service using regular DDS topics.

Use expressions with wildcards to select partitions and topics of interest, for record and/or replay.
Store data in XML records for easy post-analysis and data-mining.

Store data in CDR records for a smaller footprint and high throughput.
Create scenarios, grouping multiple commands into a logical set.

Use replay filters to replay only the data recorded in a specific time-range.
Use conditions to delay the execution of a command.

Subscribe to statistics on the data that is replayed and/or recorded.
Dynamically change the speed at which data is replayed.

Modify the QoS settings of recorded data on-the-fly during replay
Modify the partition of recorded data on-the-fly during replay

Scenarios

The actions of a Record and Replay service are organized in scenarios.

A scenario is an instance of the scenario topic, a group of commands sharing the same scenarioName. Each
service subscribes to the command topic and uses a content filter to only process commands with an rnrId
matching the service name (or *).

It is possible to create an intricate nesting of scenarios by defining a scenario that includes control commands
targeting other scenarios.

3.1 Different versions of the scenario topic

Starting with Vortex OpenSplice V6.5.2, the Record and Replay service provides two versions of the scenario
topic: rr_scenarioand rr_scenario_v2. Thenew rr_scenario_v?2 topicis contained in the RnR_V2
IDL module, please see the RnR Topic API IDL specification in the Appendix for details of the changes between
the original and version 2 of the data-model. Both versions will co-exist until a major version upgrade allows the
merging of all features into a single module and topic. This will probably coincide with a migration of the data-
model to Google Protocol Buffers (GPB) or a different extensible type scheme supported by Vortex OpenSplice
at that time.

The original topic is still supported for backwards compatibility with applications developed for a previous version
of OpenSplice or Record and Replay scenarios stored for re-use, i.e. in a persistent store. Also, because of the
nature of the RnR service, the topic definitions of RnR may have been introduced in production environments
that cannot easily be upgraded and/or restarted to replace the old topics with new ones. A topic mis-match would
prevent a new version of RnR from starting on any node attached to the same domain. In those circumstances
a new topic using new type-names is the only viable approach to support new RnR features. Transformations
(partition, QoS) of data during replay are only available on the rr_scenario_v2 topic because these new
features require an extension of the ADD_REPLAY and REMOVE_REPLAY commands.

The next chapter describes all command-types, highlighting differences between the original and version 2.

Since all original features are also available using the rr_scenario_v2 topic, it is not recommended to mix
usage of the two topics in a single application. The service does support scenarios that use both original and
V2 commands but order preservation cannot be guaranteed, since a scenario is no longer contained in a single
instance but is in two instances on two different topics, necessitating two individual readers. In practice this
can only introduce order reversal of commands when both rr_scenario and rr_scenario_v2 commands
arrive at the same time.

3.2 BuiltinScenario

Since commands are targeted at a service and a scenario, the service must start an initial scenario. If not, there
wouldn’t be anything to address commands to.

Vortex OpenSplice RnR API Reference, Release 6.x

During startup, the service starts this initial scenario, called the BuiltinScenario. This is a special scenario
that is always running while the service is operational. It serves as the starting hook for any new scenarios. To
run a new scenario, a start command must be published for the BuiltinScenario. Like any scenario, the
BuiltinScenario can also process other commands like record and/or replay commands.

A Note that the BuiltinScenario can not be stopped.

Since one can assume that the Built inScenario is always available and running, it is a safe choice to address
config and control commands to the BuiltinScenario. In a dynamic and distributed environment, in which
DDS is regularly used, this can be especially helpful when interacting with the service through scripts or perhaps
when injecting commands stored in a persistent store.

3.3 Command durability

The command subscriber of the service is capable to read commands of any durability (VOLATILE, TRANSIENT,
PERSISTENT). If commands are published with a transient and/or persistent durability, it is important to under-
stand that these commands are managed by the middleware in addition to the service. Immediately after a scenario
is started, any commands still managed by the middleware in transient or persistent stores are delivered to the ser-
vice and processed as part of the scenario.

A This is of special importance when ‘re-starting’ scenarios. Note that a scenario, strictly, is not restarted.
It is removed and a new scenario with an identical name is created. If any of the commands of the original
scenario were published (whether transient or persistent), these are delivered and processed again by the
new scenario.

Since transient and persistent commands exist in the middleware and are not stored or processed by the service
as long as the corresponding scenario isn’t started, the start command for a scenario does not have to be pub-
lished before the scenario is defined, as one might assume. By changing the durability of different commands
compromising a scenario, advanced use cases are possible using relatively simple scenarios.

3.3. Command durability 5

Topic API Overview

The RnR Service can be controlled and monitored using a DDS topic API. All topics are in a separate DDS
partition called RecordAndReplay.

4.1 Record & Replay topics

Name Type Purpose

rr_scenario RnR: : Command Controlling the Record and Replay
service

rr_scenario_v2 RnR_V2::Command Controlling the Record and Replay
service (version 2)

rr_scenarioStatus RnR: :ScenarioStatus Monitoring status of scenarios

rr_serviceStatus RnR::ServiceStatus Monitoring status of services

rr_storageStatus RnR::StorageStatus Monitoring status of storages

rr_storageStatistics RnR::StorageStatistics | Monitoring data-characteristics of
storages

4.2 Relevant QoS settings

The following table shows the topic QoS parameters that deviate from the default DDS topic QoS, for the topics
used by the Record and Replay Service.

Policy Scenario Topic Status + Statistics Topics

DurabilityQosPolicy PERSISTENT TRANSIENT

DurabilityServiceQosPolicy KEEP_ALL KEEP_LAST (with

=> HistoryQosPolicy DEPTH=1)

ReliabilityQosPolicy RELIABLE RELTABLE

HistoryQosPolicy KEEP_ALL KEEP_LAST (with
DEPTH=1)

This enables readers and writers to use the copy_from_topic_gos () operations or the USE_TOPIC_QOS
convenience macro to create a reader or writer that is compatible with the topics created by the service. Further-
more the status topic writers use a KEEP_ALL history QoS so readers can get a full overview of all status updates
instead of only the last state. The scenario readers are created with a VOLATILE durability so they are also able
to read samples produced by a VOLATILE writer in addition to TRANSIENT and PERSISTENT writers.

