
Test Tool User
Guide

Release 6.x

Contents
1 Preface 1

1.1 About The Vortex OpenSplice Tester User Guide . 1
1.2 Intended Audience . 1
1.3 Organisation . 1
1.4 Conventions . 1

2 Introduction 3
2.1 Features . 3
2.2 Location of Tester in the OpenSplice architecture . 3
2.3 Things to Know . 3
2.4 Prerequisites . 4

3 Getting Started 5
3.1 Starting and Stopping Tester . 5
3.2 Starting - Local Connection . 5
3.3 Starting - Remote Connection . 6
3.4 Stopping . 6
3.5 Remotely Controlling Tester . 6
3.6 Trying out Tester . 7
3.7 Tester Windows . 7

4 Familiarization Exercises 17
4.1 Starting the Tester . 17
4.2 Connection management . 17
4.3 Topics and Readers . 19
4.4 Samples . 22
4.5 Filtering . 25
4.6 Working with Samples . 28
4.7 Groups . 30
4.8 System Browser (Browser window) . 34
4.9 Scripting . 40
4.10 Execute and Debug . 42
4.11 Adding virtual fields . 44
4.12 Plugins . 45
4.13 More on Virtual fields . 47

5 Command Reference 49
5.1 Introduction . 49
5.2 Menus . 49
5.3 Lists . 54
5.4 Windows . 56

6 Scripting 60
6.1 The Script Language . 60
6.2 The Instructions . 64
6.3 Instructions for Graphs . 67
6.4 Instructions for Flow Control . 68
6.5 Instructions for the Message Interface . 69
6.6 Installing Script Engines . 70

7 Message Interfaces 71
7.1 Message interfaces . 71
7.2 Getting Started with a Message Interface . 71

i

7.3 Types of interfaces . 73

8 Google Protocol Buffers 76
8.1 About Google Protocol Buffers in Tester . 76
8.2 Viewing type evolutions . 76
8.3 Reading protocol buffer topics . 78
8.4 Reading protocol buffer topics via script . 79
8.5 Editing protocol buffer topic samples . 79

9 Python Scripting Engine 81
9.1 About Python Scripting . 81
9.2 Configuration . 81
9.3 A Quick Tour of OSPL Scripting . 84
9.4 Using Eclipse and PyDev to create and run OsplScript files . 91
9.5 Using PyCharm to create and run Tester Scripting . 93

10 Appendix A 96
10.1 Scripting BNF . 96

11 Contacts & Notices 101
11.1 Contacts . 101
11.2 Notices . 101

ii

1
Preface

1.1 About The Vortex OpenSplice Tester User Guide

The OpenSplice Automated Testing and Debugging Tool User Guide is intended to provide a complete reference
on how to configure the tool and use it to test applications generated with the Vortex OpenSplice software.

This User Guide is intended to be used after the Vortex OpenSplice software has been installed and configured
according to the instructions in the OpenSplice Getting Started Guide.

1.2 Intended Audience

This OpenSplice Automated Testing and Debugging Tool User Guide is for everyone using the tool (which is usu-
ally referred to as the Tester) to assist in developing and debugging their DDS applications with Vortex OpenSplice
software.

1.3 Organisation

The Introduction provides general information about the Automated Testing and Debugging Tool.

Getting Started describes how to use the Tester’s main features.

Next, some familiarization exercises show how to perform some typical tasks with step-by-step instructions.

The Command Reference section has a complete list of all of the commands available, with fully-detailed descrip-
tions of their use.

The section on Scripting describes how to automate repetitive testing procedures with scripts and macros, provides
a list of all of the built-in script instructions, and shows how different scripting languages can be installed and used
with the Tester.

Message Interfaces has information about testing applications with non-DDS interfaces.

Google Protocol Buffers describes the Tester’s support for Google Protocol Buffers.

An Appendix contains the complete formal description of the Tester Scripting language for reference.

1.4 Conventions

The icons shown below are used in the Vortex product documentation to help readers to quickly identify informa-
tion relevant to their specific use of Vortex OpenSplice.

1

Test Tool User Guide, Release 6.x

Icon Meaning

Item of special significance or where caution needs to be taken.

Item contains helpful hint or special information.

Information applies to Windows (e.g. XP, 2003, Windows 7) only.

Information applies to Unix-based systems (e.g. Solaris) only.

Information applies to Linux-based systems (e.g. Ubuntu) only.

C language specific.

C++ language specific.

C# language specific.

Java language specific.

1.4. Conventions 2

2
Introduction

This section provides a brief introduction to the Vortex OpenSplice Tester.

2.1 Features

The Vortex OpenSplice Automated Testing and Debugging Tool provides an easy way of displaying messages
produced in Vortex OpenSplice and also provides means to publish messages manually or with a script.

(The OpenSplice Automated Testing and Debugging Tool is usually referred to as Tester; the name ospltest is
used when referring to the executable program.)

This tool is made with the software tester, and the way he performs his job, in mind. A pre-defined list of topics of
interest can be provided. For all topics a reader is created in the correct partition. Once started, the tool receives
all instances of the topics of interest and will display them in the sample list in the order they were produced
(using the source time stamp). This makes it very easy to see when topics are produced and in what order. It also
provides feedback about unexpected updates.

Other features of Tester include the ability to:

• dump a selection of topic(s) to a file

• dump all logged topic instances to a file

• filter the sample list based on key

• filter the sample list based on key and topic name

• filter the sample list based on key

• create a script with a selection of previously sent or received topics

• compare topic samples

• edit topic samples and then write them or dispose the topic instance

• create new topic samples and write them or dispose the topic instances

2.2 Location of Tester in the OpenSplice architecture

Tester is complementary to OpenSplice Tuner (ospltun). Tuner supports ‘white box’ application monitoring
and tuning, and Tester supports ‘black box’ system testing, debugging, data capture, analysis, and visualization.

2.3 Things to Know

NOTE: Tester uses the internal Control & Monitoring (C&M) API for access to OpenSplice. At this time
Tester only supports Vortex OpenSplice systems.

3

Test Tool User Guide, Release 6.x

Tester can be used both locally (via shared memory or single process) and/or remotely (via a SOAP connection to
the SOAP service).

Tester uses a periodic poll to read data (the default poll period is 250 ms). The normal restrictions for storage
scope apply (only keys defined with the topic separate topics for reading, if topics with the same key are produced
within a polling period, then only the last topic is read).

Tester uses the default QoS for writing (as provided by the first application which registers the topic) and the
weakest QoS for reading. However when specifying the topic in add topic (or add topics) or in the
topic file the QoS can be given, this QoS must be compatible with the topic QoS as defined when the topic was
registered.

NOTE: In order for the Tester system browser to correctly show the complete system, OpenSplice Durability
services have to be properly configured so that the transient ‘built-in-topics’ are properly aligned when new
nodes join the system. Monitoring the built-in topic sample set on different nodes will quickly reveal any
failure in correct lining-up of transient data (in which case there will be different sets visible on different
nodes). Monitoring the DCPSHeartbeat built-in topic will reveal fundamental connectivity issues in
your system (you should see as many unique heartbeats as there are interconnected nodes in the system).

2.4 Prerequisites

Tester is included in the standard OpenSplice installation.

Tester’s minimum system requirements are the same as for OpenSplice itself; please refer to the Release Notes
for both Tester and OpenSplice for details. The Vortex OpenSplice Getting Started Guide contains additional
information about installation and configuration on various systems.

Note that to compile plugins you will also need to have ant and JDK1.6 installed (see Getting Started with
a Message Interface). Tester has been implemented in the Java Language, and it uses the Vortex OpenSplice
Command and Management (C&M) API.

Although Tester uses the C&M API, it doesn’t depend on a locally installed or running instantiation of OpenSplice.
It can operate either ‘co-located’ with a running DDS target system, or it can operate in ‘remote-connection’ mode
(like the Tuner).

When Tester is run on the same platform as Vortex OpenSplice, it uses the OSPL_HOME environment variable to
find the necessary OpenSplice library files. It also uses OSPL_URI as its default OpenSplice configuration.

When Tester connects to a remote ‘target’ platform using SOAP it doesn’t use any local environment variables, it
just needs to be installed on the machine where you run it.

(Note that the Vortex OpenSplice Tuner can be started with a -uri command-line parameter (see how to start a
remote connection). This is a new feature that is actually used by the Tester in the system browser, where you can
spawn a Tuner (see how to spawn a tuner from the system browser) that then connects to the node/application that
the browser is pointing to.)

2.4. Prerequisites 4

3
Getting Started

This section describes how to use the Tester’s main features.

3.1 Starting and Stopping Tester

Tester may be started by running the OpenSplice Tester application or from a command prompt and oslptest with
the following command line arguments:

-? or -help Display the command line options

-ns No splash screen

-uri <uri> URI to connect

-nac No auto-connect upon application start

-s <path to script> Script to run

-b <path to batch file> Batch script to run

-noplugins Do not process plugins

-plugindir <dir> Extra plugin directory to search

-headless Run script or batch script without the GUI

-rc <port> Enable remote control (via <port>)

-dsl <language> Default script language

-l <path to topic file> Load topics from file

(These preferences can also be set from the menu File > Preferences.)

3.2 Starting - Local Connection

On Windows, use either of the shortcuts created by the installer (on the desktop and in Start > Pro-
grams) to start Tester.

On Linux go to the installation directory and execute the command:

% ospltest

This will start Tester with separate windows.

5

Test Tool User Guide, Release 6.x

3.3 Starting - Remote Connection

To connect to a remote platform, execute the command:

% ospltest -uri http://perf1.perfnet.ptnl:50000

(Port number 50000 is the default port in a standard DDS shared-memory deployment.)

3.4 Stopping

Stop Tester either by using the menu option File > Exit or by clicking on the main window ‘close’ button .

3.5 Remotely Controlling Tester

Starting Tester in remote control mode e.g. "ospltest -rc <port> -headless" allows Tester to be
controlled from another application, shell script, etc..

Use cases for remote control include:

• Using Tester in combination with a commercial or proprietary test system;

• Within a continuous build and test environment this would provide more options to control DDS testing in
combination with other application-specific testing;

• In an integrated development environment like Eclipse using Junit for testing.

A Tester instance is controlled via a TCP/IP connection. Text-based commands are sent over this connection.

The remote control application can be used by executing the command:

ospltestrc [-p <port>] [-h <host>] <command>

where

<host> is the host name of the machine that the Tester you wish to control is running on

<port> is the port that Tester is listening on (specified by the -rc option when Tester was started)

<command> is the command to send to Tester.

The remote control commands are:

stop Terminate the Tester instance

batch <batch name> Execute the batch with <batch name>

script <script name> Execute the script with <script name>

scenario <scenario> Execute a scenario which is provided in full text on a single line (new lines "\n" are
replaced by " ")

connect <optional uri> Connect to a specified or the default Domain uri

disconnect

When a command is completed the following is reported on a single line:

Done

When a batch is executed, for each scenario two lines are returned to the test controller:

Scenario: <index> of <count> execute: <scenario name> Scenario:
<index> result: <result>

3.3. Starting - Remote Connection 6

Test Tool User Guide, Release 6.x

3.6 Trying out Tester

Once you have started Tester, you can get a feeling for how to use it with a few simple exercises:

• Create a default reader for some of the registered topics.

• Double-click one of the samples and see all the fields of the topic.

• Browse through the list of samples using the arrow keys.

• Select a topic in the sample list and press [F9], then select a field for display in the sample list.

• Select another topic (it need not be of the same type as the one displayed in the topic instance window) and
press [F2] for a comparison between the two topics.

• Select a topic in the sample list or in the topic list and press [F4], then in the Write topic window set the
fields to the desired value and write or dispose the topic.

• Choose File > Dump on the sample list and save the information of the topic samples in the sample list to a
file.

• Have a try with the scripting, it can make your life a lot easier (especially with recurring tasks).

The rest of this section describes the features that you will use when you try these exercises.

3.7 Tester Windows

3.7.1 Main Window

Once started, Tester presents the user with the following main window.

Tester main window

The Command Menu (below) provides direct access to most of the Tester capabilities.

Tester command menu

The Tester main window has three sub-frames:

3.6. Trying out Tester 7

Test Tool User Guide, Release 6.x

1. Main tabbed frame for selecting items from a list, such as topics, scenarios, and readers or writers.

2. Working area frame where you will do most of your work such as editing scenarios, investigate samples,
and capturing statistics

3. Debug frame used to debug scripts and macros.

3.7.2 Overview Windows

The user can select the type of resource to work with by selecting tabs. These can be the Services and Topics in
the system, the Scripts and Macros they have installed, or the Readers for the current Tester timeline.

Tester resource tabs

Services

Lists the installed services. This is a read-only list.

Tester Services list

Scripts

The script list provides a convenient way of selecting an existing script for editing or execution. The list is filled
at startup or when clicking the Refresh button. All files in the specified script directory are added to the list. The
script directory (or directories) are specified in the preference page.

A script can be selected in the script editor by single-clicking the entry in the table. When the entry is double-
clicked the script is loaded in the script editor and executed.

Tester scripts tab

3.7. Tester Windows 8

Test Tool User Guide, Release 6.x

Macros

The Macros List is similar to the Scripts List.

Tester macros tab

Topics

The topics list displays the list of registered topics.

Tester topics tab

3.7. Tester Windows 9

Test Tool User Guide, Release 6.x

Readers

The readers list displays the readers (and implicit topic writers) for the current Tester timeline. The default name
for a reader is the same as the name of the topic it is subscribed to. For each reader the count of received samples
(as available in the sample list) is displayed. A check box is provided for changing the read state or the show state.
When Read is unchecked the reader stops reading topics. When Show is unchecked the topic of that topic will not
be displayed in the sample list.

Tester readers tab

3.7.3 Working Windows

These windows support testing activities.

Sample List Window

Used to view and generate samples for the current timeline (Readers).

Sample list window

3.7. Tester Windows 10

Test Tool User Guide, Release 6.x

Statistics Window

The statistics window provides statistics for the topics in use, like write count, number of alive topics, etc.. Statis-
tics are gathered from the local copy of OpenSplice. To gather statistics from remote nodes, use OpenSplice Tuner.

Statistics window

Browser Window

The browser window provides information about nodes, executables, participants (applications), readers, writers
and topics. Information can be browsed by selecting a node/executable participant or a topic. When an executable
or participant is selected the reader and writer lists (subscribed and published topics) for that executable/participant
are shown. Together with the topic name concise information about the QoS and partition is shown. When the
mouse cursor is hovered over the QoS value the hint will show detailed information about the QoS.

When a topic is selected the list of participant readers (subscribe) and writers (publish) are shown, together with
concise information about the QoS and partition. By selecting a row in either the reader of writer list the compat-
ible readers/writers will be shown in green and non-compatible (by QoS/partition) readers/writers will be shown
in red.

Tester browser window

3.7. Tester Windows 11

Test Tool User Guide, Release 6.x

3.7.4 Scripting Windows

Edit Window

The script window is used for editing scripts. The editor supports syntax highlighting, auto-completion, and more.

Script editing window

Debug Window

The debug window displays compile and execution results. Details can be filtered. Positive results are highlighted
with green, negative results are highlighted with red.

Debug window

3.7. Tester Windows 12

Test Tool User Guide, Release 6.x

3.7.5 Other Windows

The following dialog windows will be used.

Add Reader Window

Used to create/define a new Reader.

The dialog provides a drop-down list of existing partitions to choose to create the new Reader in.

Add Reader dialog

Batch Window

Used to Start a batch scenario and display the test results.

Batch Execute Scenarios window

3.7. Tester Windows 13

Test Tool User Guide, Release 6.x

Batch Results Window

Displays the detailed results of a batch of scripts. Detailed individual test result can be viewed by double-clicking
on a test result.

Batch results window

Detailed Batch results log

Chart Window

Used to plot topic field values.

3.7. Tester Windows 14

Test Tool User Guide, Release 6.x

Topic field values graph

Edit Sample Window

Used to create samples for a selected topic.

Edit sample window

Topic Instance Window

The topic sample window is used for displaying field values of a topic. It can be opened by double-clicking a
sample in the sample list or by pressing [F3] (additional) or [F2] (additional with compare) in the sample list
while a sample is selected. Special fields are highlighted with colors:

Key field (Green)

Foreign key (Yellow)

3.7. Tester Windows 15

Test Tool User Guide, Release 6.x

Different (compare only) (Red)

Not existing (compare only) (Orange)

When a field is selected, [Ctrl+H] will toggle between normal and hexadecimal representation, and [Ctrl+D] will
toggle between normal and degrees/radians representation.

3.7. Tester Windows 16

4
Familiarization Exercises

This section gives step-by-step instructions for using the Vortex OpenSplice Tester to perform many typical tasks
to help you become familiar with the way it operates.

The exercises in this section assume that OpenSplice and the Tester have been succesfully installed. These illus-
trations make use of the example data supplied with the product.

4.1 Starting the Tester

OpenSplice must already be running before you start the Tester.

Step 1: Start Vortex OpenSplice

Step 2: Start the Tester:

• On Linux, run ospltest.

• On Windows, choose Launcher from the Start menu. In the Launcher Tools tab, click on the Tester button.
Or run ospltest from a command prompt.