The corresponding IDL code can be found in the RnR Topic API specification.
ﬂ Note that the IDL and diagrams in this section describe the full API. The other sections of this manual

describe only the features that have been implemented in the current release of the RnR Service, and omit
all members that will be implemented in future releases.

Vortex OpenSplice RnR API Reference, Release 6.x

4.3 Command Type

Command Topic

command add_replay_command
rorid : String K———————storage : String
{4 <<key>>scenarioName : String interestExpr : sequence<String>
conditions : sequence<Condition>] blacklistExpr : sequence<String>
timeExpr : sequence<TimeRange>
~ filterExpr : sequence<String>
useOriginalTimestamps : boolean
skipToFirstSample : boolean
transformations : sequence<KeyValue>

remove_replay_command

storage : String

interestExpr : sequence<String>
istExpr : sequence<String>

timeExpr : sequence<TimeRange>

filterExpr : sequence<String>

transformations : sequence<KeyValue>

start_command suspend_command truncate_command generic_command add_record_command
name : String name : String storage : String extCommands : sequence<String> storage : String

interestExpr : sequence<String>
blacklistExpr : sequence<String>

stop_command EBlioplayspeed_command config_command filterExpr : sequence<String>
3 storage : String " excludedAttributeExpr : sequence<String>
name : String speed : float config : sequence<KeyValue>

remove_record_command

storage : String

interestExpr : sequence<String>
blacklistExpr : sequence<String>
filterExpr : sequence<String>
exludedAttributeExpr : sequence<String>

The command type, used by the rr_scenario and rr_scenario_v2 topics, contains a union that allows
the command kind to be set. Depending on the command kind, certain members are available that apply only to a
specific type of command.

The following command kinds can be set when creating a command:
START_SCENARIO_COMMAND Start a scenario (or continue a paused scenario).
STOP_SCENARIO_COMMAND Stop a running scenario.
SUSPEND_SCENARIO_COMMAND Suspend processing of new commands in a running scenario.
CONFIG_COMMAND Modify the runtime configuration of a RnR service.
SETREPLAYSPEED_COMMAND Change the replay-speed of a storage.
TRUNCATE_COMMAND Remove data from a storage.
ADD_RECORD_COMMAND Specify interest to record data to a storage.
REMOVE_RECORD_COMMAND Remove record-interest from a storage.
ADD_REPLAY_COMMAND Specify interest to replay data from a storage.
REMOVE_REPLAY_COMMAND Remove replay-interest from a storage.

There are a number of common properties that are shared by all commands:

rorld The rnrId is used to address the command to a specific RnR service. It should match the name attribute
of the service tag in the OpenSplice configuration. The middleware uses this identifier to resolve the config-
uration options that apply to the service. A RnR service only accepts commands with an rnrld that matches
its service-name. An asterisk = can be used as rnrld for commands targeted at all available RnR services in
a domain.

scenarioName The scenarioName is the key of the scenario topic. It is used to uniquely identify a specific
scenario instance of which all samples (commands) together make up the scenario. For more information
about scenarios, please see the section on Scenarios.

conditions Optionally one or more conditions can be attached to a command. The command is only processed
when all conditions are met.

L]
Currently only one kind of condition is supported: the time-stamp condition. Future extensions will
add other kinds of conditions which is the reason why the API supports attaching multiple conditions to a
command.

4.3. Command Type 7

Vortex OpenSplice RnR API Reference, Release 6.x

4.3.1 Control commands

Some kinds of commands are used to control the running state of a scenario: the start, stop and suspend commands.
These all have a single member.

name The name of the target scenario to control.

A Do not confuse this with scenarioName, which is the name of the scenario that will process the
command.

START_SCENARIO_COMMAND Instructs the service to start processing scenario name. The service will
publish a status update that changes the state of the scenario to RUNNING. If the target scenario is already
known to the service, and is in the suspended state, a start command causes the scenario to resume process-
ing commands, changing the scenario status from PAUSED to RUNNING.

SUSPEND_SCENARIO_COMMAND Suspends the processing of commands by the scenario. This allows
applications to submit a number of commands to a scenario, without any immediate effects. When the
scenario is resumed all new commands are processed as if they were published in a batch while in reality
they may have been published with varying intervals.

STOP_SCENARIO_COMMAND Stops the execution of a scenario, including any recording and/or replaying
that was defined as part of that scenario.

A It is important to understand that a scenario, once stopped, cannot be started again. However, it is possible to
start a new scenario with the same name as the stopped scenario. If any commands of the original scenario
were published as transient data they will be delivered to and processed by the new scenario, giving the
impression that the scenario has been re-started.

4.3.2 Config command

Config commands are used to modify the runtime configuration of a RnR service.
config A sequence of KeyValue objects.

A configcommand can be used to add a storage to the service or modify properties of an existing storage. Stor-
ages can also be configured in the OpenSplice configuration file, but config commands provide the opportunity
to create and configure storages dynamically.

A single config command can apply to multiple storages, if the config sequence consists of multiple elements.
The key of the KeyValue object should always be Storage.

ﬂ Currently, only storages can be manipulated by con f i g commands but future versions may enable config
commands to modify other aspects of the service, using different keys.

The value for Storage configuration data is a string describing the storage in XML notation. The format of this
XML string is identical to the XML used in the configuration file (created by the OpenSplice configuration tool).

An example:

command {
scenarioName = “MyScenario”,
rnrId = “MyService”,
conditions = NULL,
kind = CONFIG_COMMAND,
config[0] .keyval = “Storage”,
config[0] .sValue = “<Storage name=’MyStorage’>
<rr_storageAttrXML>
<filename>my-storage.dat</filename>
</rr_storageAttrXML>
<Statistics enabled="true” publish_interval="30"/>
</Storage>"

4.3. Command Type 8

Vortex OpenSplice RnR API Reference, Release 6.x

When a config command is issued for an existing storage, the storage properties are modified accordingly.

A Note that storage attributes can only be changed when a storage is unused: it cannot be in the OPEN state
(see Storage Status). Properties related to statistics can be modified while the storage is in use.

4.3.3 ADD_RECORD_COMMAND

This command is used to add interest to record certain DDS data.
Mandatory properties:

storage The name of the storage in which the data has to be stored. If the storage cannot be resolved the command
is ignored.

Available storages can be determined by subscribing to the StorageStatus topic.

interestExpr A sequence of strings that describe the record interest. Each expression is a partition-topic combi-
nation where the partition- and topic-expression are separated by a period (‘.’). Wildcards are supported:
‘2’ to match a single character and ‘=’ to match any number of characters. If expressions overlap, even
if only partially, data will only be recorded once.

4.3.4 REMOVE_RECORD_COMMAND

This command mirrors the add record command and is used to remove record interest from a storage.
Mandatory properties:
storage The name of the storage of which record-interest is removed.

interestExpr The interest expressions describing the record interest to remove.

A Note that these interest expressions need to match those used previously in an add record command.

4.3.5 ADD_REPLAY_COMMAND

This command is similar to a record command but adds interest to replay data to the Record and Replay service.
Mandatory properties:

storage The name of the storage from which the data will be replayed. If the storage cannot be resolved the
command is ignored.

Available storages can be determined by subscribing to the StorageStatus topic.

interestExpr A sequence of strings that describe the replay interest. Each expression is a partition-topic combi-
nation where the partition- and topic-expression are separated by a period (.’). Wildcards are supported:
‘2’ to match a single character and =+’ to match any number of characters. If expressions overlap, even
if only partially, data will only be recorded once.

Optional properties:

timeExpr A sequence of time-ranges that are used in combination with the interest expressions to select a subset
of data available in a storage for replay. Each time-range in the sequence is applied to each interest expres-
sion. A sample read from a storage is only replayed if its partition and topic can be matched against the
interest expressions and its record-time can be matched against the time-range expressions. The time-range
expressions are optional; when they are omitted a sample is replayed when an interest expression matches.
For more information about time-ranges, see the description of the TimeRange type.

useOriginalTimestamps By default this value is t rue. When a sample is recorded, its original write and allo-
cation timestamps are preserved. When this sample is replayed, it will be delivered to readers with these
original timestamps. Depending on resource limits and QoS settings, readers may discard the replayed data

4.3. Command Type 9

Vortex OpenSplice RnR API Reference, Release 6.x

if data with more recent timestamps is available. By setting useOriginalTimestamps to false, the
timestamps will be updated with the current time upon replay.

skipToFirstSample By default this value is false. When a sample matches interest expressions but doesn’t
match any of the supplied time-ranges, the Record and Replay service tries to mimic original timing be-
haviour by sleeping until the next sample is evaluated based on record timestamps. Sometimes this is not
the required behavior and the service should simply skip all non-matching samples and start replaying im-
mediately the first sample that matches an interest expression and time-range. This behaviour can be enabled
by setting skipToFirstSample to true.

A The following property is only available in version 2 of the RnR scenario topic.

transformations A sequence of transformations, applied to each sample upon replay. By default, no transfor-
mations are applied. Note that samples first have to match interest-expression and time-range before any
transformations are evaluated. The transformations sequence consists of KeyValue elements. A specific
type of transformation is selected by choosing a specific key. Multiple transformations of the same kind
can be used in the same sequence. The value is a string describing the new value. The transformation can
be applied conditionally by using a “:’ (colon) character to separate original and replacement values in
the value-string. Note that the original value needs to be an exact match, wildcards or expressions are not
supported. The supported transformations types are listed in the table.

Key Description

partition Partition in which the sample is replayed

deadline_period Deadline QoS policy

latency_period Latency budget QoS policy

ownership_strength Ownership strength QoS policy (applies only to samples
written with exclusive ownership-kind QoS policy)

transport_priority Transport priority QoS policy

lifespan_period Lifespan QoS policy

Transformations that involve a period can be expressed in either DDS-compliant duration (sec.nanosec)
or more human-friendly floating-point (sec.millis) formats. Floating-point values are interpreted locale-
independent, using a period ‘.’ (decimal point) character. Partition transformations are supported for
partition names consisting of alphanumeric and special characters *~’, */’ and _’.

4.3.6 REMOVE_REPLAY_COMMAND

This command mirrors the ADD_REPLAY_COMMAND, except for the properties
useOriginalTimestamps and skipToFirstSample, which change the replay behaviour and are
not applicable to the remove replay command.

The command is used to remove replay interest from a storage. Mandatory members of the add replay command
are also mandatory in the remove replay command.

Mandatory properties:
storage The name of the storage which replay-interest is removed from.

interestExpr The interest expressions describing the replay interest to remove.

A Note that these interest expressions need to match those used previously in an add replay command.
Optional properties:

timeExpr The sequence of time ranges to remove. Similar to the add replay command. If this parameter is
specified, only the interest that exactly matches the time ranges is removed. As a shortcut, if the time
range sequence is empty, any interest that matches the interest expressions in the remove replay command
is removed regardless of the time ranges attached to that interest.

A The following property is only available in version 2 of the RnR scenario topic.

4.3. Command Type 10

Vortex OpenSplice RnR API Reference, Release 6.x

transformations A sequence of transformations to remove. If any replay interest is to be removed completely,
this sequence should match exactly the sequence included in add replay command(s) responsible for adding
the interest. For more details about the contents of the KeyValue sequence elements, please see the
ADD_REPLAY_COMMAND.

4.3.7 TRUNCATE_COMMAND

This command can be used to clear a storage. When recording samples to an existing storage, by defauilt the data
is appended. If instead the required behaviour is to overwrite the storage, the truncate command can be used to
remove the data recorded to the storage during previous sessions.