Starting Tester

4.2 Connection management

When it starts, the Tester will automatically try to establish a connection to a running instance of OpenSplice
using the default URI. You can also make or break connections from the main window by following the steps
given below.

The command line option -nac stops Tester from making a connection at startup, and with the -uri command
line option a connection to an alternative URI can be made at startup.

4.2.1 To Connect to a local OpenSplice instance

Step 1: Choose File > Connect.

Step 2: Set the path or Browse to the configuration file (e.g., file://<OpenSplice install
dir>/etc/config/ospl.xml).

17

Test Tool User Guide, Release 6.x

Step 3: Click the OK button.

Connecting to a local OpenSplice instance

4.2.2 To Connect to a remote OpenSplice instance

Step 1: Choose File > Connect.

Step 2: Enter the URI for the remote OpenSplice system (e.g., http://127.0.0.1:8000).

Note: The port number must be set to the port number as configured for the SOAP service of the remote OpenSplice
instance.

Step 3: Click the OK button.

Connecting to a remote OpenSplice instance

4.2.3 To Disconnect

Step 1: Choose File > Disconnect.

4.2. Connection management 18

Test Tool User Guide, Release 6.x

4.2.4 To Exit Tester

Step 1: Choose File > Exit or click the Close button on the Tester main window.

4.3 Topics and Readers

Tester can subscribe to multiple topics. These Readers will comprise a timeline for testing. Samples of those
topics are automatically read and displayed in the Sample List. Tester readers can also be used to write or edit
samples.

4.3.1 The Topic list

Check the Topic list. Make sure that the Tester is connected to the default URI.

4.3.2 To View a Topic’s Type definition

Step 1: Select the Topics tab.

Step 2: Right-click OsplTestTopic.

Step 3: Choose View Topic Type from the pop-up menu. The View Topic Type window will appear, displaying the
type name and type description for the chosen topic.

Viewing a topic’s type

4.3.3 To Add a Reader from the Topic list

Step 1: Select the Topics tab.

Step 2: Right-click OsplTestTopic.

Create Readers from the Topics list

4.3. Topics and Readers 19

Test Tool User Guide, Release 6.x

Step 3: Choose Create Default Reader from the pop-up menu. The reader will automatically be named the same
as the topic.

Step 4: Choose Create Reader and modify the (writer) QoS or reader name if desired.

Step 5: Click Add.

Create myReader

Step 6: Open the Readers tab and you will see the readers you just created.

4.3.4 To Add a Reader from the File menu

Step 1: Select the Readers tab.

Step 2: Choose File > Add Reader.

Step 3: Select OsplTestTopic from the drop-down list.

Step 4: Click Add.

Adding a Reader from the File menu

4.3. Topics and Readers 20

Test Tool User Guide, Release 6.x

4.3.5 To Add multiple Readers to the Tester timeline

Step 1: Choose File > Add Readers.

Step 2: Type ospl in the filter field to limit the list of topics. Select OsplArrayTopic and OsplSequenceTopic.

Step 3: Click Add.

Adding multiple Readers

4.3.6 To Save the current Readers to a file

If you need to preserve the Readers for a timeline, you can save the current Readers list.

Step 1: Choose File > Save Readers List.

Step 2: Enter a name for the new file.

4.3. Topics and Readers 21

Test Tool User Guide, Release 6.x

Step 3: Click Save.

4.3.7 To Remove all Readers

Step 1: Choose File > Remove all Readers.

4.3.8 To Load Readers from a saved file

Step 1: Choose File > Load Readers List.

Step 2: Select the name of the saved file.

Step 3: Click Load.

4.3.9 To Delete a Reader

Step 1: Select OsplTestTopic reader from the list.

Step 2: Press the [Delete] key or right-click on OsplTestTopic and choose Delete Reader from the pop-up menu.

4.4 Samples

4.4.1 Writing and Editing Samples

To Write Sample Topic data

Step 1: Select OsplTestTopic reader from the list.

Step 2: Press [F4] or choose Edit Sample from the pop-up menu.

Step 3: Enter following values for the fields in the list:

id: 0, t: 1, x: 1, y: 1, z: 1

Entering sample topic data

Step 4: Click the write button.

Step 5: Close the Edit Sample window.

4.4. Samples 22

Test Tool User Guide, Release 6.x

To display detailed information on sample data

Step 1: Double-click on the first OsplTestTopic sample in the Sample List window.

Display detailed sample data information

More information on sample info

The detailed sample data table displays sample info data of a given sample. Some fields are derived from middle-
ware sample info data, while others are not. What follows is a description of some of those fields.

• The insert_latency is a calculated value representing the difference between the sample’s insert timestamp,
and its write timestamp, as it is received in the sample info.

• The relative_time is a Tester specific time measurement, in seconds. It does not represent any actual times-
tamps from the middleware. Its main use is determining the time elapsed between a Tester scenario script
execution start and the sample receipt. It’s mainly meant as a loose measurement of time tracking since start
of sample reading or start of a script scenario, and not as a strict real-time middleware timing.

To Display extra fields

By default the Sample List displays topic-independent fields. You can add topic-specific fields as follows:

Step 1: Select any sample.

Step 2: Press [F9] or right-click and choose Select Extra Fields from the pop-up menu.

Step 3: Click to select (‘check’) x, y, z and t.

Selecting extra fields to display

4.4. Samples 23

Test Tool User Guide, Release 6.x

Step 4: Click OK.

The selected fields will be added to the Sample List.

New fields added

To Edit a sample

Step 1: Select the first sample.

Step 2: Press [F4] or choose Edit Sample from the pop-up menu.

Step 3: Enter following values in the fields:

id: 0, x: 1, y: 2, z: 1, t: 1

Step 4: Click Write.

Step 5: Enter following values in the fields:

4.4. Samples 24

Test Tool User Guide, Release 6.x

id: 0, x: 1, y: 4, z: 2, t: 1

Step 6: Click Write.

Step 7: Enter following values in the fields:

id: 0, x: 1, y: 8, z: 3, t: 1

Step 8: Click Write.

Step 9: Enter following values in the fields: id: 1, x: 1, y: 8, z: 4, t: 1

Step 10: Click WriteDispose.

To Compare two samples

Step 1: Double-click the sample with the values id: 0, x: 1, y: 4, z: 2, t: 1.

Step 2: Select the sample with the values id: 0, x: 1, y: 8, z: 3, t: 1.

Step 3: Press [F2] or choose Compare Samples from the pop-up menu.

Comparing samples

4.5 Filtering

Filtering: un-filtered Topic list

4.5. Filtering 25

Test Tool User Guide, Release 6.x

4.5.1 To Filter the Sample List on a Topic

Step 1: Select the OsplTestTopic sample.

Step 2: Press [F5] or choose Filter on Topic from the pop-up menu.

Sample List filtered by Topic

4.5.2 To Reset Filters and display all samples

Step 1: Press [F7] or choose Reset filter from the pop-up menu or click the Reset button on the Sample List
window.

4.5.3 To Filter on both Topic and Key

Step 1: Select OsplTestTopic with id(key): 1.

Step 2: Press [F5] or choose Filter on topic and key from the pop-up menu.

Sample List filtered by Topic and Key

4.5.4 Filter samples on State

Step 1: Select a sample with a State of SEND_AND_ALIVE.

Step 2: Choose Filter on State from the pop-up menu.

Sample List filtered by State

4.5. Filtering 26

Test Tool User Guide, Release 6.x

4.5.5 To Filter Samples on Key value

Step 1: Select OsplTestTopic with id(key): 0.

Step 2: Choose Filter on key from the pop-up menu.

Sample List filtered by Key value

4.5.6 Filter on column text

Step 1: Select the State column of any sample.

Step 2: Choose Filter on column text from the pop-up menu.

Step 3: Type in send.

Step 4: Press the [Enter] key.

Sample List filtered by column text

4.5.7 Find specific text

Step 1: Press [Ctrl+F] to open the Find dialog.

The Find dialog

Step 2: Type in the text to search for, and select any of the options if required.

Step 3: Click Find. The first occurrence of the search text is highlighted.

Step 4: Click Find again to find the next occurrence of the search text.

4.5. Filtering 27

Test Tool User Guide, Release 6.x

4.5.8 Global Topic filters

Topic filters

It is possible to completely hide certain topics from all views in the tool. These are global topic filter preferences,
which can be enabled (true) or disabled (false). They are accessed from the preferences window in File >
Preferences > Topic Filters. Enabling a given filter will hide the matching topics from the Topics table and from
the system browser view.

4.6 Working with Samples

4.6.1 To Delete a column from the Sample List table

Step 1: Select the x column of any sample.

Step 2: Press the [Delete] key.

Column deleted from Sample List display

4.6.2 To Chart Sample Data

Using any list of samples:

Step 1: Select the z column of any sample and press the [X] key.

Step 2: Select the y column of any sample and press the [Y] key.

Step 3: Choose SampleList > Show Chart or press [Alt+Shift+C] to display the chart.

Chart of Sample data

4.6. Working with Samples 28

Test Tool User Guide, Release 6.x

4.6.3 To Dump a sample list to a file

Step 1: Choose SampleList > Dump.

Step 2: Enter a name for the file to save.

Step 3: Click Save.

4.6.4 To Dump selected Samples only

Step 1: Select OsplTestTopic with key: 1.

Step 2: Choose SampleList > Dump Selection.

Step 3: Enter a name for the file to save.

Step 4: Click Save.

4.6.5 To Dump to a CSV format file

Step 1: Choose SampleList > Dump to CSV.

Step 2: Enter a name for the file to save.

Step 3: Click Save.

4.6.6 To Dispose data with Alive state

Step 1: Choose SampleList > Dispose Alive.

Disposing data with ‘Alive’ state

4.6. Working with Samples 29

Test Tool User Guide, Release 6.x

4.6.7 To Translate Sample data to test script

Step 1: Choose SampleList > Diff Script.

The Scripting commands to replicate all of the sample data will be inserted into the current scenario in the Edit
window.

4.6.8 Translate selected sample to test script

Step 1: Select a set of samples.

Step 2: Choose SampleList > DiffScript Selection.

The Scripting commands to replicate this subset of the sample data will be inserted into the current scenario in the
Edit window.

4.6.9 To display samples with not_alive_no_writers state

There is a setting to control whether Tester’s active data readers ignore samples whose state is
NOT_ALIVE_NO_WRITERS.

If an application data writer has a QoS of autodispose_unregistered_instances set to false and
then unregister_instance is called on a data writer for some instance, a sample reaches matching data
readers with the no_writers state.

The default setting is true, which means that these samples are ignored and not displayed.

‘Max samples’ and ‘not_alive’ options

4.6.10 To control the number of samples kept per reader

It is possible to limit the number of samples kept per reader. This setting, Max Samples kept per reader, is accessed
by choosing File > Preferences > Settings.

This setting accepts integer values. The default value is 0, which means that there is no limit imposed on the
number of samples that will be stored.

4.7 Groups

4.7.1 Definition of a Group in Tester

Vortex OpenSplice supports setting of the Presentation policy of publishers and subscribers. As a result, Tester
can set these policies on its own created publishers and subscribers and be able to write/read coherent sets of data
into/from the system.

Just as in Tester where data reader and data writer are aggregated into a Reader and listed in the Readers list, a
custom created publisher and subscriber pair are aggregated into a Group and are listed in the Groups list. A Group

4.7. Groups 30

Test Tool User Guide, Release 6.x

has a defined Partition and Presentation QoS policy that is set on creation and is set to its contained publisher and
subscriber.

4.7.2 To Add a Reader under a Group

Step 1: Choose File > Add Reader.

Step 2: Select OsplTestTopic from the drop-down topics list.

Step 3: Check the box labeled Create as group.

Step 4a: Choose a name for the Group (Group name must be unique and non empty).

Step 4b: Fill in desired Partition, and Presentation policy settings (Access scope, Coherent access and Ordered
access).

OR

Step 4c: Select an already existing Group from the drop-down Groups list. Partition and Presentation form
elements will populate to existing values for the selected Group and become disabled.

Step 5: Click Add.

Create a Reader under a Group

Completing this action will create the Groups tab on the main panel if this is the first Group that has been created
in the current session.

If there is already a reader existing on the selected topic, then the new reader must have a unique name
assigned to it, else the new reader will not be created and assigned to the Group.

4.7.3 To Add multiple Readers under a Group

Step 1: Choose File > Add Readers.

Step 2: Select OsplTestTopic, OsplArrayTopic, and OsplSequenceTopic from table.

Step 3: Check the box labeled Create as group.

Step 4a: Choose a name for the Group (Group name must be unique and non empty).

4.7. Groups 31

Test Tool User Guide, Release 6.x

Step 4b: Fill in desired Partition, and Presentation policy settings (Access scope, Coherent access and Ordered
access).

OR

Step 4c: Select an already existing Group from the drop-down Groups list. Partition and Presentation form
elements will populate to existing values for the selected Group and become disabled.

Step 5: Click Add.

Create multiple Readers under a Group

Completing this action will create the Groups tab on the main panel if this is the first Group that has been created
in the current session.

If there is already a reader existing on a selected topic, then the new reader must have a unique name assigned
to it, else the new reader will not be created and assigned to the Group. In this case, one should use the method in
To Add a Reader under a Group.

4.7.4 To Publish coherent sets

Once at least one Group has been created, the Groups tab will become visible. It contains a list of currently active
groups, their QoS policies, and current number of Tester readers (readers under the subscriber, writers under the
publisher).

There are two actions available to rows of this table: Delete Group, and Publish Coherent Data.

Deleting a Group will also delete the readers that it owns.

If Publish Coherent Data is selected, then a new window will appear.

Publish coherent sets menu

4.7. Groups 32

Test Tool User Guide, Release 6.x

Coherent Publisher Window

This new view contains two parts: the list of writers currently under this Publisher, and the user data table con-
taining data about the outgoing samples in a coherent set.

The actions available to the user in this view are:

• Begin coherent changes

• End coherent changes

• Refresh writer list

Begin coherent changes will set the publisher in coherent mode. In this state, samples written by this publisher’s
writers will not be made visible to remote readers (under a subscriber with matching Presentation policy) until the
End coherent changes action is made. Otherwise, samples written while the publisher is not in coherent mode are
published normally.

Samples can be constructed and written from this view by either double clicking or right clicking on a writer in the
writers list and selecting Write data. This brings up a writer window identical to the one in Writing and Editing
Samples, only this one will update the Coherent publish window with written data.

When a sample is constructed in the writer window and then written, disposed, or any other writer action made,
and if the publisher is in coherent mode, then the sample will appear in the Coherent publish window’s data table.

The data table displays the written sample’s instance key, the outgoing instance state, and the originating writer’s
name. Samples in the data table can be double clicked to bring up a view of the sample edit window populated
with the selected sample’s fields and field values.

Once a sample has been written from the writer window, regardless if the publisher is in coherent mode or
not, it is live in the system and cannot be edited.

4.7. Groups 33

Test Tool User Guide, Release 6.x

Once editing a set of coherent data is complete, clicking End coherent changes button will notify the publisher
that the set is complete, and remote coherent subscribers will allow access to the published data.

The Refresh writer list action (accessible from the Edit menu or F5 keystroke) refreshes the current list writers
that the publisher owns, if any writers were created or deleted since the creation of the window.

4.7.5 To Subscribe coherent sets

The Group’s readers behave in the same way that normal Tester readers behave. All readers are periodically polled
for available data and added to the Sample list. A Group’s reader is polled in such a way that it maintains coherent
and ordered access.

4.8 System Browser (Browser window)

4.8.1 Browse tree

The System Browser is used to examine the Nodes, Participants, and Topics in your system using a tree paradigm.

Step 1: Choose View > Browser or click the Browser tab of the main window.

Step 2: Expand the all tree.

Step 3: Select Tester participant from the Browser tree. Note that your own Tester is highlighted in yellow in the
tree.

All participants
- OpenSplice Tester

Step 4: Select Built-in participant from

Nodes
+ <your machine name>
+ java.exe

- Built-in participant

Step 5: Select Build-in participant from

Nodes
+ <your machine name>
+ java.exe

- ddsi2

Step 6: View readers and writers of durability service. Select Build-in participant from

Nodes
+ <your machine name>
+ java.exe

- durability

Step 7: View readers and writers of splicedaemon. Select Build-in participant from

Nodes
+ <your machine name>
+ java.exe

- splicedaemon

Browser window

4.8. System Browser (Browser window) 34

Test Tool User Guide, Release 6.x

(The red boxes in the illustration indicate the current Open Connection.)

4.8.2 Readers and Writers tables are updated when a new Reader is created

Step 1: Open the Browser window.

Step 2: Select OpenSplice Tester participant from the All participants tree.

Step 3: Create a new OsplTestTopic reader (see To Add a Reader from the Topic list for instructions).

Step 4: The Readers and Writers table will be updated.

Readers and Writers table updated

4.8. System Browser (Browser window) 35

Test Tool User Guide, Release 6.x

4.8.3 Readers and Writers tables are updated when a new Reader is deleted

Step 1: Open the Browser window.

Step 2: Select the OpenSplice Tester participant from the All participants tree.

Step 3: Delete the existing OsplTestTopic reader.

Step 4: The deleted reader will be highlighted with orange to indicate that the reader is disposed.