A Note that the truncate command can only be executed if the storage isn’t busy recording and/or replaying
data. Thus is may be required to first publish remove record/replay commands, in order to remove all interest
from a storage so that it gets closed by the RnR service, before the truncate command can be succesfully
processed. The StorageStatus topic should be monitored to determine if this is the case.

4.3.8 SETREPLAYSPEED_COMMAND

Using this command the replay speed of a storage can be manipulated. The replay speed affects the delay between
replayed samples. For example, a replay speed of 2 will cut the delay in half: samples will be replayed twice as
fast as originally recorded.

Mandatory properties:

storage The name of the storage of which to change the replay speed. If the storage cannot be resolved the
command is ignored.

speed A floating-point value containing the new replay-speed. The following values have a special meaning:

—1: Maximum speed; delays between samples are skipped and the samples from the storage are inserted
into DDS as fast as possible.

1 : Replay samples with the same timing characteristics as when originally recorded.
0 : Pause the storage; no samples are replayed until the speed is increased.

The default replay speed is 1 (samples are replayed with the same timing characteristics as when originally
recorded).

4.4 Status Types

To monitor the status of various components of the service, applications can take a subscription on the status topics
published by the Record and Replay service.

Status Topics

Service Status

ScenarioStatus

Storage Status

<<key>>rnrid : String
state : ServiceState

<<key>>rnrld : String
<<key>>scenarioName : String
state : ScenarioState

<<key>>rnrld : String
<<key>>storageName : String
state : StorageState

storageAttr : String

properties : sequence<KeyValue>

Status topics are state-based, meaning that they are only published when a state changes. Readers normally only
need to read the latest sample of an instance to get the latest (current) state. However, a reader can also be created
with a KEEP_ALL history if it needs to be aware of all states even when state changes occur in quick succession.

4.4. Status Types 11

Vortex OpenSplice RnR API Reference, Release 6.x

4.4.1 Service Status
Each Record and Replay service publishes its own state in the rr_serviceStatus topic. The topic uses the
ServiceStatus type, which has the following members:

rnrld The name identifying the service. This is also the key of the topic. The rnrId can be used to identify the
service responsible for publishing the status update.

state The current state of the service. The following states are possible:

INITIALISING: The service is started and initialising, but not yet able to process commands. During
initialization the service processes configuration parameters and joins the DDS domain.

OPERATIONAL: The service is successfully initialized and ready to accept commands.
TERMINATING: The service is shutting down.
TERMINATED: The service is detached from the DDS domain and stopped.

The service status topic reflects the life-cycle of a Record and Replay service. It is published when the state
field changes, which normally occurs only during service startup or shutdown (i.e. when OpenSplice is started or
stopped).

4.4.2 Scenario Status

The service publishes the state of each known scenario in the rr_scenarioStatus topic. This topic, using
the ScenarioStatus type, contains the following members:

rorld The name identifying the service.

scenarioName The name identifying a scenario.

The scenarioName combined with the rnrId define an instance of the scenario status topic, so each update
can be related to the service and scenario responsible for that status.

state The current state of the scenario. The following states are possible:
RUNNING: The scenario is running and actively processing commands.

SUSPENDED: A scenario enters the suspended state after a suspend-scenario command is processed for the
scenario. While suspended, the scenario doesn’t process any new commands.

STOPPED: The scenario was stopped and removed from the service.

ﬂ Note that, until a scenario is started, a service is unaware of its existence. There may be commands belonging
to the scenario, maintained by OpenSplice (in persistent or transient stores), but a scenario status isn’t
published until the state of a scenario within a service is changed to RUNNING by issuing a start-scenario
command for that scenario to a specific service.

4.4.3 Storage Status

The service publishes the state of each known storage in the rr_storageStatus topic. This topic, using the
StorageStatus type, contains the following members:

rnrld The name identifying the service. This is a key of the topic.
storageName The name identifying a storage.

The storageName combined with the rnrId define an instance of the storage status topic and can be used to
relate an update of the topic to the service and storage responsible.

state The current state of the storage. A storage may have the following states:

READY: This is the initial state after configuring a storage, when the configuration is deemed valid. It means
the storage was defined and available when configured. In the case of a pre-existing storage, properties are
available in the status update for this state.

4.4. Status Types 12

Vortex OpenSplice RnR API Reference, Release 6.x

OPEN: The storage is in use by one or more scenarios identified by the scenarioNames sequence in the
status update for this state.

ERROR: The storage is invalid and cannot be used. This can either mean an error in the storage configuration
or an issue related to resources claimed by the storage. Most notably in case of an XMLstorage, the service
may not have permission to open a file that is part of the storage.

A Note that it is not currently possible to determine the reason for an ERROR state directly from the status
update, but a descriptive message is written to the OpenSplice log files. A future release will make this
message available in the status update.

OUTOFRESOURCES: When a storage is used for recording, it may run out of resources.

CLOSED: A storage may enter the closed state for two reasons. Usually it is closed when all record and/or
replay interest has been detached from the storage. This occurs when all scenarios that were using the
storage are stopped. If the storage is used for replay, it may also be closed when all data in the storage has
been evaluated and the end of the storage was reached.

storageAttr The XML string describing the attributes currently used by the storage. This is identical to the
attributes section of a storage configuration.

properties Properties of the data contained in a storage. The following properties are available per recorded topic:
* Partition and topic names
* Number of samples and number of bytes
* Record timestamps of the first and last occurrence

* Average data rate

ﬂ Note that properties are not updated while a storage is open, they are only updated when the state of a storage
changes.

Unlike the other status topics, the storage status is determined by more than just the state field. The attributes
and sequence of scenario names are also part of the state. Therefore storage status updates not only occur when
the state field itself is changed but also when the attributes are changed or when a scenario starts (or stops)
using the storage.

4.5 Storage Statistics

The Record and Replay service can optionally maintain runtime statistics regarding the data that is recorded to
and/or replayed from a storage. These statistics can be published in the rr_storageStatistics topic.