Reader deleted

4.8. System Browser (Browser window) 36

Test Tool User Guide, Release 6.x

4.8.4 To Check Reader and Writer compatibility

Step 1: Choose Create Reader from the pop-up menu from OsplTestTopic.

Step 2: Enter boo for the name and boo_partition for the partition.

Step 3: Create another reader with hoo for the name and hoo_partition for the partition.

Step 4: Choose Create Default Reader to create a default reader.

Step 5: Open the Browser window and select Topics/OsplTestTopic from the browser tree.

Step 6: Select a Reader with * partition from the Readers table.

Reader with ‘*’ partition selected

Step 7: Select a Reader with boo partition from the Readers table.

Reader with ‘boo’ partition selected

4.8. System Browser (Browser window) 37

Test Tool User Guide, Release 6.x

Step 8: Select a Reader with hoo partition from the Readers table.

Reader with ‘hoo’ partition selected

In the Browser window, Readers/Writers are highlighted with red to indicate incompatibility with the selected
Writer/Reader (yellow).

4.8.5 To Show Disposed Participants from the Browser tree

Step 1: Open the Browser window.

Step 2: Select (check) Show disposed participants.

Step 3: Expand the Nodes tree.

Step 4: Expand the All participants tree.

Step 5: De-select (un-check) Show disposed participants.

Disposed participants

4.8.6 To Spawn a Tuner from the System Browser

Any domain participant that is part of a configuration that includes a SOAP service should have the Start Tuner
pop-up menu.

Step 1: Connect Tester using the ospl_sp_ddsi_statistics.xml configuration file in the etc/config
directory.

Step 2: Open the Browser window.

4.8. System Browser (Browser window) 38

Test Tool User Guide, Release 6.x

Step 3: Expand the Nodes tree.

Step 4: Right-click on the OpenSplice Tester participant.

Step 5: Choose Start Tuner from the pop-up menu.

4.8.7 Statistics

First, connect Tester using the ospl_sp_ddsi_statistics.xml configuration file in the etc/config
directory.

Note that statistics can only be gathered from the Tester process.

The Statistics window

Statistics - participants

Write sample topics and check statistics window content

Step 1: Create a default reader for OsplTestTopic.

Step 2: Write four samples.

Step 3: Open the Participant tab of the Statistics window.

Step 4: Select the OpenSplice Tester participant from the list.

Statistics - topics

Write sample topics and check statistics window content

Step 1: Create a default reader for OsplTestTopic.

Step 2: Write four samples.

Step 3: Open the Topics tab of the Statistics window.

Step 4: Select OsplTestTopic from the list.

4.8. System Browser (Browser window) 39

Test Tool User Guide, Release 6.x

4.9 Scripting

4.9.1 To Create a New Scenario

Note that you can only have one scenario open at a time. To avoid losing changes in the current scenario you
must save it before creating a new scenario or selecting a different one from the drop-down list of recently-used
scenarios (next to the Clear and Execute button).

Step 1: Choose Editor > New Scenario to create a new scenario and open it in the editor, or if the Editor window
is already open, press [Ctrl+N] to create and open a new scenario. A warning is displayed if there are unsaved
changes in the current scenario.

Step 2: In the File Save dialog that appears, specify the location of the new scenario and give it a name.

4.9.2 To Create a New Macro

Step 1: Choose Editor > New Macro to create a new macro and open it in the editor, or if the Editor window is
already open, press [Ctrl+M] to create and open a new macro.

You can have multiple macros open at the same time. Use the drop-down list next to the Clear and Execute button
to see or select them.

Step 2: In the File Save dialog that appears, specify the location of the new macro and give it a name.

4.9.3 To Edit an Existing Scenario or Macro

Step 1: Choose Editor > Open from the top menu.

Step 2: In the dialog that appears, type in or browse to the location of the macro or scenario you wish to open,
then click Open.

4.9.4 To Save an open Scenario or Macro

Save the current scenario or macro.

Step 1: Choose File > Save from the top menu or press [Ctrl+S].

Step 2: If the scenario or macro has been saved before, then it is immediately saved, over-writing the previous
version.

Step 3: If the scenario or macro has not been saved before, a Save As... dialog appears; type in or browse to an
appropriate location and enter a name for the scenario or macro, then click Save.

4.9.5 To Complete and Compile a Scenario

This function ‘wraps’ the current text in the Edit window with "scenario" and "end scenario".

Complete is only used when a new scenario is created without a template, from DiffScript or the Write button in a
sample editor. Compile is only needed when you do not want to execute, but just check the syntax.

Step 1: Choose Edit > Complete from the top menu.

Step 2: Click the Compile button.

Step 3: Click the Execute button.

Step 4: Click the Clear and Execute button.

4.9. Scripting 40

Test Tool User Guide, Release 6.x

4.9.6 Script selection

Step 1: Expand the Script Selection drop-down list of recently-used scripts near the Clear and Execute button.

4.9.7 Code completion

The Tester has a ‘code completion’ function which reduces the amount of typing that you have to do and reduces
the chances of errors. For example, you can press the [Ctrl+Space] keys after you have typed the first few
characters of a reader name and the Tester will display a list of the names of the readers which start with the same
characters and you can choose the one you want.

Assuming that the OsplTestTopic reader already exists, and that a new script is open in the Edit tab:

Step 1: Complete the current scenario by choosing Editor > Complete from the top menu. (Note that it is generally
preferable to start from a template.)

Step 2: Type send Ospl then press [Ctrl+Space].

Step 3: ‘OsplTestTopic’ appears; press [Enter] to accept it, and the instruction is completed.

This also pops up the sample editor, enabling you to set the arguments. The sample editor can also be activated by
[Ctrl+Space] when the cursor is in the instruction, or [Ctrl+left-click] on the instruction.

Code completion (send)

Step 4: Type check Ospl then press [Ctrl+Space].

Step 5: ‘OsplTestTopic’ appears; press [Enter] to accept it, and the instruction is completed.

Code completion (check)

4.9. Scripting 41

Test Tool User Guide, Release 6.x

4.10 Execute and Debug

4.10.1 To Run the Current Script

Step 1: Click the Execute (‘Play’) button in the Debug window to run the current script.

Step 2: While the script is still executing, click the ‘Pause’ button in the Debug window.

Step 3: While the script is still executing, click the ‘Stop’ button in the Debug window.

Step 4: In the Debug window, double-click the entry where the column Location has a value of 6. Double-clicking
on an entry in the Debug window highlights the relevant line in the Editor window.

Debugging a script

4.10.2 Batch execution (Batch window)

Load and run batch scenario.

4.10. Execute and Debug 42

Test Tool User Guide, Release 6.x

Step 1: Choose Script > Batch from the top menu.

Step 2: In the Batch window, choose File > Load batch.

Step 3: Select batch.bd in the example script directory.

Step 4: Click the Start button.

Batch execution

4.10.3 To Run a Batch Script from the Command Line

Step 1: Change directory to the example scripts directory where the batch.bd is found
(<OSPL_HOME>/examples/ ...).

Step 2: Run ospltest -e -b batch.bd.

4.10.4 Batch results

Load batch result

Step 1: Choose Scripts > Batch results from the top menu.

Step 2: With the Batch results window open, choose File > Load result from the top menu.

Step 3: Select the batch result file from the batch run.

Batch results

4.10. Execute and Debug 43

Test Tool User Guide, Release 6.x

Scan regression folder for batch results

Step 1: Choose File > Scan Regression from the top menu.

Step 2: Double-click the test result column of any test.

The results displayed will appear similar to the example in Figure 56.

Scan regression for specified directory

Step 1: Choose File > Scan Regression dir from the top menu.

Step 2: Select the directory (folder) that contains batch results.

The results displayed will appear similar to the example in Figure 56.

4.11 Adding virtual fields

‘Virtual fields’ are fields with calculated values. For example, a translation from radians to degrees, or from
cartesian to polar coordinates. The virtual field can be provided in Java (inside a plugin, see Plugins later in this
section) or a script language (see the section on scripting, as well as the following example).

4.11.1 Add virtual fields to the topic

Step 1: Choose File > Add fields from the top menu.

Step 2: Browse to the example directory and select fields.txt.

Step 3: Open the SampleList window.

Step 4: Select the OsplTestTopic sample.

Step 5: Add extra fields from the pop-up menu.

Adding extra fields to a sample

4.11. Adding virtual fields 44

Test Tool User Guide, Release 6.x

4.12 Plugins

Plugins can extend the functionality of Tester by providing virtual fields (see Adding virtual fields), or additional
interfaces. Plugins are automatically loaded upon startup from the specified plugin directory. Two sample plugins
are provided with Tester: SimplePlugin adds virtual fields, and TestInterface adds a UDP/IP message interface
(see Message Interfaces).

4.12.1 Install / Uninstall plugins

Step 1: Go to the examples/tools/ospltest/SimplePlugin directory.

Step 2: Run ant from the command console to build the SimplePlugin example.

Step 3: Run Tester and choose File > Preference from the top menu.

Step 4: In the Settings tab, set the correct value for Plugins dir and click OK.

Setting the path to the Plugins directory

Step 5: Choose File > Plugins from the top menu.

Step 6: Click SimplePlugin to select it.

The SimplePlugin example

4.12. Plugins 45

Test Tool User Guide, Release 6.x

Step 7: Double-click any OsplTestTopic data in the SampleList window. New fields are added.

Fields added to OsplTestTopic sample

Step 8: In the Select extra field dialog ([F9]), one more field is added.

Extra field added

4.12. Plugins 46

Test Tool User Guide, Release 6.x

4.13 More on Virtual fields

Additional virtual fields can be provided via a plugin or via a script.

4.13.1 Adding Virtual Fields via plugin

Override the class:

ExtraTopicField

Compile this class in a plugin and in the ‘install’ function register the extra fields with:

connection.registerExtraField(<instance of extra topic field
class>);

An example of a plugin with an extra field is provided in examples:

<OSPL_HOME>/examples/tools/ospltest/plugins/SimplePlugin

4.13.2 Adding Virtual Fields via script

A script file can be loaded using the top menu: File > Add Fields.

The script file has the following syntax:

[#!<language>]
<name of the field>
<name of the applicable topic>
<script which returns a value and can have multiple lines>
next_field
<name of the field>
<name of the applicable topic>
<script which returns a value and can have multiple lines>

The language description is optional. 1 to n fields can be described in a single file.

The data of the sample is available in an object variable which is pushed to the script engine before the execution
of the script. The object sample provides the following functions:

String getDayTime();
long getTime();
long getId();

4.13. More on Virtual fields 47

Test Tool User Guide, Release 6.x

String getMsgName();
String getKey();
String getInstanceState();
boolean isALive();
String getSource();
String getFieldValue(String fieldname);

These functions can be used to retrieve data from the current sample and determine the value for the extra field.
An example of a script file is provided in examples/tools/ospltest/fields.txt.

4.13. More on Virtual fields 48

5
Command Reference

This section lists all of the Tester’s commands and describes their operation.

5.1 Introduction

The commands are described below in the order in which they appear in the menus (starting at the top left).

Where a menu option also has a keyboard shortcut, it is shown in [italics in square brackets] (for example,
[Ctrl+C]).

Some menu options can also be invoked by clicking on buttons in appropriate tabs or windows.

5.2 Menus

Tester main menu

5.2.1 File

File > Connect, [Ctrl+Shift+C] Open a connection to a Domain.

File > Disconnect, [Ctrl+Shift+D] Disconnect from a Domain.

File > Remove All Readers Remove all previously-added Readers.

File > Add Reader Add a single topic Reader.

Add Reader dialog

File > Add Readers Add multiple Readers by selecting from the Topic List.

49

Test Tool User Guide, Release 6.x

Add Readers from Topic list

File > Save Readers List

Save the current list of topics to a file. The keys, QoS, wait for historical info will be preserved.

The format of the readers list file (and the add reader specification) is:

<!>[#QOS#]topic_name[|readername][\[partitionname\]] <optional_key>
<optional_foreign_key1> <optional_foreign_key2> <optional_foreign_key3>

File > Load Readers List Load a topics file. Topics already in the list will not be recreated.

File > Add Fields Load new fields. Example field.txt is located in the example directory.

Load Extra Fields dialog

File > Plugins Install/Uninstall Plugins. The example SimplePlugin plugin is located in the example di-
rectory. It must be compiled and put in to the plugins directory specified in Preference page.

Plugins dialog

5.2. Menus 50

Test Tool User Guide, Release 6.x

File > Save Layout Save the current layout of the windows in a file; this can later be used to organize the windows
in the same way. Save Layout is only applicable to non-IDE mode.

File > Load Layout Load a specific layout of the windows as previously saved (select by file on the disk) with
Save Layout. Load Layout is only applicable to non-IDE mode.

File > Preferences Can be used to change the locations of the macros and scripts directories. (See also the
instructions for starting and stopping Tester).

File > Exit Quit the application.

5.2.2 Script

Script > Script Editor, [Alt+Shift+S] Open the script Edit window.

Script > Debug Window Open the script Debug window.

Script > Scripts Open the scripts window which allows for quick access to scripts found on the script path (as
defined in the ospltest.properties). (See also File > Preferences and Starting and Stopping Tester.)

Script > Macros Open the macros window which allows for quick access to the macros found in the macro path
(as defined in the ospltest.properties). (See also File > Preferences and Starting and Stopping
Tester.)

Script > Batch, [Alt+Shift+B] Open the Batch Execute window for the batch execution of several scripts.

Script > Batch Results Display the results of the batch run.

5.2.3 View

View > Samples, [Alt+1] Open the Sample List window.

View > Statistics, [Alt+2] Open the Statistics window.

View > Browser, [Alt+3] Open the Browser window.

5.2.4 SampleList

The Sample List displays the current list of read samples. The list is sorted on source time (timestamp) of the
topic samples. Topics Samples are only displayed when the Show checkbox in the Reader list is checked (note
that un-checking Show does not delete the topics Samples). A double-click in the list results in the topic being
displayed in the Sample window.

The state displayed with the topic is the Sample state of the sample. When the state of the topic is alive
then if this is the last Sample with that key it is displayed as ALIVE_AND_KICKING for received samples and
ALIVE_AND_SEND for samples sent by Tester. This makes it very easy to spot topics which are not disposed.

When exactly two topics are selected, the difference between the source timestamps is displayed.

5.2. Menus 51

Test Tool User Guide, Release 6.x

The following menus are only active when the Sample List tab is selected showing samples. (If you are in the
Browser tab, for example, then the menus will not be active (they will be ‘greyed out’)).

SampleList > Clear, Clear button Clear the Sample List.

SampleList > Dump Dump the contents of the current (filtered) Sample List to a file.

SampleList > Dump Selection, [P] (also [Ctrl+P] and [Alt+P]) Write the current selection content to a file.

SampleList > Dump to CSV Write the contents in CSV format.

SampleList > Dispose Alive Dispose all topics in the Sample list with a state alive and kicking (i.e. all
last Samples of a topic with a given key which are still alive), this function can be used to clean up (dispose
left alive samples) a list after a test.

SampleList > Diff Script Create a list of instructions in the current scenario which reproduces the list of samples
in the Sample list. The diff means that only fields which do not have the default value or are a key/switch
field are used in the script.

SampleList > Diff Script Selection Create a diff script for the current selection of samples.

SampleList > Show Chart, [Alt+Shift+C] Display the chart window. To fill the chart with data select a column
with numeric values and press [Y]. This will add a trace with the values of the column, using the time
received on the X axis. Multiple traces can be added. Select a filter to limit to the appropriate values. To
display a scatter plot, clear the traces and select the column to use on the x-axis, then press [X]. After this
select the column with values for the Y axis and press [Y]. It is also possible to automatically create multiple
traces based on a key value. First select the column to be used as key and press [K] before the Y column is
selected.

[F2] Compare two topic Samples. Select the first topic Sample in the Sample window (by double-clicking),
then select the second topic Sample and press [F2]. The samples will be displayed side by side with the
differences marked in the window of the second topic (normally the left window). A field marked in red is
different, a field marked in orange was not found in the first topic Sample. If not different then (foreign) key
fields will be marked in green and yellow. (See also Topic Instance Window.)

[F3] Display a topic Sample in a separate Sample window.

[F4] Open the topic edit window with the values of the selected topic.

[F9] Fields of the current selected topic sample can be added for display in the Sample list. Fields are displayed
based on name. Any topic Sample with a field of that name will provide the value of the field. A field
column can be deleted by selecting a cell in the column and then pressing [Delete].

5.2.5 Display

When the Sample List is open these commands allow the user to adjust the window display attributes to their
needs.

Display > Font Smaller, [Ctrl+minus] Decreases the font size of the Sample List window.

Display > Font Larger, [Ctrl+plus] Increases the font size of the Sample List window.

Display > Day Time Toggles the Dtime column format between number of milliseconds (ms) and time-of-day
(hh:mm:ss.ms).

Display > Colors Toggles the display of colors (on or off).

Display > Refresh Refreshes the Sample List window.

Display > Only Show Alive Filters the samples to display samples in the ‘alive’ state.

5.2.6 Filter

When the Sample List is open these commands enable you to filter the displayed samples based on the Topic and
Key attributes of the current sample.