Storage Statistics Topic

Storage Statistics TopicStatistics
<<key>>rnrld : String name : String
<<key>>storageName : String numberOf SamplesRecorded : long
statistics : sequence<TopicStatistics> numberOfBytesRecorded : long

recordRateMinimum : long
recordRateAverage : long
recordRateMaximum : long
numberOf SamplesReplayed : long
numberOfBytesReplayed : long
replayRateMinimum : long
replayRateAverage : long
replayRateMaximum : long

Statistics are enabled per storage. Publication in the rr_storageStatistics topic is optional and can be
managed by the publish_interval attribute of the statistics configuration element.

Publish_interval This is the number of seconds between each publication of the statistics from a specific storage.
The value —1 has a special meaning: if set, the statistics will only be published when the storage is closed.

4.5. Storage Statistics 13

Vortex OpenSplice RnR API Reference, Release 6.x

Setting the publish_interval to 0 will also prevent the publication of statistics. Note that a config
command can be issued to change the publication interval on the fly.

The statistics values can be reset by setting the reset attribute in the XML configuration string of the storage
statistics.

4.6 Miscellaneous Types

The API contains a number of utility types used as members in one or more topics. These helper types are
described in this section.

Miscellaneous Types

KeyValue TimeRange Condition
. start : Time_t —
key : String e imolit
P I
absolute_time
absTime : Time_t
valuekind_boolean valuekind_float valuekind_long valuekind_time valuekind_string
bValue : boolean fValue : float IValue : long tValue : Time_t sValue : String

4.6.1 KeyValue

The KeyValue type is a generic key:value container. It is used for the transformations sequence in add and
remove replay commands and as the config sequence of a config command, to send configuration values to a
Record and Replay service and/or scenario.

key A string that selects a specific configuration value to add or update.

Depending on the KeyValue kind, a value can take on a number of representations: boolean, string, long
or float.

4.6.2 TimeRange

The TimeRange type can be used to limit the selection of data in a replay command. Interest expressions select
data based on partition and topic names, time-ranges filter this selection based on record timestamps.

The DDS: : Time_t type is used to express a timestamp. A range is defined by a start and an end timestamp.

start The start timestamp of the range. When TIME_INVALID_SEC and TIME_INVALID_NSEC are speci-
fied, the start time is considered to be —infinity. This means that any sample recorded before the end
timestamp is matched.

end The end timestamp of the range. When TIME_INVALID_SEC and TIME_INVALID_NSEC are specified,
the end time is considered to be +infinity. This means that any sample recorded after the start
timestamp is matched.

4.6. Miscellaneous Types 14

Known Issues

This section summarizes known issues and limitations of the current release of the Record and Replay Service.
Please see the Release Notes supplied with the product for additional information.

5.1 Ability to create topics

The service does not yet have the ability to implicitly create topics for the data it replays. To bypass this limitation,
the DCPSTopic built-in topic can be included in the recording (and replaying) of data.

The following interest-expression should be used:
__ BUILT-IN PARTITION___.DCPSTopic

To ensure that a topic is re-created at replay before any data belonging to that topic gets replayed, the DCPSTopic
expression should be the first interest-expression that is added to a particular storage using the add record/replay
commands.

15

Impact on DDS Domain

This section describes additional aspects of the Record and Replay Service and its interaction with other systems.

6.1 Intrusiveness

Relevant characteristics of the Record and Replay Service with respect to ‘intrusiveness’ for an existing system
are:

* The service can be optionally configured on any DDS node in the system.

— When run as part of an existing federation of applications, it utilizes the federation’s shared-memory
segment to obtain the data (so locally-published data is not required to travel over the network to be
recorded by the service, and vice-versa for replaying towards co-located subscribers).

— When run on a dedicated RnR node, data to be recorded is transparently forwarded to that RnR node,
typically using multicast network features (and so not inducing extra network traffic).

* Services are controlled in ‘the DDS way’, i.e. a data-centric way where command and status topics allow
DDS-based ‘remote control’ over the service from anywhere in the system.

— A dedicated RecordAndReplay partition is utilized by RnR to bound (contain) the control/status
flows.

— In the case of a dedicated RnR node, this partition can be configured to be a so-called ‘local Partition’
thus bounding (containing) all control/status traffic to the RnR node.

* Replaying (subsets) of recorded data ‘by definition’ has impact on an existing system:
— It can induce unanticipated traffic-flows towards subscribing applications
— It typically triggers application-processing of such replayed data...
— which can be considered ‘intentional” and inherent to the purpose of replaying recorded data

Summarizing, it can be stated that when dedicating a specific computing node for Record and Replay and confining
the control and status traffic to control the service to stay ‘inside’ that node, recording of data in a multicast-enabled
network is non-intrusive.

ﬂ Note that the few shared topic-definitions (definitions only, not actual samples of these topics when these are
‘confined’ to the RnR node) that would be visible system-wide when inspecting the built-in topics of the system
(for instance with a tool like the Vortex OpenSplice Tuner) are considered non-intrusive as they only imply a small
and static amount of data occupied by the related built-in topic samples.

16

Appendix A

7.1 RnR Topic API IDL specification

Record & Replay data model

* This IDL file contains the R&R data model.

The file is divided in two sections:

* helper types and topics that use these types.

*/
#include "dds_dcps.idl"

module RnR {

[k hkkkkkkkkkrkhkhkhkhkkkkkkxxkx TYPES kkkkkkkkkkhhkkkkkkkkxkkk/

/* ValueKind is the discriminator of the
enum ValueKind ({
VALUEKIND_STRING,
VALUEKIND_LONG,
VALUEKIND_FLOAT,
VALUEKIND_BOOLEAN,
VALUEKIND_TIME
}i
/* ConditionKind the discriminator of the
enum ConditionKind {
COND_REL_TIME,
COND_ABS_TIME,
COND_DATA,
COND_LIFECYCLE
}i

/* CommandKind is the discriminator of the

enum CommandKind {
ADD_RECORD_COMMAND,
REMOVE_RECORD_COMMAND,
ADD_REPLAY_COMMAND,
REMOVE_REPLAY_COMMAND,
START_SCENARIO_COMMAND,
STOP_SCENARIO_COMMAND,
SUSPEND_SCENARIO_COMMAND,
CONFIG_COMMAND,
SETREPLAYSPEED_COMMAND,
TRUNCATE_COMMAND,
GENERIC_COMMAND

}i

"value’

union of a KeyValue =/

"Condition’ union type =*/

"kind’ union of a Command =*/

/+ ServiceState contains the possible states of an R&R service */

enum ServiceState {
SERVICE_INITIALISING,
SERVICE_OPERATIONAL,

/% Service is starting =/
/+ Builtin-scenario is started,

service is able

17

Vortex OpenSplice RnR API Reference, Release 6.x

to receive commands x/

SERVICE_TERMINATING, /* Service is stopping all scenarios and shutting
down */
SERVICE_TERMINATED /* Service 1is terminated =/

}i

/* ScenarioState contains the possible states of a R&R scenario =/
enum ScenarioState {

SCENARIO_RUNNING, /* Scenario is active and able to receive and
process commands */

SCENARIO_STOPPED, /+ Scenario is stopped and unable to receive
commands x/

SCENARIO_SUSPENDED /+ Scenario is suspended and will resume

processing commands when scenario is
(re) started or continued =/
}i

/+ StorageState contains the possible states of a R&R storage =/
enum StorageState {

STORAGE_READY, /+ Defined, but not opened yet. =/
STORAGE_OPEN, /* Storage successfully opened */
STORAGE_ERROR, /* An unrecoverable error has occurred in the

storage */
STORAGE_OUTOFRESOURCES, /% Storage is out-of-resources x/
STORAGE_CLOSED /+ Storage has been closed */
}i

/+ Condition is a union, used to express conditions in the Command topic =/
union Condition switch (ConditionKind) {

case COND_REL_TIME: /+ Relative time since previous command, x/
DDS: :Duration_t relTime; /+* i.e. the time that has passed since the
previous command was processed */
case COND_ABS_TIME: /* Absolute (wall) time, x/
DDS::Time_t absTime; /+* i.e. a fixed point in time =/
case COND_DATA: /+ Content-expression on data samples =*/
string dataExpr; /+x i.e. a specific sample matching the

expression, was published in the DDS
domain */
case COND_LIFECYCLE: /+ Content-expression on data lifecycle, x/
string lifecycleExpr; /+x i.e. a specific instance transitions
from alive to not alive x/

}i

union Value switch (ValueKind) {

case VALUEKIND_STRING: /* Value 1is a string =/
string sValue;
case VALUEKIND_LONG: /* Value is a long number =/
long lValue;
case VALUEKIND_FLOAT: /* Value is a floating-point number =/
float fValue;
case VALUEKIND_BOOLEAN: /* Value is a boolean x/
boolean bValue;
case VALUEKIND_TIME: /* Value is a timestamp =*/

DDS::Time_t tValue;
}i

/+ Generic key:value type, where value is an union supporting various
kinds of values x/
struct KeyValue {
string keyval; /+ String key =/
Value value;

}i

7.1. RnR Topic API IDL specification 18

Vortex OpenSplice RnR API Reference, Release 6.x

/+ Used for specifying a range of times =/
/* For every valid TimeRange ’start’ <= ’‘end’ should hold =*/
struct TimeRange {
/* Absolute time (inclusive) indicating the start of the range. When
* start.sec == TIME_INVALID_SEC and start.nanosec == TIME_INVALID_NSEC,
* start is considered to be smaller than all times it is compared to
* (i.e., start is interpreted as —-INFINITY). =*/
DDS::Time_t start;
/* Absolute time (inclusive) indicating the end of the range. When
* end.sec == TIME_INVALID_SEC and end.nanosec == TIME_INVALID_NSEC,
* end is considered to be greater than all times it is compared to
* (i.e., end is interpreted as +INFINITY). =/
DDS::Time_t end;
}i

/* Command-type to add record-interest to a storage =/
struct AddRecordCommand {
string storage; /+ Name identifying a storage to

record to */

/* Meta—-filters x/

sequence<string> interestExpr;

sequence<string> blacklistExpr;

/* Content filters */
sequence<string> filterExpr;

sequence<string> excludedAttributeExpr;

}i

/ *

/%

/%

Sequence of
expressions
Sequence of
expressions
record =/

Sequence of
expressions
Sequence of

"partition.topic’
to record =/
"partition.topic’
to block from

content-filter—
*/

expressions to

exclude specific members of

topics *x/

/+ Command-type to remove record-interest from a storage =*/
struct RemoveRecordCommand {
string storage; /+ Name identifying a storage to
stop recording to =%/

/* Meta—-filters x/

sequence<string> interestExpr; /+ Sequence of ’partition.topic’
expressions to stop recording =/

sequence<string> blacklistExpr; /+ Sequence of ’partition.topic’
expressions to stop blocking

/* Content filters =x/
sequence<string> filterExpr;

sequence<string> excludedAttributeExpr;

}i

/+ Command-type to add replay-interest to a

struct AddReplayCommand {
string storage;

/+* Meta-filters x/
sequence<string> interestExpr;

/ *

from record

Sequence of
expressions
Sequence of

*/

content-filter—
*/

expressions to

exclude specific members of

topics */

storage =/

/%

/ %

Name identifying a storage to

replay from

Sequence of
expressions

*/

'partition.topic’
to replay =/

7.1. RnR Topic API IDL specification

19

Vortex OpenSplice RnR API Reference, Release 6.x

sequence<string> blacklistExpr; /* Sequence of ’'partition.topic’
expressions to block from
replay =/

sequence<TimeRange> timeExpr; /* Sequence of time-ranges to

replay. When empty no filtering
on time is done */

/* Content filters =/
sequence<string> filterExpr; /+ Sequence of content-filter-

expressions */

/* Resource limits =*/

boolean useOriginalTimestamps; /* If true, replay with original
timestamps. If false use current
time */