5.2. Menus 52

Test Tool User Guide, Release 6.x

The filter can also be applied by typing the key directly in the filter window. Add a + (plus) sign in front of the
key value to filter including foreign key relations (it is not possible to filter on key and topic name when entering
the key manually). The filter can also be reset by clicking the Reset button.

Filter > Topic, [Ctrl+F5] Filter on topic name.

Filter > Topic and Key, [F5] Filter on key and topic name.

Filter > Key, [F6] Filter on key only (so all topics with the same value for key are displayed).

Filter > Resets, [F7] Clears the filter.

[F8] Filter on the key value and also allow forward foreign key relations (i.e. find topics which have a key which
matches a foreign key of an already-displayed topic.

[F12] Filter all messages with the same sample state.

[F] Filter based on text in a column, the column is listed in the filter box (i.e. [<column>]) add the text on
which to filter and then press [Enter].

5.2.7 Editor

When the Edit window is open these commands allow the user to create and manage Scenarios and Macros.

Editor > New Scenario, [Ctrl+N] Create a new scenario. A File Save dialog will be displayed to provide the file-
name of the scenario. The initial scenario will be created using the template scenario_template.txt
which is found in the installation directory.

Editor > New Macro, [Ctrl+M] Create a new macro. A File Save dialog will be displayed to provide the filename
of the macro. The initial macro will be created using the template macro_template.txtwhich is found
in the installation directory.

Editor > Open, [Ctrl+O] Opens the File Open dialog, the selected Script or Macro file will be loaded in the
editor.

Editor > Save, [Ctrl+S] Save the current script to disk (to the same file as it was loaded/created).

Editor > Save As, [Ctrl+Shift+S] Opens the Save dialog for entering a filename to which the current script will
be saved.

Editor > Complete, [Ctrl+Shift+C], [Ctrl+T] Completes the Scenario by inserting "start scenario" and
"end scenario" text at the beginning and end of the current file.

5.2.8 Edit

When the Edit window is open these commands provide basic text editing capabilities.

Edit > Cut, Edit > Copy, Edit > Paste, Edit > Find/Replace Traditional text editing commands. The standard
key combinations (such as [Ctrl+X] and [Ctrl+C]) are also recognized.

Edit > Format, [Ctrl+Shift+F], [Ctrl+I] Automatically formats the text in the current edit window. Formatting
removes extra blank lines and normalizes the indentation.

Keyboard-only commands

Some functions are not accessible from the menu bar; these are mostly common editing commands that are invoked
with standard (‘traditional’) key combinations (‘shortcuts’).

[Crl+A] Select all text in the current field or editor window.

[Ctrl+E] Execute the current scenario.

[Ctrl+Space] Complete the scenario at the current location. If the cursor is on an empty line, the list of possi-
ble commands is shown; on a complete command, the appropriate editor for that command is opened (if
available).

5.2. Menus 53

Test Tool User Guide, Release 6.x

[Ctrl+Z] Undo the last command.

Macro Recorder

The Tester has a simple macro recorder, intended for ad hoc use, controlled by keyboard commands only. It can
record and store a single un-named macro which is only retained for the current session (until the Tester is closed).

[Ctrl+Shift+R] Start recording a new macro. Any previously-recorded macro is deleted.

[Ctrl+Shift+S] Stop recording.

[Ctrl+Shift+M] Play the recorded macro.

5.3 Lists

5.3.1 Services

Displays a list of the Services running on this node. A display-only window.

5.3.2 Scripts

Displays a list of the installed Scripts (.sd files) and Batch Scripts (.bd files).

Refresh Refreshes the list.

<select> a Script Displays the Script in the Edit window

5.3.3 Macros

Displays a list of the installed Macros (.md files).

Refresh Refreshes the list.

Scen Checking this option displays Scripts as well as Macros.

<select> a Macro Displays the Macro in the Edit window

5.3.4 Readers

For each reader the count of received samples is displayed as well as the QoS and partition. A check box is
provided for changing the read state or the show state. When Read is unchecked the reader stops reading samples.
When Show is unchecked the topic samples of that topic will not be displayed in the sample list.

Select all Checks the show state for all topic samples.

Deselect all Unchecks the show state for all topic samples.

<select> a Topic Instance Enables you to check/uncheck the Read and Show state.

<right-click> Delete Reader, [Delete] Deletes the selected reader.

<right-click> Recreate Reader, [Ctrl+R] Recreates the selected reader and as such re-reads any persis-
tent/transient data available.

<right-click> Show First Sample, [F3], or double-click on the reader Shows the first sample for the selected
reader.

<right-click> Edit Sample, [F4] Opens an Edit Sample window for the selected topic.

[F9] Opens the field selection window for the display of fields of the selected topic.

5.3. Lists 54

Test Tool User Guide, Release 6.x

Edit Sample Window

The Edit Sample window is used for editing field values of a topic and then writing the sample or dispose the
instance. It is also used to insert the topic values as a ‘send’ or ‘check’ entry in the current script (at the cursor
position in the script window).

The Edit Sample window can be filled with a topic from both the Topics window and the Sample List window with
the [F4] key. If the topic write window is filled with a topic from the topics list window then the values are all
empty (except for union discriminators, which get a default value). If the window is filled from the sample list
window then the fields get the values of the selected topic sample in the sample list. The key fields are marked in
green and the foreign keys are marked in yellow.

Fields can be edited by selecting the edit field (right-most column). If the field is of an enumerated type then a
combo box is displayed which provides all possible values. The topmost value is empty for reset to the default
value (not set).

The keyboard can be used to navigate the edit fields. The cursor [Up] and [Down] (arrow) keys move between
fields; any other key starts editing the value in the current field.

Edit sample window

(There is a second form of this window, used when opened from the script with [Ctrl+Space], [Ctrl+Left-click],
or as part of completion. It only has two buttons: OK and Cancel. Pressing [Ctrl+Enter] or [Ctrl+Return] is the
same as clicking OK.)

write Write the sample.

writeDispose Write the sample and Dispose the instance.

dispose Dispose the instance.

script Instead of writing the sample this creates the script commands to write the sample. These commands are
inserted into the scenario currently being edited and the user will be taken to this text.

check Similar to script but creates the script command to check the sample values.

[F4] Copy the current selected field from the topic in the instance window.

[F5] Copy all fields based on an equal name from the topic in the instance window.

[F6] Fill all fields with .sec in the name with the current time seconds and fields with .nanosec in the name
with the current time in nanoseconds.

[Ctrl+T] Fills a field of type int with the seconds part of the current time.

[Ctrl+U] Fills a field of type long with a unique key.

[Ctrl+V] Paste a value.

[Alt+Down] Opens the enum editor.

[Enter], [Return] Commits the current edited value.

[Esc] Discards the current edited value.

Once the desired values have been entered the topic can be written by clicking the Write button, disposed by
clicking the Dispose button, or write disposed by clicking the WriteDispose button.

5.3. Lists 55

Test Tool User Guide, Release 6.x

5.3.5 Topics

The topics list displays the list of topics as known in the system.

<select> a Topic Selects a Topic.

<right-click> Create Reader Create a Reader for the selected Topic.

<right-click> Create Default Reader Makes the selected Reader the default reader to be displayed in the Sam-
ples List.

[F2] The key list definition window will open which allows to change the (foreign) keys. The syntax is the same
as in the add topic window or topic file. To support the selection of the keys the primary fields of the topic
are displayed and will be inserted at the cursor position in the edit field when clicked.

5.3.6 Groups

The Groups list displays the list of groups created Tester and currently active. The Groups tab is only visible in
the main window when at least one Group has been created in the current Tester session.

<select> a Group Selects a Group.

<right-click> Delete Group, [Delete] Delete the selected Group.

<right-click> Publish Coherent Sets, [F4] Create a Coherent publisher window from which coherent sets of
data can be created and written.

5.4 Windows

5.4.1 Sample List Window

The Sample List window is used to display samples. By default the delta time, topic name, state, key, and source
are displayed. Additional columns can be added and filters defined.

Sample List window

Clear Clears the list.

Filter <value> The current filter value.

Reset Resets the filter value.

Pack Adjusts the displayed column widths.

<select> a Sample Selects a sample to use with <right-click> commands. [Ctrl+Left-click] selects another sam-
ple. If exactly two samples are selected, the difference in source time will be displayed in the top bar of the
Sample List window.

<right-click>Select Extra Fields, [F9] Opens a dialog box allowing selection of extra fields to display.

<right-click> Display Sample, <double-click> Displays sample details.

<right-click> Display Sample New Window, [F3] Displays sample details in new window.

<right-click> Compare Sample, [F2] Compares two samples with each other and shows differences in red color.

5.4. Windows 56

Test Tool User Guide, Release 6.x

<right-click> Edit Sample, [F4] Allows Tester to edit the selected sample values.

<right-click> Filter on topic, [Ctrl+F5] Filters on the selected topic value.

<right-click> Filter on topic and key, [F5] Filters on both the selected topic and key values.

<right-click> Filter on State, [F12] Filters on the State of the selected sample.

<right-click> Filter of Key, [F6] Filters on the Key value of the selected sample.

<right-click> Filter on Column Text, [F] Sets the filter to be the value of the current column.

<right-click> Filter Reset, [F7] Resets the filter value.

<right-click> Delete extra column, [Del] Removes the selected extra column from the list.

<right-click> Add Column as Key to Chart, [K] Assigns the selected column as the key field for the chart.

<right-click> Add Column as X to Chart, [X] Assigns the selected column as the x-axis for the chart.

<right-click> Add Column as Y to Chart, [Y] Assigns the selected column as the y-axis for the chart.

[Ctrl+F] Finds the next sample containing the search text in any column.

5.4.2 Statistics Window

The Statistics window provides statistics for the topics in use, such as write count, number of alive topics, etc..
The following values are displayed for each topic:

Count The number of samples currently in the OpenSplice database

Arrived The number of arrived samples

Takes The number of takes by the reader

Reads The number of reads by the reader

Alive The number of alive topics (instances not disposed)

Writes The number of written samples

The left table shows either the participants, the topics, or the statistics of the currently-selected reader/writer as
indicated by the selected tab.

When the list of participants is shown, a participant can be selected. The second table shows the list of readers
with their statistics, the third table show the list of writers with their statistics.

When the list of topics is shown, a topic can be selected. The second table shows the list of participants reading
the topics with their statistics, the third table shows the list of participants writing the topic with their statistics.

If a value of -1 or -2 is shown then an error occurred during the retrieval of the statistics for the reader/writer.

By selecting a row in the reader or writer list all statistics for that reader or writer will be shown in Stats tab of the
left window.

Refresh Will refresh the content.

Add readers Will add the topics in the reader list to the list of monitored topics.

Add writers Will add the topics in the writer list to the list of monitored topics.

[CTRL+F] Finds the next reader/writer containing the search text in any column.

5.4.3 Browser Window

The Browser window enables you to view the Readers and Writers in the system. You may browse by Node,
Participant, or Topic.

Browser window

5.4. Windows 57

Test Tool User Guide, Release 6.x

Refresh Will refresh the browser content.

Add readers Will create a Tester reader from the list of readers for the selected read-topic. The QoS of the
discovered reader will be used to ensure that data read by that reader will be captured in the timeline.

Add writers Will create a Tester reader from the list of writers for the selected written-topic. The QoS of the
discovered writer will be used to ensure that data written by that writer will be captured in the timeline.

Show disposed participants Used to toggle the display of disposed participants.

[CTRL+F] Finds the next reader/writer containing the search text in any column.

5.4.4 Edit Window

The Edit window is used to create and modify Scripts and Macros. Please refer to Chapter 5, Scripting, on page
73, for more details.

Edit window

Traditional text editing commands and standard key combinations (such as [Ctrl+X] and [Ctrl+C]) are recog-
nized. Menu commands and keyboard shortcuts for editing scripts and macros are described in sections 4.2.7,
Editor, 4.2.8, Edit, 4.3.2, Scripts, and 4.3.3, Macros.

When editing macros, instruction-specific editing dialogs may open; for example, the send, check and
execute macro instructions have their own editing dialogs which help to make your entries conform to their
syntax.

Editor for execute instruction

5.4. Windows 58

Test Tool User Guide, Release 6.x

Compile Compile the current content.

Execute Run the current script or macro without clearing the sample list.

Clear and Execute Clears the sample list and then runs the current script/macro and returns the user to the Sample
List window.

<drop down> Allows for quick selection of recently-edited scripts/macros.

5.4.5 Debug Window

The Debug window is used for tracing/debugging Script compilation and execution. For each step, the day/time,
type of message, and message text is displayed along with the location (line number) in the scenario.

Debug window

Control execution of the scenario with the buttons at the top left of the window:

Start (Play) Start or resume execution

Pause Pause execution

Stop Stop (halt) execution

[CTRL+F] Finds the next message containing the search text in any column.

5.4. Windows 59

6
Scripting

The Vortex OpenSplice Tester provides automatic testing capabilities by means of scripting. This section describes
the features of Tester’s built-in scripting instructions, and how to install additional script engines.

6.1 The Script Language

The script language as used by the Tester is specifically designed to create readable and easily maintainable scripts.

Instructions are simple, with named parameters which enable the Tester to limit the testing to the fields applicable
to the test. For example, the send instruction is an instruction which sends a topic. The basic syntax is the key-
word send followed by the topicname and a list of named parameters between parentheses (‘round brackets’),
terminated with a semicolon.

Illustrating send keyword syntax

The check instruction is similar to the send instruction; it has options to find a specific instance using key fields
or a query.

Illustrating check keyword syntax

In this example a timeout is set, which will allow a wait of up to 0.2 seconds for the topic sample for the correct
instance to arrive.

60

Test Tool User Guide, Release 6.x

6.1.1 A script file

A scenario has the following format:

Illustrating scenario keyword syntax

The name is for information only, and is not used further.

6.1.2 Variables

The script language allows the use of variables. Variables can be used to store values that can then be used at a
later time. A variable is indicated by either a << or a >> prefix. Variables may be declared implicitly, or explicitly
using the var instruction.

Example variable

In this example the variable myvar is declared and initialized with the value 5. Within the send instruction the
variable is used to provide the value for the field index. The << prefix indicates the direction of the assignment
from the variable to the field.

Variable with >> prefix

Here the variable index_of_4 is declared implicitly and the value of the field index is copied to the variable
(the prefix >> points to the variable).

All environment variables and java virtual machine (JVM) properties are also available as variables, and they can
be used as shown below:

Using environment variables

Special variables

There are some special variables which can be useful in scripts.

• curtime_sec and curtime_nsec provide the second and nanosecond parts of the current time.

• uniqid provides a unique number for every call, within the same session of the Tester.

6.1. The Script Language 61

Test Tool User Guide, Release 6.x

• script_file and script_path provide the scenario file name and the scenario file’s path respectively.
If the currently executing scenario context changes because of a call instruction to another scenario or
macro file, using these variables in the called scenario or macro will reflect the respective path and file name
of the called script.

Note that these special values are used without the << prefix.

6.1.3 Embedded Scripts

Inside a scenario any script compatible with the java ScriptEngineFactory can be used to provide calculated values
for fields in a send, check or var instruction, or as a stand-alone statement.

Embedded javascript

Stand-alone scripts must be enclosed by left single quotes, and then followed by a semi-colon.

Variables used in the javascript are translated before the evaluation of the script. In this specific case the <<dt is
the delta time in the repeat function. All javascript in one scenario is executed in the same scope, and functions
and variables declared at the beginning of a script are available later in the script.

A specific script language can be selected by providing the name of the script language in the first line of the
embedded script: #!<language>, for example #!js. Note that the language description must not be followed
by any other text. See section 5.6, Installing Script Engines, on page 85, for instructions on installing a scripting
language for use with the OpenSplice Tester. If no language descriptor is provided on the first line of a script, the
default language is used as set in Preferences.

More embedded javascript

6.1. The Script Language 62

Test Tool User Guide, Release 6.x

6.1.4 Comments

Comments can have the following formats:

Format of comments

Within the scenario editor, comments are displayed in green.

6.1.5 Macros

For repeated scenarios a repetitive part can be split off into a separate script file called a macro. Macros can have
parameters.

Calling a macro with parameters

Similarly to send and check instructions, values for fields can be optional. However, in a macro a default value
must be provided for a parameter to be optional.

Setting a default value for a macro parameter

6.1. The Script Language 63

Test Tool User Guide, Release 6.x

In this case t is optional, id and x are mandatory.

It is possible to call a scenario using the call instruction. Scenarios do not have parameters.

6.2 The Instructions

6.2.1 Send

Instruction to publish a sample of a topic.

send <readername> ([fieldname => value,]*);

The send instruction may include an ‘update parameter’. The update parameter name is a combination of the
topic name, followed by an underscore (_) and the literal text ‘update’. Valid values for the update parameter are
true and false. The update parameter allows scenario scripts to send a series of samples that evolve, each
from the previous one, without having to explicitly specify all field values in each send instruction.

If the update parameter is present, then the sample data sent is retained by the topic reader, associated with
the topic key field value(s). A subsequent send instruction, including the update parameter set to true with
the same topic key field value(s), will have its sample initialized from the retained values, if they exist. The sent
sample with then replace the retained values.

A send instruction including the update parameter set to false with the same topic key field value(s) will be
initialized from the topic defaults, but the sent sample will be retained.

A send instruction without the update parameter will be initialized from the topic defaults, and any retained
value for the key field value(s) will be removed.