/* If TRUE, fast-forward to first matching sample. If FALSE, a delay will
* be introduced before the sample is inserted, to resemble timing
* behaviour of the recording =/
boolean skipToFirstSample;
}i

/+ Command-type to remove replay-interest from a storage =/
struct RemoveReplayCommand {
string storage; /* Name identifying a storage to
stop replaying from =*/

/* Meta-filters =/

sequence<string> interestExpr; /+ Sequence of ’partition.topic’
expressions to stop replaying =/
sequence<string> blacklistExpr; /* Sequence of ’'partition.topic’

expressions to stop blocking
from replay =/

sequence<TimeRange> timeExpr; /+ Sequence of time-ranges to
stop replaying =/

/* Content filters */
sequence<string> filterExpr; /+ Sequence of content-filter-
expressions */

}i

/+ Command-type to set the replay-speed of a storage */
struct SetReplaySpeedCommand {

string storage; /+ Name identifying a storage to
replay from x/
float speed; /+ Replay speed factor x/

}i

/+ Container type of the per-topic storage statistics =*/
struct TopicStatistics {

string name; /+ partition.topic name */

long numberOfSamplesRecorded; /* Total number of samples
recorded =/

long numberOfBytesRecorded; /+ Total number of bytes
recorded */

long recordRateMinimum; /+ Record rates (per publication
period) =x/

long recordRateAverage;
long recordRateMaximum;

long numberOfSamplesReplayed; /* Total number of samples
replayed =/
long numberOfBytesReplayed; /* Total number of bytes

replayed */

7.1. RnR Topic API IDL specification 20

Vortex OpenSplice RnR API Reference, Release 6.x

long replayRateMinimum; /* Replay rates (per publication
period) «/
long replayRateAverage;
long replayRateMaximum;
}i

union Kind switch (CommandKind) {

case ADD_RECORD_COMMAND : /* Record command */
AddRecordCommand addRecord;

case REMOVE_RECORD_COMMAND :
RemoveRecordCommand removeRecord;

case ADD_REPLAY_ COMMAND : /* Replay command =/
AddReplayCommand addReplay;

case REMOVE_REPLAY_ COMMAND:
RemoveReplayCommand removeReplay;

case CONFIG_COMMAND: /+ Config command =/
sequence<KeyValue> config;
case START_SCENARIO_COMMAND : /* Scenario—control commands */

case STOP_SCENARIO_COMMAND :
case SUSPEND_SCENARIO_COMMAND:
string name;

case SETREPLAYSPEED_COMMAND : /* Storage replay-speed command x/
SetReplaySpeedCommand setreplayspeed;

case TRUNCATE_COMMAND : /+ Storage truncate command */
string storage;

case GENERIC_COMMAND: /+ For future extensibility =*/

sequence<KeyValue> extCommands;

}i
/************************ TOPICS ************************/

/* Topic used to control an R&R service =*/
struct Command {

string scenarioName; /* Name identifying the scenario to which
this command belongs =*/
string rnrId; /+ Name identifying the service, or ’x'

to address all services =/
Kind kind;
sequence<Condition> conditions; /% Sequence of conditions which must
all be true before the command is
executed */
}i
#pragma keylist Command scenarioName

/+ Topic used to monitor the status of an R&R service =/
struct ServiceStatus {
string rnrId; /+ Name identifying the service =/
ServiceState state; /* Current state of the service x/
}i
#pragma keylist ServiceStatus rnrId

/* Topic used to monitor the status of an R&R scenario */
struct ScenarioStatus {

string rnrId; /+ Name identifying the service =/
string scenarioName; /+ Name identifying the scenario =/
ScenarioState state; /* Current state of the scenario x/

}i
#pragma keylist ScenarioStatus scenarioName rnrId

/+ Topic used to monitor the status of a storage controlled by
an R&R service =/
struct StorageStatus {
string rnrId; /* Name identifying the service x/

7.1. RnR Topic API IDL specification 21

Vortex OpenSplice RnR API Reference, Release 6.x

string storageName; / *
StorageState state;
string storageAttr;

/ *

sequence<KeyValue> properties; /* key

value

}i
#pragma keylist StorageStatus storageName rnrId

Name identifying the storage =/
/+ Current state of the storage «*/
Current storage attributes =*/

property name,

property value x/

/+ Topic used to publish statistics of a storage */

struct StorageStatistics {
string rnrId;
string storageName;
sequence<TopicStatistics> statistics;
}i

#pragma keylist StorageStatistics storageName rnrId

}i

module RnR_V2 {
/+ In v2 of the RnR API,
*+ — a KeyValue sequence ’'extensions’
extensions of Command.

"transformations’
of samples upon replay.

* % ok X o

the following changes were made:
has been added for future

— The Add- and RemoveReplayCommand contain a KeyValue sequence
for changing properties

[hkkkkkhkkkhkkkhhkkhhkkhkkkxkk TYPES Kok kkokkkokkkokkkkkkkokkkkkxk/

/+ Command-type to add replay-interest with transformations to a storage x/

struct AddReplayCommand {
string storage;

/* Meta-filters »*/
sequence<string> interestExpr;

sequence<string> blacklistExpr;

sequence<RnR: :TimeRange> timeExpr;

/* Content filters =x/
sequence<string> filterExpr;

/* Resource limits */
boolean useOriginalTimestamps;

/* If TRUE,
+ If FALSE,
* 1is inserted,

boolean skipToFirstSample;

/+ Transformations =/
sequence<RnR: :KeyValue> transformations;

/*

/ *

/*

/*

/ *

Name identifying a storage
to replay from =/

Sequence of ’'partition.topic’
to replay =*/
'partition.topic’
to block from

expressions
Sequence of
expressions
replay =/
/+ Sequence of time-ranges to
replay. When empty no
filtering on time is
done */

Sequence of content-filter-
expressions */

If true,
timestamps.
current time x/

replay with original
If false use

fast-forward to first matching sample.
a delay will be introduced before the sample
to resemble timing behaviour of the recording =/