Disposing the topic reader will remove all retained values.

6.2.2 Dispose

Instruction to dispose an instance of a topic.

dispose <readername> ([fieldname => value,]*);

6.2.3 Writedispose

Instruction to write dispose an instance of a topic.

writedispose <readername> ([fieldname => value,]*);

6.2.4 Check

Instruction to check a sample of a topic.

check[_last | _any] | recheck_last <readername> ([timeout =>
<timeout in seconds>,] [<fieldname> => [!]<value>[:deviation],]*);

6.2. The Instructions 64

Test Tool User Guide, Release 6.x

A timeout value can be provided allowing the check to wait for <timeout in seconds> for the sample to
arrive. If a sample meeting the criteria of the check is available either directly or within timeout seconds the
fields as provided in the parameter list will be verified for correctness.

When the value of a field is an output variable:

>><varname>

Then the value will not be checked but entered in the variable with the name <varname>.

There are two special fields, topicReceived and topicDisposed, which when used will provide a true
or false value into a variable.

When no sample is found which meets the criteria of the check then topicReceived will be set to false
(and the check instruction will not fail); if a sample is received the value will be set to true. When a field
topicDisposed is found, then the variable will be set to true if the sample was disposed and false if the
sample was not disposed. In this case no fail is reported upon a check instruction when the checked sample was
disposed.

The value can be given a possible deviation in the form <value>:<allowed deviation>. In this case when
the value for the field in the received sample is within the range from value minus allowed_deviation to
value plus allowed_deviation, the value is considered correct.

The sample which matches the check can be determined in several ways:

1. The topic does not have a keyfield(s) or the topic has keyfield(s) but no value is provided for all keyfield(s).
In this case the oldest not checked or marked sample is checked.

2. The topic has keyfield(s) and the check provides a value for all keyfield(s). In this case the last sample with
the key is checked, so long as it was not previously checked. If no matching sample (within the possible
timeout) is found then the check fails.

3. One or more fields of the check are marked as a query by prefixing the value with a ‘!’. The oldest not
checked or marked sample which matches the query is checked. If no matching sample is found (within the
possible timeout) the check fails.

4. Instead of check, the command check_last is used. In this case (as for situations 1 and 3) the last
not-previously-checked sample matching the criteria is checked.

5. Instead of check, the command check_any is used. In this case also previously-checked or marked
samples are considered.

6. The command recheck_last will always check the last sample matching the criteria, regardless of
whether it has previously been checked or not.

6.2.5 Miss

Instruction to check that no sample of a topic was received since the last checked or marked sample for the given
key/query. The same rules apply as for the check instruction with respect to finding (or not) the matching topic
sample.

miss <topicname> ([timeout => <timeout_in_seconds>,] [<fieldname>
=> [!]<value>[:<deviation>],]*);

6.2.6 Disposed

Instruction to check that an instance of a topic is disposed for the given key/query. The same rules apply as for the
check instruction with respect to finding the disposed instance. Note that field values are only provided to find a
specific instance (either by key or by query) and not verified for values as part of this instruction.

disposed <topicname> ([timeout => <timeout_in_seconds>,]
[<fieldname> => [!]<value>,]*);

6.2. The Instructions 65

Test Tool User Guide, Release 6.x

6.2.7 Mark

Mark all samples (with the given key/query) as read. Any regular miss/check function will not ‘see’ topic samples
received before the mark instruction. If no key or query is provided all samples will be marked as read (and
therefore not considered for check or check_last instructions). If a key value or query is provided, all
samples matching the key/query will be marked as read.

mark <topicname> ([fieldname => value,]*);

6.2.8 Repeat

Instruction to repeatedly send a topic for a specified count or until disposed.

repeat <topicname> <period> <count> ([fieldname => value,]*);

If <count> is ‘0’ then the repeat will continue until the scenario terminates or until a dispose for the same
topic and key. The variable dt is available for calculating a field value based on time since the repeat was started.
The period indicates the period with which the topic will be sent. Note that a repeat command by itself does not
extend the execution of a scenario and that when a scenario finishes (i.e. all following instructions are executed)
the repeat instruction is terminated automatically. In such a case the wait or message instruction can be used to
ensure that the repeat instruction is completed.

6.2.9 Set

The set instruction allows the call of a macro in a table-like fashion. The command allows a number of static
parameters and variable parameters. The command has the following format:

set <macroname> ([<fieldname>=><value>]*)((<fieldname>*),[(<value>*),]*);

For example, the following set instruction:

set send_and_check_test (
t => 2)

((x,id),
(3.1, 1),
(2.34, 2),
(3.678, 3),
(6.34, 4),
(99.99, 5))

In this example the send_and_check_test macro is called five times, all five calls will be made with t = 2
and the values for x and id as indicated by each row of values. This can be very useful for testing of translations.

6.2.10 Execute

The execute instruction allows the execution of an application or command line script on the native OS.

execute [wait] [log] “<instruction>”;

If wait is set then the instruction will wait for the execute to complete. If log is set then the output of the execute
will be logged to the Debug window (and resulting dump file). When log is used wait should also be used, to
avoid overwriting log messages.

6.2.11 Log

The log instruction logs a message to the Debug window. Log messages can provide information immediately
(e.g. a step being made in a script, or a value of some variable) or post-execution as part of the logfile which
includes the full content of the Debug window.

log (“message” [optional var]);

6.2. The Instructions 66

Test Tool User Guide, Release 6.x

6.2.12 Message

The message instruction opens a dialog with the message and allows the operator to provide feedback and a
OK/NOK indication. The feedback plus OK/NOK indication are logged to the Debug window.

message (“message text” [optional var]);

This instruction is useful for semi-automatic testing of user interfaces where the GUI part is done manually using
message instructions.

6.2.13 Fail

The fail instruction fails the execution of the scenario (final result). The execution terminates.

fail (“message” [optional var]);

The fail instruction can be useful in combination with an if instruction, for instance when a complex check is
executed using javascript.

6.2.14 Call

The call instruction calls a macro or scenario. The name of the macro/scenario is the filename without extension.
Macros must be on the macropath as provided in the configuration file. The Macrolist window displays all
available macros. Also note that the macro name must be unique throughout all of the available macros because
the path is not part of the selection of a macro (just the filename without extension).

call <macroname> ([<parametername> => <value>,]*);

6.2.15 Reader

The reader instruction allows the creation or deletion of a reader. When the keyword dispose is used the
reader (if it exists for that topic) will be deleted. When a reader is created the topicname is mandatory.

reader [dispose] (<topicname> [, <qos> [,<partition>
[,<readername>]]]);

The qos can be provided in short notation (2 or 4 characters):

< v | l | t | p >< b | r >[h][<S|E><D|S>

where

< v | l | t | p > Volatile, local transient, transient or persistent

< b | r > Best effort or reliable

[h] History, for a “keep” of 10 which allows for the reception of 10 samples with the same key in one poll
interval

<S|E> Shared or exclusive ownership

<D|S> Ordering based on Destination or Source time stamp

6.3 Instructions for Graphs

6.3.1 Graph

The graph instruction allows manipulation or save of the graph. It has the following parameters:

6.3. Instructions for Graphs 67

Test Tool User Guide, Release 6.x

X
Y
Key
Color
Title
xUnits
yUnits
save => <name>
show => true|false
reset => true|false

Note that all graphs have the same X component; when omitted the X will be the sample time. If the Y parameter
is set, then a new trace is created for the current graph. The X, key, color, title and units are used for this trace if
provided.

If reset is true, then the graph is cleared (i.e. all existing traces are deleted) before creating any new trace. If
show is true then the graph is made visible after adding the trace; when false, then the graph is hidden after
adding the trace. When save is true the graph will be saved to an image file after the trace has been added.

6.3.2 Column

The column instruction allows the creation of an extra column from a script for use by the graph instruction.

column [clear] (<fieldname> [, <columnname>]);

When the optional clear is set then the column for the field with name fieldname will be removed. When
columnname is omitted, the columnname will be the same as the fieldname.

6.4 Instructions for Flow Control

6.4.1 Wait

The wait instruction forces a wait in the execution of the script. The time is provided in seconds.

wait (<time in seconds>);

Value can be a variable.

6.4.2 If

The if instruction allows conditional execution of instructions.

If (val1 <operator> val2) then

<true instruction list>

[else

<false instruction list>]

endif;

Where <Operator> is one of ‘==’, ‘!=’, ‘>’, ‘<‘, ‘>=’, ‘<=’, ‘||’, ‘&&’.

Expressions can be layered with brackets:

((<<x>0) && (<<y>0))

6.4. Instructions for Flow Control 68

Test Tool User Guide, Release 6.x

6.4.3 For

The for instruction allows the execution of a list of instructions multiple times.

for ,<var> in 1 .. 10 loop

<instruction list which can use <<var>

endloop;

or

for <var> in (a,b,c) loop

<instruction list which can use <<var>

endloop;

6.4.4 Exit

The exit instruction exits the scenario.

exit;

6.5 Instructions for the Message Interface

6.5.1 Write

The write instruction writes a message to the interface.

write <interface>.<message> ([<fieldname> => <value>,]*);

6.5.2 Read

The read instruction checks a received message from the interface.

read <interface>.<message> ([<fieldname> => <value>,]*);

6.5.3 Connect

The connect instruction calls the connect of the interface. The functionality depends on the implementation
in the interface.

connect <interface>;

6.5.4 Disconnect

The disconnect instruction calls the disconnect of the interface. The functionality depends on the imple-
mentation in the interface.

disconnect <interface>;

6.5.5 Control

The control instruction allows the execution of special instructions as provided by the interface.

control <interface>.<instruction>[([<fieldname> => <value>,]*)];

6.5. Instructions for the Message Interface 69

Test Tool User Guide, Release 6.x

6.6 Installing Script Engines

In order to use additional script languages the appropriate script engines must be added to the Java classpath.
The Java JRE already comes with a JavaScript engine by default (i.e. no specific installation is required). More
Java script engines are available and can be used to support different scripting languages for the embedded scripts
inside the scenario scripts, or for the additional fields.

When Tester starts, the available script engines will be logged (default log file is /tmp/OSPLTEST.log).

6.6.1 Jython

Download and install Jython on the target machine. Include jython.jar, which is normally located in the
Jython installation directory, in the classpath of the OpenSplice Tester. Use this language by adding the
following line as the first line of each script using the Jython script language:

#!jython

6.6.2 Jruby

Download and install Jruby on the target machine. Include jruby.jar, which is normally located in the lib
directory in the Jruby installation, in the classpath of the OpenSplice Tester. Use this language by adding the
following line as the first line of each script using the Jruby script language:

#!jruby

6.6.3 Groovy

Download and install Groovy on the target machine. Include groovy-all-<version>.jar, which is nor-
mally located in the embeddable directory in the Groovy installation, in the classpath of the OpenSplice
Tester. Use this language by adding the following line as the first line of each script using the Groovy script
language:

#!groovy

6.6. Installing Script Engines 70

7
Message Interfaces

This section describes how to test applications with non-DDS interfaces.

7.1 Message interfaces

An important feature of the OpenSplice Tester is the support of additional interfaces. When an application under
test only has a DDS interface it is probably easy to test automatically by stimulating it from the Vortex OpenSplice
Tester with samples and verifying the samples produced by the application under test. When the application under
test has a GUI component, the message instruction can be used to perform a semi-automated test where the
Vortex OpenSplice Tester performs manual control of the GUI and/or performs visual inspections of the GUI (as
instructed in the message instruction).

When an application under test has a non-DDS interface, then the message interface of Vortex OpenSplice Tester
can be used. There are a number of constraints on the use of a message interface:

• The interface must consist of a limited number of message types which can be described by a static set of
fields with static types.

• It must be possible upon reception of a message over the interface, to determine a message type, and from
the message type to interpret the message and determine the value for each field of the message.

If these requirements are met, a message interface can be developed for a specific interface of an application under
test. This will allow automated testing where messages are written to the test interface, the message received from
the test interface will be added to the sample list and it can be checked in the same manner as DDS samples.

7.2 Getting Started with a Message Interface

The best way to get started with a message interface is to compile and use the TestInterface. The
TestInterface is an example message interface which uses a TCP/IP connection and sends a memory-mapped
message with a static structure over this interface. The source for the TestInterface is provided and it can be
found here:

<OSPL_HOME>/examples/tools/ospltest/TestInterface

To compile the TestInterface, ant and a JDK1.6 must be installed. To build the TestInterface, execute
ant in the TestInterface directory. This will compile the testinterface and install the resulting plugin
in:

<OSPL_HOME>/examples/tools/ospltest/plugins

To run with the plugin, make sure the plugin path points to this directory. The plugin path can be set in Preferences:

Setting the plugins path in Preferences

71

Test Tool User Guide, Release 6.x

If the plugins directory is changed, the Tester needs to be restarted. Once restarted, make sure that OpenSplice is
running (the TestInterface registers a topic which will fail is DDS is not running upon startup).

Now two instances of the testinterface should show up in the left tab pane (or in separate windows if Use
Tabs is false). Similar to the Readers pane, the table will show the available messages and the number of
received messages per message type. Since there is no application under test, the testinterface is instantiated
twice and connected back-to-back. As a result, a message written to the instance “tst1” will be received on
the instance “tst2” and vice versa. Also the testinterface has created a topic, OsplTestLogTopic,
and the test interface will write a sample of this topic for each write and read with the content of the message in
hexadecimal format.

Messages received on instance tst1

Now select the test_interface.sd script, which can be found in
examples/tools/ospltest/scripts:

The script test_interface.sd

In the script we can see that, similar to the send and check instruction, the write and read instructions are
used to write a message to the test interface, or read (check) a message received on the test interface.

Execute the script:

Script test_interface.sd running

7.2. Getting Started with a Message Interface 72

Test Tool User Guide, Release 6.x

Here we can see that in the sample list, both the DDS samples as well as the testinterface samples are
available. As a result the interaction is clearly visible.

7.3 Types of interfaces

When integrating a test interface with the Vortex OpenSplice Tester, the following functionality is provided:

• Connect/Disconnect with a parameter

• Write of messages based on parameters of a write call

• Read of messages and display received messages in the sample list

• Check received messages

• Display fields of messages (double click in sample list)

• Hooks upon write/read of a message

The Vortex OpenSplice Tester provides two ways to create such a message interface:

• Basic message interface

• Buffered message interface

7.3.1 Basic message interface

If it is not possible to describe the content of each message in an ADA interface description (i.e. a static memory-
mapped definition of each message type) or when the definition of the interface exists in another format, like a
MIB for an SNMP interface, then it is possible to derive from the basic message interface class:

BaseMsgInterface

Similarly for the messages a class must be derived from:

7.3. Types of interfaces 73

Test Tool User Guide, Release 6.x

MsgSample

Note that both BaseMsgInterface and MsgSample contain a considerable number of abstract function
which then must be provided in order to be able to edit and display samples, as well as read and write sample
on their interface.

7.3.2 Buffered message interface

The example test interface is a buffered message interface. The Vortex OpenSplice Tester provides support for
memory-mapped messages and provides all basic functionality for this type of interface. The messages are de-
scribed using the ADA language type definition for records with a representation clause. This allows to describe
message with bit fields, enums, fixed length strings, integer and double values.

On top of the buffered message interface, an implementation using UDP and TCP is available.

When the buffered message interface is used the provided implementation takes care of interpreting the received
messages, decode the messages for display in the sample list or display in the sample window. Upon a write
instruction a memory buffer will be built using the parameters of the write call and the message definition as
provided in the ADA interface description.

ADA Syntax for message definition

For each message a record needs to be defined which describes the exact memory layout of the message. See the
ADA message description of the test interface for an example of such a message definition.

Message ID translation

By default in a buffered message interface a base record is defined with an idfield to determine the type of the
message. Then a function is called to translate the value of the idfield to a name of the record type with the
definition of a message of the received type.

If a message does not contain a single field which can be used to determine the message type then the method:

RecordType determineMsgType(ByteBuffer buf)

can be overwritten to perform the translation of the received buffer to a message type.

If indeed the id can be retrieved from an id field (enum value) then the function:

protected static String transformIdToType(String id)

is used to translate the enum label to the name of a record definition. The following translation is done:

• ID is changed to TYPE

• Each character following an underscore (‘_’) is capitalized, as well as the first character and the remaining
characters are made lowercase.

As a result an enum label: HEARTBEAT_MESSAGE_ID is translated to HeartbeatMessageType.

Of course if a different convention is used for describing enum labels and message names, then the transformId-
ToString function can be overridden to perform the required translation.

Message Hooks

It is possible to override message hooks at several stages in the send and receive process. This allows specific
processing, such as:

• Automatic reply to each received message (acknowledge messages)

• Fill in automatic fields like sequence numbers, crcs, or timestamps

• Ignore messages for reception, like acknowledge messages or heartbeats

7.3. Types of interfaces 74

Test Tool User Guide, Release 6.x

• Perform specific checks such as crc check

See the example test interface for an example of the hooks and a description of their function.