/* QoS transformations to
apply to the sample before
replaying */

7.1. RnR Topic API IDL specification

22

Vortex OpenSplice RnR API Reference, Release 6.x

}i

/+ Command-type to remove replay-interest with transformations */
struct RemoveReplayCommand {
string storage; /+ Name identifying a storage to
stop replaying from =*/

/* Meta—-filters x/

sequence<string> interestExpr; /+ Sequence of ’partition.topic’
expressions to stop replaying */
sequence<string> blacklistExpr; /+ Sequence of ’partition.topic’

expressions to stop blocking
from replay =/
sequence<RnR: :TimeRange> timeExpr; /* Sequence of time-ranges to
stop replaying =/

/* Content filters =/
sequence<string> filterExpr; /+ Sequence of content-filter-
expressions */

/* Transformations =*/
sequence<RnR: :KeyValue> transformations; /* QoS transformations
to stop replaying x/
}i

union Kind switch (RnR: :CommandKind) {

case ADD_RECORD_COMMAND : /* Record command =*/
RnR: :AddRecordCommand addRecord;

case REMOVE_RECORD_COMMAND :
RnR: :RemoveRecordCommand removeRecord;

case ADD_REPLAY_COMMAND : /* Replay command =*/
AddReplayCommand addReplay;

case REMOVE_REPLAY_COMMAND :
RemoveReplayCommand removeReplay;

case CONFIG_COMMAND: /+ Config command =/
sequence<RnR: :KeyValue> config;
case START_SCENARIO_COMMAND : /* Scenario-control commands =%/

case STOP_SCENARIO_COMMAND :
case SUSPEND_SCENARIO_COMMAND :
string name;

case SETREPLAYSPEED_COMMAND: /+ Storage replay-speed command =/
RnR::SetReplaySpeedCommand setreplayspeed;

case TRUNCATE_COMMAND : /* Storage truncate command =*/
string storage;

case GENERIC_COMMAND: /+ For future extensibility =*/

sequence<RnR: :KeyValue> extCommands;
}i

[Hhkkhkhkrkkxkkkkkkhkhkhkhkrkxxxkxx TOPICS *xkkkkkkhhkhkhkkxxkkkkkhkkkkx/

/+ Topic used to control an R&R service =/
struct Command {

string scenarioName; /* Name identifying the scenario to which
this command belongs x/
string rnrId; /* Name identifying the service, or ’'x’ to

address all services x/
Kind kind;
sequence<RnR: :Condition> conditions; /* Sequence of conditions which
must all be true before the
command is executed */
sequence<RnR: :KeyValue> extensions; /* Sequence reserved for future
enhancements x/

}i

7.1. RnR Topic API IDL specification 23

Vortex OpenSplice RnR API Reference, Release 6.x

#pragma keylist Command scenarioName
}i

7.1. RnR Topic API IDL specification 24

References

The following documents are referred to in the text:
OMG DDS 2004

Object Management Group,

‘Data Distribution Service for Real-Time Systems’,
Final Adopted Specification, ptc/04-04-12

2004

OMG CORBA v3 2002

Object Management Group,

‘The Common Object Request Broker: Architecture and Specification’,
Version 3.0, formal/02-06-01

2002

OMG C Language 1999

Object Management Group,

‘C Language Mapping Specification’,
Version 1.0, formal/99-07-35

1999

OMG C++ Language 2003

Object Management Group,

‘C++ Language Mapping Specification’,
Version 1.1, formal/03-06-03

2003

OMG Java Language 2002

Object Management Group,

‘Java Language Mapping Specification’,
Version 1.2, formal/02-08-05

2002

OMG ISO/IEC C++ Language 2013

Object Management Group,

‘ISO/IEC C++ 2003 Language DDS PSM’,
Version 1.0, formal/2013-11-01

2013

OMG DDS XTYPES 2012

Object Management Group,

‘Extensible and Dynamic Topic Types for DDS’,
Version 1.0, formal/2012-11-10

2012

Contacts & Notices

9.1 Contacts

ADLINK Technology Corporation
400 TradeCenter

Suite 5900

Woburn, MA

01801

USA

Tel: +1 781 569 5819

ADLINK Technology Limited
The Edge

5th Avenue

Team Valley

Gateshead

NE11 0XA

UK

Tel: +44 (0)191 497 9900

ADLINK Technology SARL
28 rue Jean Rostand

91400 Orsay

France

Tel: +33 (1) 69 015354

Web: http://ist.adlinktech.com/

Contact: http://ist.adlinktech.com

E-mail: ist_info@adlinktech.com

LinkedIn: https://www.linkedin.com/company/79111/
Twitter: https://twitter.com/ADLINKTech_usa
Facebook: https://www.facebook.com/ADLINKTECH

9.2 Notices

Copyright © 2018 ADLINK Technology Limited. All rights reserved.

http://ist.adlinktech.com/
http://ist.adlinktech.com
mailto:ist_info@adlinktech.com
https://www.linkedin.com/company/79111/
https://twitter.com/ADLINKTech_usa
https://www.facebook.com/ADLINKTECH

Vortex OpenSplice RnR API Reference, Release 6.x

This document may be reproduced in whole but not in part. The information contained in this document is subject
to change without notice and is made available in good faith without liability on the part of ADLINK Technology
Limited. All trademarks acknowledged.

9.2. Notices 27

	Preface
	About The Record and Replay API Reference
	Intended Audience
	Organisation
	Conventions

	Introduction
	Features

	Scenarios
	Different versions of the scenario topic
	BuiltinScenario
	Command durability

	Topic API Overview
	Record & Replay topics
	Relevant QoS settings
	Command Type
	Status Types
	Storage Statistics
	Miscellaneous Types

	Known Issues
	Ability to create topics

	Impact on DDS Domain
	Intrusiveness

	Appendix A
	RnR Topic API IDL specification

	References
	Contacts & Notices
	Contacts
	Notices