Control functions

The script control function allows implementation specific control functions to be implemented. In the imple-
mentation of the derived interface, the following functions can be overridden (note that the base implementation
already provides some control commands, overriding these functions must properly include or forward to the base
implementation):

public String[] getControlCommands()

Provide the list of control commands, note that super.getControlCommands should be used to include the
list of control commands of the base impementation.

public void control(String command, ParameterList params,
ScenarioRuntime runtime, int line, int column)

Execute the control command, with the provided parameters and runtime. In case of an error the line and column
can be used as the location of the instruction which failed.

Control functions can be used for any specific function as deemed necessary (of course, all must be implemented
in the derived interface class):

• Stop sending heartbeats

• Create incorrect crc

• Stop sending acknowledge

• Determine message frequency

7.3. Types of interfaces 75

8
Google Protocol Buffers

This section describes Tester features for Google Protocol Buffers.

8.1 About Google Protocol Buffers in Tester

In versions of Vortex OpenSplice that support Google Protocol Buffers, Tester is able to read from protocol buffer
topics and display its samples as regular field name and value pairs, just as if it were from a regular IDL-defined
topic.

The Tester feature for Google Protocol Buffer topic reading is enabled only on Vortex OpenSplice middleware
installs where Google Protocol Buffer support is included. For installations where it is not included, the feature is
disabled in Tester.

8.2 Viewing type evolutions

The main feature of using Google Protocol Buffers as the type definition for a topic is the ability to change, or
‘evolve’, a topic’s type. Tester can become aware of changes to a protocol buffer topic’s type, and can display the
topic type definition for each type evolution that is registered.

To view the type evolutions for a protocol buffer topic, right-click the topic in the Topics tab, and select View Topic
Type from the pop-up menu.

View Topic Type from the Topics list

76

Test Tool User Guide, Release 6.x

8.2.1 View Topic Type Window

Upon selection of the menu item, the View Topic Type window will appear for the selected topic. By default, it
shows the type name for the topic and the DDS type definition. If the topic is a protocol buffer topic, it will display
additional information:

• The Evolutions for the type are displayed in a drop-down combo box. It lists the known evolutions for the
type according to the time it was registered in the DDS system. The most recent evolution is at the top of
the list and is selected by default.

• The Type Hash is an non-editable text field that displays the 128-bit hash that uniquely identifies the selected
type evolution for the topic type. The field is highlightable for easy copy/pasting.

• The Proto Typedef tab is added when viewing protocol buffer topic types. It displays a description for
all fields and nested types defined in the protocol buffer message for the currently-selected evolution, in a
text format emulating the original .proto file format. Message type fields found in the typedef that are
not defined as nested messages inside the main DDS message type are defined under a separate section,
External Definitions. These messages have their fully- qualified type name to indicate where they
were defined. Please note that this typedef reconstruction is only meant to give the user an idea as to what
type of data is found in the topic type. It is not guaranteed to be a 100% reconstruction of the original
.proto file as it was written, or to be compilable by the protoc compiler.

• The DDS Typedef tab contains the same kind of type decription as it would for a normal topic, but for
protocol buffer topics, it describes the field names and field types for the currently-selected type evolution
as it is understood by Tester for sample editing.

View Topic Type window for a protocol buffer topic

Proto Typedef with external definitions

8.2. Viewing type evolutions 77

Test Tool User Guide, Release 6.x

8.3 Reading protocol buffer topics

Tester reads protocol buffer data by reading in the byte sequence data contained in the user data, and then replacing
all fields with regular field name and value pairs just as if it were data from a regular topic. The process for creating
readers for protocol buffer topics is almost identical to the process described in Section 3.3.3, To Add a Reader
from the Topic list, on page 24.

• When creating a reader for a protocol buffer topic via the Create Default Reader right-click menu option on
the Topic list, all default settings will be used as before, but with the addition that all incoming samples will
be decoded as the most recently-registered type evolution.

• When creating a reader for a protocol buffer topic via the Create Reader right-click menu option on the
Topic list, or via the File > Add Reader main menu option, the Add Reader dialog will be presented, as
normal. However, it is presented with an extra field to choose the desired type evolution to use to view user
data.

Add Reader dialog with type evolution chooser

8.3. Reading protocol buffer topics 78

Test Tool User Guide, Release 6.x

8.4 Reading protocol buffer topics via script

It is possible to declare which type evolution to read protocol buffer topics as, via the Reader script command
(defined in Section 5.2.15, Reader, on page 83). The topicname parameter for the reader command can be
modified with a type evolution’s type hash to specify which type evolution view protocol buffer user data as. The
type hash can be viewed and copied from the View Topic Type window (see Section 7.2.1 on page 96).

• To create a default reader with the most recently-registered type evolution, the command is:

reader(Person);

• To create a reader with a specific type evolution, the command is the same, but with the type hash pasted in
after the topic name, separated by a ‘#’:

reader(Person#73979410269545042249851605221960719319);

8.5 Editing protocol buffer topic samples

Editing samples from protocol buffer topics is the same as samples from a regular topic. Protobuf fields can
be declared as optional or required, so to reflect that in the Sample Edit window (see Section 3.4.1.1, To Write
Sample Topic data, on page 28), a Cyan color highlight is added to required protocol buffer fields. In all other
senses, though, editing samples in either the Sample Edit window or in scripting is precisely the same as it is for
normal topics.

The Sample Edit Window for a protocol buffer sample

8.4. Reading protocol buffer topics via script 79

Test Tool User Guide, Release 6.x

8.5. Editing protocol buffer topic samples 80

9
Python Scripting Engine

This section describes writing Python scripts to test OSPL applications.

9.1 About Python Scripting

Python Scripting is a scripting environment for running unit tests and adhoc scripts against a Vortex OpenSplice
environment. Python Scripting connects to the OpenSplice environment through the Configuration and Man-
agement API. It is based on the Python scripting language, and requires Jython 2.7.0 or later, the Java-based
implementation of Python.

9.1.1 Design Goals

Python Scripting is an alternative to the product specific Scenario language found in Vortex Tester. Python Script-
ing design goals were:

• use a standard scripting language (Python)

• allow users to leverage the tooling environment build around this standard language

• allow users to leverage the testing infrastructure and libraries

• expose DDS semantics, particularly on reading and writing topic data in an easy-to-use API for Python.

• run independently of Vortex Tester

• allow execution of scripts and unit tests both directly from the command line and from an Integrated Devel-
opment Environment (IDE)

9.2 Configuration

This section explains how to download and configure a Jython scripting engine with the Tester Scripting package.
Jython is an Java-based implementation of the Python scripting language.

9.2.1 Prerequisites

A Java 7 or later runtime (JRE) is required. The JAVA_HOME environment variable must be set to the JRE
installation directory.

Check that the following command yields a Java version of 1.7 or later:

#Linux
$JAVA_HOME/bin/java -version

#Windows
"%JAVA_HOME%\bin\java" -version

81

Test Tool User Guide, Release 6.x

Note that during the installation, it is assumed the the environment variable OSPL_HOME refers the the fully
qualified path of the Vortex OpenSplice installation.

9.2.2 Download and install Jython

The Tester Scripting package does not include the Jython scripting engine - it must be downloaded.
Jython is an open source project licensed under the Python Software Foundation License Version 2
(http://www.jython.org/license.html). The license is OSI Approved (https://opensource.org/licenses/alphabetical).

Tester Scripting requires Jython 2.7.0 or later. Download the Jython 2.7.0 Installer from the Jython Download
page (http://www.jython.org/downloads.html).

Automated installation and configuration

Once the Jython installer has been downloaded, the osplscript command can be used to install Jython in your
Vortex OpenSpice home directory. Follow the following steps:

1. Start a command prompt (Windows) or Terminal window (Linux). The Vortex OpenSplice Launcher can
create a Console window that eliminates the need for the step 2.

2. Ensure that the OSPL_HOME environment variable is set by running the release script. On Linux run:

#linux
source $OSPL_HOME/release.com

#Windows
"%OSPL_HOME%\release.bat"

3. Change to the directory containing the Jython 2.7.0 installer, jython-installer-2.7.0.jar

4. Enter the command:

osplscript

5. The command will display a message similar to the following, and then prompt you to continue:

**
Your OSPL installation has not been configured for osplscript;
no Jython installation was found in the OSPL install directory:
<your-install-directory>

A jython installer has been found in the current directory.
Do you wish to install Jython and configure osplscript? [yes|no]:

6. Enter ‘yes’ (without the quotes), and press Enter; osplscript will be configured.

7. When completed, the Jython interpreter will be started. Either type ‘exit()’ or continue on to verifying the
installation with the instructions in the next secion.

Manual installation and configuration

If you do not want place a Jython interpreter in the OSPL_HOME directory, or if you already have Jython inter-
preter installed in another location, you can use the following manual installation and configuration procedure.

Install a Jython interpreter in a location of your choice

If you want to install Jython in another location, do the following steps:

1. Start a command prompt (Windows) or Terminal window (Linux).

2. Ensure that your JAVA_HOME environment variable refers to an appropriate Java installation (Java 7 or
later).

9.2. Configuration 82

http://www.jython.org/license.html
https://opensource.org/licenses/alphabetical
http://www.jython.org/downloads.html

Test Tool User Guide, Release 6.x

3. From the directory containing the downloaded Jython installer, enter the following command:

jython-installer-2.7.0.jar -s -d <desired-install-directory> -t standard

If you prefer, you can remove the (-s) option (silent install), in which case, a graphical installation wizard will
appear. Proceed through the wizard to select a ‘Standard’ installation.

Configure the Jython interpreter with OSPLScript package

To your Jython interpreter for Python scripting, you must install the OSPLScript Python package. Follow these
steps:

1. Ensure that the Jython ‘bin’ directory in the system PATH environment variable.

2. Start a command prompt (Windows) or terminal window (Linux). The Vortex OpenSplice Launcher can
create a Console window that eliminates the need for the step 3.

3. Ensure the Vortex OpenSplice environment variables are set by running the ‘release’ script.

4. Start the Jython easy_install program. The following command line will install the standard Jython distri-
bution:

for Linux systems
easy_install "$OSPL_HOME/tools/scripting/OSPLScript-1.0.0.tar.gz"

for Windows systems
easy_install "%OSPL_HOME%\tools\scripting\OSPLScript-1.0.0.zip"

Once the package installation has completed, you may proceed with verifying the installation.

9.2.3 Verifying the installation

The following steps will verify that the Jython installation is correctly configured. The following steps are done
from a command window:

1. Ensure that the Vortex OpenSplice environment variables are set by running the ‘release’ command script.

2. Ensure OpenSplice is running by issuing the following command:

ospl start

3. Start OpenSplice Tester to create some test topics used below:

ospltest

4. Start the Jython interpreter:

osplscript

5. Enter the following commands at the interpreter command prompt:

>>> from osplscript import dds
>>> topic = dds.findTopic(’OsplTestTopic’)
>>> OsplTestTopic = dds.classForTopic(topic)
>>> data = OsplTestTopic()
>>> data.id = 1
>>> data.description = ’Smoke test’

>>> writer = dds.Writer(topic)
>>> writer.write(data)

>>> reader = dds.Reader(topic)
>>> sample = reader.take()
>>> readData = sample.getData()

9.2. Configuration 83

Test Tool User Guide, Release 6.x

>>> assert data.id == readData.id
>>> assert data.description == readData.description

9.3 A Quick Tour of OSPL Scripting

The following is a brief tour of the scripting engine’s capabilities.

9.3.1 Prerequisites

This demo assumes a shell instance that has been initialized with the release.com script found in the OSPL instal-
lation directory. In particular, the quick tour relies on the following environment variables be set: OSPL_HOME,
OSPL_URI and LD_LIBRARY_PATH. The easiest way to set these variables is to use the Vortex OpenSplice
launcher to start a Console window. Alternatively, run the ‘release’ script in your Vortex OpenSplice installation
directory. To run the script, do the following:

linux
cd OSPL-install-directory
. release.com

Windows
cd OSPL-install-directory
release.bat

9.3.2 Preliminaries

Start OSPL, typically with:

ospl start

Then, start Vortex OpenSplice Tester:

ospltest

Tester is used to define topics used in the scripting engine, and to observe samples. From within Tester, create a
default Reader on the following topics: OsplTestTopic.

9.3.3 Writing and Reading samples

Start the OSPL Scripting engine:

osplscript

You will see a standard start up banner from the Jython engine similar to the following:

Jython 2.7.0 (default:9987c746f838, Apr 29 2015, 02:25:11)
[Java HotSpot(TM) Server VM (Oracle Corporation)] on java1.7.0_80
Type "help", "copyright", "credits" or "license" for more information.

>>>

The text ‘>>>’ is the interpreter prompt.

To start our script, import the DDS module from OSPL Script. Enter the following at the prompt:

>>> from osplscript import dds

9.3. A Quick Tour of OSPL Scripting 84

Test Tool User Guide, Release 6.x

As part of the import, a connection is made to OSPL. If OSPL is not running, or if the environment variables are
not correctly set, you may receive an error at this point.

The dds module provides allows you to find topics, and create readers and writers. We will start with find the
OsplTestTopic created when we started Tester. Enter the following at the prompt:

>>> t = dds.findTopic(’OsplTestTopic’)
>>> # The next statement create a Python type from the topic
>>> OsplTestTopic = dds.classForTopic(t)
>>> # You can then instantiated instances of this class
>>> d1 = OsplTestTopic()
>>> # You can then set fields in the data
>>> d1.id = 1
>>> d1.index = 100
>>> d1.description = ’Hello from osplscript’
>>> d1.state = ’boost’
>>> d1.x = 1.1
>>> d1.y = 2.2
>>> d1.z = 3.3
>>> d1.t = 4.4

Once some data is created, we can the create a writer for the topic, and write the data:

>>> # create a Writer from the topic object we found previously
>>> w = dds.Writer(t)
>>> w.write(d1)

Once the write has executed, example the Sample List in Tester. You should see a new sample in the list.

Next, we can create a reader, and read the sample we have just written:

>>> # create a Reader on the topic, and read a sample
>>> r = dds.Reader(t)
>>> s1 = r.take()
>>> # s1 is a Sample, the user data is access via getData()
>>> rd1 = s1.getData()

We can check that the read data is what we expected:

>>> assert rd1.id == 1
>>> assert rd1.index == 100
>>> assert rd1.description == ’Hello from osplscript’

You can continue your exploration by writing a sample via Tester, and confirming that you can read it using OSPL
Script. When you are done, exit the interpreter by typing:

>>> exit()

9.3.4 Working with QoS settings

By default, OSPL Scripting creates a publisher and a subscriber using the partition pattern ‘*’. All other publisher
and subscriber QoS policies are DDS defaults. Similarly, data readers and data writers have, by default, QoS
policies derived from topic to which they are bound. If default QoS policies do not statisfy your requirements,
you can explicitly create publishers and subscribers, and assign them explicity QoS policies. Similarly, you can
explicitly assign QoS policies to data readers and data writers that you create.

The following example shows the explicit creation of a Subscriber:

>>> from osplscript import dds, qos
>>> topic = dds.findTopic(’OsplTestTopic’)
>>> # create an explicit subscriber on a partition ’test’
>>> sub = dds.Subscriber(
>>> qos.SubscriberQos().withPolicy(
>>> qos.Partition().withName(’test’))

9.3. A Quick Tour of OSPL Scripting 85

Test Tool User Guide, Release 6.x

>>>)
>>> # create a reader with topic-derived defaults
>>> drDefault = sub.reader(topic)
>>> # create a reader with explicity reader QoS policies
>>> drExplicit = sub.reader(
>>> topic,
>>> qos.DataReaderQos().withPolicy(
>>> qos.Durability().withVolatile())
>>>)

The following example shows adding explicit QoS policies to a data writer on the default publisher:

>>> dwExplicit = dds.Writer(
>>> topic,
>>> qos.DataWriterQos().withPolicy(
>>> qos.Durability().withVolatile())
>>>)

The QoS classes for publishers, subscribers, data readers and data writers are, respectively, PublisherQos, Sub-
scriberQos, DataReaderQos and DataWriterQos. Although OSPL Scripting does not allow creating of topics,
topics can return their QoS settings via a TopicQos instance. The help for each of these QoS classes describes the
applicable policies. The help for policy classes describes all the methods available to configure the policy. You
can view help on QoS classes and policies via the help function:

>>> help(qos.SubscriberQos)
>>> help(qos.Parition)
>>> help(qos.Durability)

9.3.5 Working with WaitSets

OSPL Scripting implements DDS wait sets with read conditions, query conditions and status conditions. This
allows your code to block until data is available on a data reader. Here is a simple example:

>>> from osplscript import dds

>>> # find the topic, create a data reader and wait set
>>> topic = dds.findTopic(’OsplTestTopic’)
>>> dr = dds.Reader(topic)
>>> ws = dds.WaitSet()

>>> # create a read condition of Alive, NotRead, New samples
>>> rc = dr.readCondition(dds.DataState().withAlive().withNotRead().withNew())

>>> # attach the read condition to the wait set
>>> ws.attachCondition(rc)

>>> # wait...
>>> ws.waitForConditions()

>>> # waiting returned, we have a sample
>>> sample = dr.take()
>>> # do something with the sample

The waitForConditions() method can accept optional arguments, include a timeout. See the help for details:

>>> help(dds.WaitSet.waitForConditions)

9.3.6 Filtering data

OSPL Scripting allows you to filter data from a reader using a ‘selector’. The selector can also be used to create a
condition for a wait set.

9.3. A Quick Tour of OSPL Scripting 86

Test Tool User Guide, Release 6.x

A selector is created via a reader’s newSelectBuilder() method. A ‘select builder’ allows you to specify state
conditions as well as an optional query expression. The following example creates a selector:

>>> from osplscript import dds

>>> # find the topic, create a data reader
>>> topic = dds.findTopic(’OsplTestTopic’)
>>> dr = dds.Reader(topic)

>>> # create a selector for Alive, NotRead, New samples with ’index = 100’
>>> selector = dr.newSelectBuilder().withAlive().withNotRead().withNew() \
>>> .content(’index = 100’).build()

Each of the ‘selector builder’ methods returns the builder, so that calls can be chained as above. Apart from build(),
none of the builder methods is required. A selector with no filters works identically to the data reader from which
it was created.

Once created, a selector can be used like a data reader, with take() or read() methods:

>>> # use the selector like a reader
>>> sample = selector.take()

Alternatively, the selector can be used with a waitset, by calling the selector’s condition() method:

>>> # Use the selector in conjuction with a waitset
>>> ws = dds.WaitSet()
>>> ws.attachCondition(selector.condition())
>>> ws.waitForConditions()
>>> # the selector now has data...
>>> sample = selector.take()

In the above example, the selector.condition() method returns a QueryCondition. If the content() method had not
been called, a ReadCondition would have been returned.

You can create a QueryCondition directly, and then use it with a wait set:

>>> queryCond = reader.queryCondition(
>>> ’index = 100’, [],
>>> dds.DataState().withAlive().withNotRead().withNew())
>>> ws.attachCondition(queryCond)

A selector, however, has the advantage of providing your with filtered access to the data that triggered the query
condition. Creating a query or read condition explicitly does not provide such filtering; the data reader from which
the condition was defined will still return all available samples, whether they satisfy the condition or not. For this
reason, selectors are the preferred method for defining data filters, waiting for filtered data availability, and for
accessing the filtered data.

9.3.7 Query Expressions, Query Parameters and their Limitations

Both the selector builder’s content() method and the QueryCondition() constructor allow the query expression to
contain substitution parameters of the form {n}, where n is a zero-based index into an list of string parameter
values. For example, we could filter OsplTestTopic’s index value to be between an upper and lower bound, and
specify the query as follows:

>>> from osplscript import dds

>>> # find the topic, create a data reader
>>> topic = dds.findTopic(’OsplTestTopic’)
>>> dr = dds.Reader(topic)

>>> # create a selector for Alive, NotRead, New samples with ’index = 100’
>>> selector = dr.newSelectBuilder().withAlive().withNotRead().withNew() \

9.3. A Quick Tour of OSPL Scripting 87

Test Tool User Guide, Release 6.x

>>> .content(’index >= {0} and index < {1}’, [’100’, ’200’]) \
>>> .build()

We could use similar parameters in creating a QueryCondition directly:

>>> queryCond = reader.queryCondition(
>>> ’index >= {0} and index < {1}’,
>>> [’100’, ’200’],
>>> dds.DataState().withAlive().withNotRead().withNew())

OSPL Scripting attempts to replace the passed parameter values in the query expression, formatting the values as
valid query expression constants. However, because of limitations in the APIs available to OSPL Scripting, this
formatting is imperfect. In particular, the following values are likely to be formatted incorrectly:

• enumeration values will incorrectly be quoted

• boolean values will incorrectly be quoted

• string values that can be converted to numbers will incorrectly be unquoted.

The work around for all these limitations is to avoid using parameter substitution. For example, instead of the
following parameterized condition against the ‘state’ enumeration field in OsplTestTopic:

>>> # DON’T DO THIS FOR AN ENUMERATED FIELD
>>> selector = dr.content(’state = {0}’, [’init’]).build()

Instead, write the condition without substitution:

>>> selector = dr.content(’state = init’).build()

9.3.8 Using Coherent access

OSPL Scripting now supports Group and Topic coherence when reading and writing samples.

Group coherence allows a publisher to release a group of samples, possibly spanning several topics to subscribers
in a group. Subscribers will not see any samples in a coherent group until the publisher has completed group. A
subscriber using Group coherence may, if desired, retrieve the samples, across all readers in the group, in the order
that the publisher wrote them.

Topic coherence allows a publisher to release changes across multiple instances of the sample topic as a coherent
set. Subscribers will not see any samples in a coherent set util the publisher has completed the set. A subscriber
using Topic coherence may, if desired, retrieve the samples with-in a specific topic, in the order that the publisher
wrote them.

To establish a publisher or subscriber with coherent access, use the Presentation Policy when creating the publisher
or subscriber QoS:

>>> from osplscript import dds, qos

>>> # create a presentation policy, enabling Group coherence and ordered access
>>> groupPresentation = qos.Presentation().withCoherentAccess().withGroup() \
>>> .withOrderedAccess()

>>> # create a publisher with the policy
>>> pub = dds.Publisher(qos.PublisherQos().withPolicy(groupPresentation))

>>> # create a subscriber with the policy
>>> sub = dds.Subscriber(qos.SubscriberQos().withPolicy(groupPresentation))

To create a presentation policy with Topic scope, use the withTopic() method. To create a presentation policy with
Instance scope (the default), use the withInstance() method.

To write samples using any coherent scope, the publisher object offers the methods beginCoherentChanges()
and endCoherentChanges(). Each call beginCoherentChanges() should be matched with a call to endCoher-
entChanges(). Calls may be nested, for programmer convenience, but only the outer most pair of calls have

9.3. A Quick Tour of OSPL Scripting 88

Test Tool User Guide, Release 6.x

any impact. Within a coherent change, any of the publisher’s data writers may be used to write samples. When
the coherent change is completed (via a call to endCoherentChanges()), the samples are released to subscribers.

To enable subscribers to read coherent changes, the subscriber object offers two methods: beginAccess() and
endAccess(). Their use is optional, but without them, the subscriber will not guarantee that samples will be
returned according to the coherent groups in which they were created.

The following code pattern my be used to access samples written with Group coherence, or with ordered access:

>>> # sub is a subscriber with Group coherence presentation policy
>>> # the subscriber must create data readers for all the topics
>>> # it wants to access
>>> sub.beginAccess()
>>> # return the dataReaders, in the order their corresponding writers
>>> # wrote samples
>>> drList = sub.dataReaders()
>>> for dr in drList:
>>> # take (or read) ONLY ONE sample for each element of the list
>>> sample = dr.take()
>>> # using the reader’s topicDescription() method to identify the topic
>>> if ’foo’ == dr.topicDescription().getName():
>>> # do something with a ’foo’ sample
>>> sub.endAccess()

When not using Group access or ordered access, a subscriber may still use the dataReaders() method, however, in
this case, dataReaders() will return a set of readers with available data. The subscribing application can then take
or read as many samples as are available from each reader in the set.

Note: Using waitsets with group coherence

The DDS specification indicates that subscribers will raise a ‘data available on readers’ event when a new group is
release. However, a defect in underlying APIs prevent OPSL Scripting from receiving this event. In other words,
the following will not work:

>>> # This will NOT WORK!!!
>>> from osplscript import status
>>> ws = dds.WaitSet()
>>> sc = sub.statusCondition()
>>> sc.setEnabledStatuses([status.DataOnReadersStatus])
>>> ws.attachCondition(sc)
>>> ws.waitForConditions()
>>> # will NEVER get here

As a work around, attached status conditions from each of the subscriber’s readers to the wait set:

>>> # This will work
>>> ws = dds.WaitSet()

>>> # do this for each reader (dr) you care about
>>> sc = dr.statusCondition()
>>> sc.setEnabledStatuses([status.DataAvailableStatus])
>>> ws.attachCondition(sc)

>>> ws.waitForConditions()

9.3.9 Creating a unit test script

Although using an interactive interpreter provides instant feedback, it is more likely that you will create script
files, and execute them. In this section, we will create and execute a script that performs a unit test using the stand
python unittest module. Start by created a text file in your favourite editor. Call the file firstUnitTest.py. Copy and
paste the text below:

9.3. A Quick Tour of OSPL Scripting 89

Test Tool User Guide, Release 6.x

import unittest
from osplscript import dds

class firstUnitTest(unittest.TestCase):

def testReadOsplTestTopic(self):
t = dds.findTopic(’OsplTestTopic’)
dw = dds.Writer(t)
OsplTestTopic = dds.classForTopic(t)
wdata = OsplTestTopic()
wdata.id = 5
wdata.x = 5.1
wdata.y = 5.2
wdata.z = 5.3
wdata.t = 5.4
wdata.state = ’hit’
wdata.index = 5
wdata.description = ’test’
dw.write(wdata)

dr = dds.Reader(t)
sample = dr.take()
rdata = sample.getData()

self.assertEqual(wdata.id, rdata.id)
self.assertEqual(wdata.x, rdata.x)
self.assertEqual(wdata.y, rdata.y)
self.assertEqual(wdata.z, rdata.z)
self.assertEqual(wdata.t, rdata.t)
self.assertEqual(wdata.state, rdata.state)
self.assertEqual(wdata.index, rdata.index)
self.assertEqual(wdata.description, rdata.description)

standard python to run the unit test from the command line
if __name__ == "__main__":

#import sys;sys.argv = [’’, ’Test.testName’]
unittest.main()

This test case essentially repeats the test we created in the interpreter. To run the test, enter the following command
in your shell command prompt:

osplscript firstUnitTest.py

The script engine will respond with output like the following:
.
--
Ran 1 test in 0.107s

OK

The output is compact. Python’s unit test philosophy is to minimize output except in the case of test failures.
Experiment with the test to introduce a failure, and see how the output changes.

9.3.10 Working with more Complex topics

The OsplTestTopic used above is simple. This section examines working with more complex topics – ones that
include sequences, arrays, nested structures and unions. As with the preceding examples, Tester should be running,
as it creates the samples that are used in this example. If OSPL Scripting is not running, start it:

osplscript

The use the following Python to find the OsplSequenceTopic DDS topic and create a Python class from it:

9.3. A Quick Tour of OSPL Scripting 90

Test Tool User Guide, Release 6.x

>>> from osplscript import dds

>>> seqTopic = dds.findTopic(’OsplSequenceTopic’)
>>> seqClass = dds.classForTopic(seqTopic)
>>> seqInstance = seqClass()

From there, you can explore the instance data object. Fundamentally, it behaves pretty much like a C ‘struct’
would: top level fields are accessed via the dot notation:

>>> seqInstance.id = 1

Fields that are arrays or sequences may be indexed with zero-based value. Standard python sequence methods
may be used to add and remove elements from the lists. (Fields declared as arrays are pre-allocated to the declared
size. OsplSequenceTopic contains no array fields, but you can explore OsplArrayTopic, which does.)

>>> seqInstance.iVector.append(1)
>>> seqInstance.iVector.append(2)
>>> assert seqInstance.iVector[0] == 1
>>> assert seqInstance.iVector[1] == 2
>>> del seqInstance.iVector[0]
>>> assert seqInstance.iVector[0] == 2

If a class includes a a sequence of structures, then a fieldName_new() method is created so you can instantiate
instances of the class:

>>> seqInstance.pVector.append(seqInstance.pVector_new())
>>> seqInstance.pVector[0].state = ’boost’

9.3.11 Creating a sample time-line

The OSPL Scripting engine includes module (osplscript.recorder) that can automatically read samples from one
or more topics and return these in the order received. These sample sequence can then be queried using standard
python mechanisms to create tests that consider multiple samples at once. To use the recorder module, do the
following:

>>> from osplscript.recorder import Recorder
>>> t1Recorder = Recorder(’OsplTestTopic’)
>>> t2Recorder = Recorder(’OsplSequenceTopic’)
>>> # ... time passes ...
>>> # get a snapshot of samples recorded
>>> t1Samples = t1Recorder.getSamples()
>>> t2Samples = t2Recorder.getSamples()
>>> # clear the recorded samples, but keep recording
>>> t1Recorder.clearSamples()
>>> # stop recording, the sample list is still available, but no longer updated
>>> t1Recorder.stop()

9.4 Using Eclipse and PyDev to create and run OsplScript files

Eclipse is a popular open source IDE. PyDev is a Python specific open source add-on for Eclipse. This chapter
describes using Eclipse and PyDev.

9.4.1 Download and Installation

Eclipse may be obtained from the Eclipse Download page. Choose the IDE for Java Developers download.
Installation Instructions are available on the Eclipse Install Guide page.

9.4. Using Eclipse and PyDev to create and run OsplScript files 91

http://www.eclipse.org/downloads/
http://wiki.eclipse.org/Eclipse/Installation

Test Tool User Guide, Release 6.x

Once Eclipse is installed, start it and choose or create a workspace. You are then ready to proceed with installing
PyDev. See the PyDev Download page for instructions - instructions appear on the right-hand side of the page
under Quick Install > Update Manager.

9.4.2 Configuration

Once PyDev is installed, you must configure it with the location of you Jython installation:

1. Start Eclipse, and choose a workspace if prompted.

2. From the menu, choose Window -> Preferences.

3. In the left-hand tree, find and click PyDev > Interpreters > Jython interpreters.

4. Click the Add button.

5. Enter a name for the Jython interpreter. Example: Tester Script

6. Browser for the jython.jar file in the root directory of the Tester Script Jython installation.

7. Click OK.

8. Still in the Preferences dialog on the PyDev > Interpreters > Jython interpreters page, select your newly
created interpreter entry in the upper list. Then click the Environment tab in the lower half of the dialog.

9. Add the following environment variables: OSPL_HOME, OSPL_URI and LD_LIBRARY_PATH. Their
values should be the same as those found in your command line environment.

10. Click the Libraries tab in the lower half of the dialog.

11. Click New Folder and browse for and select the jar directory under your Vortex OpenSplice installation
directory.

12. Click OK to complete the folder selection.

13. Click OK to close the preferences dialog.

You are new ready to create a new Jython project.

9.4.3 Creating a PyDev Project

This section describes creating a project for editing Python files.

1. Start Eclipse and choose a workspace, if it is not already running.

2. From the menu, choose File -> New -> Project.

3. In the new project wizard, select PyDev > PyDev Project. Click Next.

4. Enter a project name.

5. Ensure the Project type is set to Jython.

6. Ensure that the Interpreter is set to your Tester Script Jython interpreter configured above.

7. Click Finish.

8. In the Package Explorere, right click over the newly created project, and choose Properties.

9. In the left-hand pane, click PyDev - PYTHONPATH.

10. Click the External Libraries tab.

11. Click Add zip/jar/egg, and choose cmapi.jar from the jar subdirectory of your Vortex OpenSplice installa-
tion. Click OK.

12. Click Add zip/jar/egg, and choose osplscript.jar from the jar subdirectory of your Vortex OpenSplice in-
stallation. Click OK.

13. Click OK to close the properties dialog.

9.4. Using Eclipse and PyDev to create and run OsplScript files 92

http://www.pydev.org/download.html

Test Tool User Guide, Release 6.x

You may be prompted to switch to the PyDev perspective. This is optional. The PyDev perspective adapts the
Eclipse display for editing python files with PyDev. If you are new to Eclipse, it is recommended that your switch
to the PyDev perspective. The following instructions assume you are in this perspective.

9.4.4 Create a Python script

Python files may declare classes, define unit tests, or just provide instructions that are to be executed when the file
is run. To create a Python file:

1. From the menu choose File -> New PyDev Module.

2. If not set, browser for a Source Folder, which must be a directory in your project.

3. Optionally, enter a package name.

4. Enter the name of the python file. PyDev will add a .py extension automatically.

5. Click OK

An editor will open, and you will be prompted for a template for the newly created file. The most common choices
are: * one of UnitTest variations, if you want to write tests. * Main, if you want to write a python script to be
executed directly by the interpreter * Class, if you want to define python classes to be consumed by other modules.

9.4.5 Running a Python script

To run a python script (or unit test), do the following:

1. Right click anywhere in the editor and choose Run As -> Jython Run. (For unit tests, choose Run As ->
Jython unit-test.)

9.4.6 Debugging a Python script

Launching a debugger is similar to running a script. Right click the script, and choose Debug As and then the
appropriate sub-menu item. While debugging, note the following:

• You can set break points in a script by clicking in the left margin of the script editor.

9.5 Using PyCharm to create and run Tester Scripting

PyCharm is a Python specific IDE developed by Jet Brains, the makes of IntelliJ IDEA. PyCharm comes in several
forms. This chapter describes using the free Community Edition.

Note that similar instructions apply for using IntelliJ IDEA with the Python Plugin, as the Python Plugin adds
very similar capabilities.

9.5.1 Download and Installation

PyCharm may be obtained from the PyCharm Download page. Choose the Community Edition download. The
page includes a link to Installation Instructions appropriate to your platform.

9.5.2 Configuration

This subsection explains how to configure PyCharm so that is will work with the Jython installation you created
and configured with Tester Script.

1. Start PyCharm. On the Welcome script.

2. Click the Configure drop down near the bottom of the screen, and then choose Settings.

9.5. Using PyCharm to create and run Tester Scripting 93

https://www.jetbrains.com/pycharm/download/

Test Tool User Guide, Release 6.x

3. In the left-hand tree, find Default Project, expand it and select Project Interpreter.

4. On the right-hand side of the dialog, click the gear icon, and choose Add Local.

5. In the file selection dialog, browse for the your Jython executable from your Jython installation. The Jython
installation instructions used the following location: $OSPL_HOME/jython/bin/jython

6. Click OK to close the selection dialog. Click OK again to close the Settings dialog.

You are new ready to create a new Jython project.

9.5.3 Creating a PyCharm Project

This section describes creating Python projects in PyCharm.

1. Start PyCharm, if it is not already running.

2. If the Welcome screen is showing, click Create New Project. Otherwise, select New Project from the File
menu.

3. Provide a project name and location. Verify that the Interpreter is the Tester Scripting Jython interpreter.
Click Create.

9.5.4 Create a Python script

Python files may declare classes, define unit tests, or just provide instructions that are to be executed when the file
is run. To create a Python file:

1. From the menu choose File -> New....

2. In the pop-up that displays, click Python File.

3. Provide a name. If you do not add it, PyCharm will add a .py extension.

4. The Kind drop down allows you to choose between Python file or Python unit test.

5. Click OK to create the file. The file will open in an editor.

9.5.5 Running a Python script

Running a script requires some the first time setup:

1. From the menu, choose Run -> Edit Configurations.

2. In the left-hand tree, expand Defaults and click Python

3. Press the button containing ellipsis at the end of the Environment Variables line.

4. Add the following environment variables (as defined in your environment): OSPL_HOME, OSPL_URI and
LD_LIBRARY_PATH

5. Click OK to close the Environment Variables dialog

6. In the Interpreter Options edit box, enter: -Djava.ext.dirs=<full-path-to-OSPL_HOME>/jar

7. Ensure Python intepreter is set to the Jython implementation you created earlier.

If you plan on running Python unit tests, you will have to repeat the above steps for the Python tests default.

Once the default configurations are setup, you can run Python script as follows:

1. Right click anywhere in the editor and choose Run

9.5. Using PyCharm to create and run Tester Scripting 94

Test Tool User Guide, Release 6.x

9.5.6 Debugging a Python script

Once run configurations are setup, debug is essentially another form of running. Note the following:

• You can launch a debug session by right clicking in a script editor, and choosing Debug

• You can set break points in a script by clicking in the left margin of the script editor.

9.5. Using PyCharm to create and run Tester Scripting 95

10
Appendix A

10.1 Scripting BNF

This Appendix gives the formal description of the Tester Scripting language.

10.1.1 TOKENS

TOKENS
<DEFAULT> SKIP : {
" "
| "\t"
| "\n"
| "\r"
| <"//" (~["\n","\r"])* ("\n" | "\r" | "\r\n")>
| <"--" (~["\n","\r"])* ("\n" | "\r" | "\r\n")>
| <"/*" (~["*"])* "*" ("*" | ~["*","/"] (~["*"])* "*")* "/">
}

<DEFAULT> TOKEN : {
<INTEGER_LITERAL: <DECIMAL_LITERAL> (["l","L"])?
| <HEX_LITERAL> (["l","L"])?
| <OCTAL_LITERAL> (["l","L"])?>
| <#DECIMAL_LITERAL: (["+","-"])? ["0"-"9"] (["0"-"9"])*>
| <#HEX_LITERAL: "0" ["x","X"] (["0"-"9","a"-"f","A"-"F"])+>
| <#OCTAL_LITERAL: "0" (["0"-"7"])*>
| <FLOATING_POINT_LITERAL: (["+","-"])? (["0"-"9"])+ "." (["0"-"9"])*

(<EXPONENT>)? (["f","F","d","D"])?
| "." (["0"-"9"])+ (<EXPONENT>)? (["f","F","d","D"])?
| (["0"-"9"])+ <EXPONENT> (["f","F","d","D"])?
| (["0"-"9"])+ (<EXPONENT>)? ["f","F","d","D"]>
| <#EXPONENT: ["e","E"] (["+","-"])? (["0"-"9"])+>
| <CHARACTER_LITERAL: "\’" (~["\’","\\","\n","\r"]
| "\\" (["n","t","b","r","f","\\","\’","\""]
| ["0"-"7"] (["0"-"7"])?
| ["0"-"3"] ["0"-"7"] ["0"-"7"])) "\’">
| <STRING_LITERAL: "\"" (~["\"","\\","\n","\r"]
| "\\" (["n","t","b","r","f","\\","\’","\""]
| ["0"-"7"] (["0"-"7"])?
| ["0"-"3"] ["0"-"7"] ["0"-"7"]
| ["\n","\r"]
| "\r\n"))* "\"">
| <HASH_LITERAL: "#"(["0"-"9"])+>
| <JAVASCRIPT: "`" (~["`"])* "`">
}

<DEFAULT> TOKEN : {
<SEND: "send">
| <REPEAT: "repeat">

96

Test Tool User Guide, Release 6.x

| <PERIODIC: "periodic">
| <MACRO: "macro">
| <DISPOSE: "dispose">
| <WRITEDISPOSE: "writedispose">
| <WAIT: "wait">
| <WAITABS: "waitabs">
| <CALL: "call">
| <RUN: "run">
| <CHECK: "check">
| <CHECK_LAST: "check_last">
| <CHECK_ANY: "check_any">
| <RECHECK_LAST: "recheck_last">
| <DISPOSED: "disposed">
| <MARK: "mark">
| <MISS: "miss">
| <MARKMSG: "markmsg">
| <MISSMSG: "missmsg">
| <SCENARIO: "scenario">
| <UNIQID: "uniqid">
| <VAR: "var">
| <END: "end">
| <MSG: "message">
| <LOG: "log">
| <FAIL: "fail">
| <CLEAR: "clear">
| <IF: "if">
| <THEN: "then">
| <ELSE: "else">
| <ENDIF: "endif">
| <FOR: "for">
| <IN: "in">
| <LOOP: "loop">
| <ENDLOOP: "endloop">
| <WHILE: "while">
| <READER: "reader">
| <WRITE: "write">
| <READ: "read">
| <CONNECT: "connect">
| <DISCONNECT: "disconnect">
| <EXEC: "execute">
| <CONTROL: "control">
| <SET: "set">
| <COLUMN: "column">
| <GRAPH: "graph">
| <REVERSE_FAIL: "reverse_fail">
| <EXIT: "exit">
}

<DEFAULT> TOKEN : {
<IDENTIFIER: <LETTER> (<LETTER> | <DIGIT>)*>
| <#LETTER: ["$","A"-"Z","_","a"-"z"]>
| <DIGIT: ["0"-"9"]>
}

10.1.2 NON-TERMINALS

NON-TERMINALS
Scenario := <SCENARIO> <IDENTIFIER> (InstructionList)? <END>

<SCENARIO>
Macro := <MACRO> <IDENTIFIER> "(" (ArgumentList)? ")"

(InstructionList)? <END> <MACRO>

10.1. Scripting BNF 97

Test Tool User Guide, Release 6.x

| <SCENARIO> <IDENTIFIER> (InstructionList)? <END> <SCENARIO>
InstructionList := (Instruction)+
Instruction := SendInstruction

| RepeatInstruction
| PeriodicInstruction
| DisposeInstruction
| WriteDisposeInstruction
| WaitInstruction
| WaitabsInstruction
| CheckInstruction
| CheckLastInstruction
| CheckAnyInstruction
| RecheckLastInstruction
| DisposedInstruction
| MarkInstruction
| MarkMsgInstruction
| MissInstruction
| MissMsgInstruction
| CallInstruction
| ForInstruction
| WhileInstruction
| SetInstruction
| VarDeclaration
| IfInstruction
| MessageInstruction
| ClearInstruction
| LogInstruction
| FailInstruction
| ReaderInstruction
| WriteInstruction
| ReadInstruction
| ConnectInstruction
| DisconnectInstruction
| ExecuteInstruction
| ControlInstruction
| ColumnInstruction
| GraphInstruction
| ReverseFailInstruction
| ExitInstruction
| ScriptInvocation

ReaderInstruction := <READER> (<DISPOSE>)? "(" Constant
(<HASH_LITERAL>)? ("," <IDENTIFIER> ("," Constant

("," Constant)?)?)? ");"
ColumnInstruction := <COLUMN> (<CLEAR>)? "(" Constant

("," Constant)? ");"
GraphInstruction := <GRAPH> "(" ParameterList ");"
MessageInstruction := <MSG> "(" <STRING_LITERAL> (Constant)? ");"
LogInstruction := <LOG> "(" <STRING_LITERAL> (Constant)? ");"
FailInstruction := <FAIL> "(" <STRING_LITERAL> (Constant)? ");"
ControlInstruction := <CONTROL> <IDENTIFIER> "." <IDENTIFIER> (

("(" ParameterList ((");") | (")" ";"))) | (";"))
ClearInstruction := <CLEAR> ";"
ExitInstruction := <EXIT> (<IF> <FAIL>)? ";"
ScriptInvocation := Script ";"
SendInstruction := <SEND> <IDENTIFIER> (("." <IDENTIFIER>))?

"(" (ParameterList)? ");"
RepeatInstruction := <REPEAT> <IDENTIFIER> FloatValue IntValue "("

(ParameterList)? ");"
PeriodicInstruction := <PERIODIC> <IDENTIFIER> <IDENTIFIER>

FloatValue IntValue "(" (ParameterList)? ");"
WriteInstruction := <WRITE> <IDENTIFIER> "." <IDENTIFIER> "("

(ParameterList)? ");"
VarDeclaration := <VAR> FieldName "=>" Constant ";"

10.1. Scripting BNF 98

Test Tool User Guide, Release 6.x

DisposeInstruction := <DISPOSE> <IDENTIFIER> (("."
<IDENTIFIER>))? "(" (ParameterList)? ");"

WriteDisposeInstruction := <WRITEDISPOSE> <IDENTIFIER> (("."
<IDENTIFIER>))? "(" (ParameterList)? ");"

CheckInstruction := <CHECK> <IDENTIFIER> (("." <IDENTIFIER>))?
"(" (ChkParameterList)? ");"

CheckLastInstruction := <CHECK_LAST> <IDENTIFIER> (("."
<IDENTIFIER>))? "(" (ChkParameterList)? ");"

CheckAnyInstruction := <CHECK_ANY> <IDENTIFIER> (("."
<IDENTIFIER>))? "(" (ChkParameterList)? ");"

RecheckLastInstruction := <RECHECK_LAST> <IDENTIFIER> (("."
<IDENTIFIER>))? "(" (ChkParameterList)? ");"

ReadInstruction := <READ> <IDENTIFIER> "." <IDENTIFIER> "("
(ChkParameterList)? ");"

MarkMsgInstruction := <MARKMSG> <IDENTIFIER> "." <IDENTIFIER> "("
(ChkParameterList)? ");"

MissMsgInstruction := <MISSMSG> <IDENTIFIER> "." <IDENTIFIER> "("
(ChkParameterList)? ");"

ConnectInstruction := <CONNECT> <IDENTIFIER> (Constant)? ";"
DisconnectInstruction := <DISCONNECT> <IDENTIFIER> ";"
DisposedInstruction := <DISPOSED> <IDENTIFIER> (("."

<IDENTIFIER>))? "(" (ChkParameterList)? ");"
MissInstruction := <MISS> <IDENTIFIER> (("." <IDENTIFIER>))?

"(" (ChkParameterList)? ");"
MarkInstruction := <MARK> <IDENTIFIER> (("." <IDENTIFIER>))?

"(" (ChkParameterList)? ");"
CallInstruction := <CALL> <IDENTIFIER> (("." <IDENTIFIER>))?

"(" (ParameterList)? ");"
SetInstruction := <SET> <IDENTIFIER> "(" (ParameterList)? ")"

"(" "(" ParamHeaderList ")" ParamSetList ");"
ParamHeaderList := <IDENTIFIER> ("," ParamHeaderList)?
ParamSetList := "," ParamSet (ParamSetList)?
ParamSet := "(" ParamValueList ")"
ParamValueList := Constant ("," ParamValueList)?
IfInstruction := <IF> "(" CompareExpression ")" <THEN>

InstructionList (<ELSE> InstructionList)? <ENDIF> ";"
CompareExpression := CalcExpression (CompareOperator

CompareExpression)?
CalcExpression := PrimaryExpression (CalcOperator CalcExpression)?
PrimaryExpression := Constant

| "(" CompareExpression ")"
CompareOperator := "=="

| "!="
| ">"
| "<"
| ">="
| "<="
| "||"
| "&&"

CalcOperator := "|"
| "&"
| "+"
| "-"
| "*"
| "/"

ForInstruction := <FOR> <IDENTIFIER> <IN> (
(IntValue ".." IntValue)

| "(" VarList ")") <LOOP> InstructionList <ENDLOOP> ";"
WhileInstruction := <WHILE> "(" CompareExpression ")" <LOOP>

InstructionList <ENDLOOP> ";"
VarList := Constant ("," VarList)?
WaitInstruction := <WAIT> "(" Constant ");"
WaitabsInstruction := <WAITABS> "(" Constant ");"

10.1. Scripting BNF 99

Test Tool User Guide, Release 6.x

ExecuteInstruction := <EXEC> (<WAIT>)? (<LOG>)?
<STRING_LITERAL> ";"

ReverseFailInstruction := <REVERSE_FAIL> ";"
ParameterList := Parameter ("," Parameter)* (",")?
Parameter := FieldName "=>" Constant
ChkParameterList := ChkParameter ("," ChkParameter)* (",")?
ChkParameter := FieldName "=>" ("!")? Constant (":" Constant)?
ArgumentList := Argument (Argument)*
Argument := FieldName ":" FieldName (":=" Constant)? ";"
FieldName := <IDENTIFIER> ("[" <INTEGER_LITERAL> "]")?

(("." FieldName))?
IntValue := <INTEGER_LITERAL>

| "<<" <IDENTIFIER>
| <IDENTIFIER>

FloatValue := <FLOATING_POINT_LITERAL>
| "<<" <IDENTIFIER>
| <IDENTIFIER>

Constant := <INTEGER_LITERAL>
| <FLOATING_POINT_LITERAL>
| <CHARACTER_LITERAL>
| <STRING_LITERAL>
| ">>" <IDENTIFIER>
| ">>" <JAVASCRIPT>
| "<<" <IDENTIFIER> ("." <IDENTIFIER>)?
| <IDENTIFIER>
| <UNIQID>
| <JAVASCRIPT>

Script := <JAVASCRIPT>

10.1. Scripting BNF 100

11
Contacts & Notices

11.1 Contacts

ADLINK Technology Corporation
400 TradeCenter
Suite 5900
Woburn, MA
01801
USA
Tel: +1 781 569 5819

ADLINK Technology Limited
The Edge
5th Avenue
Team Valley
Gateshead
NE11 0XA
UK
Tel: +44 (0)191 497 9900

ADLINK Technology SARL
28 rue Jean Rostand
91400 Orsay
France
Tel: +33 (1) 69 015354

Web: http://ist.adlinktech.com/

Contact: http://ist.adlinktech.com

E-mail: ist_info@adlinktech.com

LinkedIn: https://www.linkedin.com/company/79111/

Twitter: https://twitter.com/ADLINKTech_usa

Facebook: https://www.facebook.com/ADLINKTECH

11.2 Notices

Copyright © 2018 ADLINK Technology Limited. All rights reserved.

101

http://ist.adlinktech.com/
http://ist.adlinktech.com
mailto:ist_info@adlinktech.com
https://www.linkedin.com/company/79111/
https://twitter.com/ADLINKTech_usa
https://www.facebook.com/ADLINKTECH

Test Tool User Guide, Release 6.x

This document may be reproduced in whole but not in part. The information contained in this document is subject
to change without notice and is made available in good faith without liability on the part of ADLINK Technology
Limited. All trademarks acknowledged.

11.2. Notices 102

	Preface
	About The Vortex OpenSplice Tester User Guide
	Intended Audience
	Organisation
	Conventions

	Introduction
	Features
	Location of Tester in the OpenSplice architecture
	Things to Know
	Prerequisites

	Getting Started
	Starting and Stopping Tester
	Starting - Local Connection
	Starting - Remote Connection
	Stopping
	Remotely Controlling Tester
	Trying out Tester
	Tester Windows

	Familiarization Exercises
	Starting the Tester
	Connection management
	Topics and Readers
	Samples
	Filtering
	Working with Samples
	Groups
	System Browser (Browser window)
	Scripting
	Execute and Debug
	Adding virtual fields
	Plugins
	More on Virtual fields

	Command Reference
	Introduction
	Menus
	Lists
	Windows

	Scripting
	The Script Language
	The Instructions
	Instructions for Graphs
	Instructions for Flow Control
	Instructions for the Message Interface
	Installing Script Engines

	Message Interfaces
	Message interfaces
	Getting Started with a Message Interface
	Types of interfaces

	Google Protocol Buffers
	About Google Protocol Buffers in Tester
	Viewing type evolutions
	Reading protocol buffer topics
	Reading protocol buffer topics via script
	Editing protocol buffer topic samples

	Python Scripting Engine
	About Python Scripting
	Configuration
	A Quick Tour of OSPL Scripting
	Using Eclipse and PyDev to create and run OsplScript files
	Using PyCharm to create and run Tester Scripting

	Appendix A
	Scripting BNF

	Contacts & Notices
	Contacts
	Notices

