A
A ADLINK

AV,:N
"4~ WORTEX

P E NS ICLE

C Tutorial Guide

Release 6.x

Vortex OpenSplice

C TuToRIAL GUIDE

A ADLINK

Part Number: OS-CTG Doc Issue 32, 7 November 2017

Copyright Notice
© 2006 to 2017 ADLINK Technology Limited. All rights reserved.
This document may be reproduced in whole but not in part.

The information contained in this document is subject to change without notice and
is made available in good faith without liability on the part of ADLINK Technology
Limited.

All trademarks acknowledged.

A _ADLINK o
C Tutorial Guide

CONTENTS

Table of Contents

Aboutthe CTutorial Guidecciiiiiiiiiiiiiiiiinnnnnnnnnnnnnns ix
L1 11 T 1 xi

Vortex OpenSplice C Tutorial

Introduction to Vortex OpenSplice 3
OVeIVIEW & ot i it iiiiiiiiiiiiiiiieteeeenenenenenenenenenennnnnnns 3
Vortex OpenSplice SUMMArycovtitiiiiernreeeersosenrsosenes 5
Vortex OpenSplice Architecture.........ccviiiiiiiiieiiirernncenns 6

Overall 6
Scalabilityc i 6
Configuration.ttt 6
Vortex OpenSplice Implementation Benefits......................... 7
Vortex OpenSplice Tunero i, 8
Conclusion.coviiiiiiiiiiiiiiiiiiiiiitietetenenenenennnns 10

A DDS-based Chatroom 11
Client-Server vs Peer-to-Peerccoiiiiiiiiiiiiinnenens. 11
Analysing the Chatroom Examplecciiiitiiiinrnnrnennss 13

Data Modelling 15
Data Types, Samples and Instancesc.oevviieeerneenrencess 15
Modelling Data TypesinIDLoitiiiiiiiienrnnrnrnncanns 16
Language Specific Representationcociiiiiiiiiien, 18
Invoking the IDL Pre-processorccovieiiiieiernnneennnens 19

Managing Domains and Topics 21
Entities, Policies, Listeners and Conditions 21
QoS Policies. .o oveiineeeiiineeeeeeeeeeeeenoseeenossesoansannns 23
ConnectingtoaDomain.ooiiiiiiiiiiiiiinineenrneenns 24
Registering Data Types and Creating Topicsccvvvivieenn. 30
Topics as Global Concepts.ccoviieiiiiernneeronrseonsancnss 35
Tailoring QosPolicy Settingscoiiiiiiiiiiiierninnnnrsncens 36

Publishing the Data 43
Publishers, DataWriters and their QoS Policies 43
Creating Publishers and DataWriterscoiviiieiiinnnnnns 45
Requested/Offered QosPolicy Semanticscooviiiiieen, 48

ADLINK v

C Tutorial Guide

Table of Contents

vi
C Tutorial Guide

Deleting Publishers and DataWriters...........ccoviiiinieenrnnees 51
Registering Instances and Writing Samples 52
Unregistering and Disposing of Instances00, 55
Subscribing to Data 59
Subscribers, DataReaders and their QoS Policies.................... 59
Creating Subscribers and DataReaders..............coiiiiin, 61
Managing and Reading Samples........... ..ottt 63
Content-Subscription Profile and Listeners 69
SQL Controlled Building Blocks.ciiiiiiiiiiiiiiiiiiinn, 69
Creating and Using a MultiTopic.........cooiiiiiiiiiiiiiiiiiiae, 70
Simulating a MultiTopic Using Other Building Blocks 73
Using a ContentFilteredTopic..............co ... 73
Attaching a Listener. i e e 75
Using a QueryConditionttt 78
Waiting for Conditions 83
Conditions and WaitSetsottt 84
Usinga ReadConditioncciiiiiiiiiiiiiiiiiiiiinennnnns 85
Using a StatusCondition.oiiiiiiiiiiiiiiiiinrneennnns 86
Using a GuardConditioniiitiiiiiiiiiiiiiinenneennens 88
UsingaWaitSet.ovviiiiiiiiiiiiiininnrerenseeenrossnssnsns 89
Processing Expired Transient Dataccc0iiiiiiinnnnnns 91
Using the HistoryQosPolicy........coviiiiiiiiiiiinirnrnnensnnes 92
Cleaning Up. .. .oviiiiiiiiiiiiiiieereeeeeeeeensssnsssnanansnnns 96

C Language Examples’ Code 101
Chatidl ... 101
CheckStatus.h 102
CheckStatus.C ..o .v it 102
Chatter.C. . ..o 104
MessageBoard.C. 109
multitopic.h e 114
MUIEOPIC.C . . vttt e e e e e e 115
UserLoad.C.ot e 122
C++ Language Examples’ Code 131
Chatidl ... 131
CheckStatus.h 132
CheckStatus.CPP v v vt e e e 132
O] T £ 73 o J 134
MessageBoard.Cpp. . . oo 138
ADLINIK

Table of Contents

ADLINK

multitopic.h
MUIttOPIC.CPP « v v v e et
UserLoad.cpp. . ..o vovi i

Java Language Examples’ Code

ErrorHandlerjava
Chatterjavaooviie i e
MessageBoard.java
DataReaderListenerlmpljava
ExtDomainParticipantjava
ExtDomainParticipantHelper.java.................
UserLoadjava

Bibliography

Index

vii
C Tutorial Guide

Table of Contents

viii

o A_ADLINK
C Tutorial Guide .

Preface

About the C Tutorial Guide

S,

The C Tutorial Guide introduces OpenSplice’s main concepts, aided by code
examples which use the OpenSplice API to create a chat room using OpenSplice’s
publish and subscribe features in order to enable users to efficiently communicate
with each other.

The tutorial examples progress from introducing basic concepts, gradually
developing them through to a complete application. The complete source code files
for the example programs are listed in the Appendices'.

Please note that the C Tutorial Guide is not intended to cover all aspects of
OpenSplice, but simply to introduce essential concepts and enable users to begin
using OpenSplice as quickly as possible.

The Vortex OpenSplice API is embedded in different programming languages. The
C Tutorial Guide covers the C version of OpenSplice: refer to the appropriate
tutorial version for the other supported languages. Examples of code for all
supported languages are listed in the C Tutorial Guides Appendices.

Intended Audience

The C Tutorial Guide is intended to be used by C programmers who are using
OpenSplice to develop applications.

Organisation

A
=~ _ADLINK

Chapter 1, Introduction to Vortex OpenSplice, provides an introduction about Vortex
OpenSplice product and the OMG DDS standard which Vortex OpenSplice is based
on. This chapter explains the various DDS profiles and the extent that OpenSplice
supports them. Also, the tools which are included with OpenSplice are briefly
described. Introduction to Vortex OpenSplice can be skipped if you are already
familiar with OpenSplice.

Chapter 2, A DDS-based Chatroom, describes the high-level architecture of an
example chatroom application, called Chat, which the C Tutorial Guide uses to
explain how to develop applications using OpenSplice. The chapter also analyses
the example application is constructed from autonomous components.

Chapter 3, Data Modelling, explains how to define data models in IDL and how to
translate this IDL model into your chosen language, including how to represent the
IDL in the C language.

1. Please note that the examples provided in this guide are intended for instructional
purposes only and have not been optimised for resource usage.

ix

C Tutorial Guide

Preface

Chapter 4, Managing Domains and Topics describes the initial steps that are needed
to connect an application to a DDS Domain as well as how to define the topics the
application will use in the Domain. This chapter explains concepts and skills that are
needed for subsequent steps in developing an application, such as creating and
deleting Entities by means of a factory, error handling and tailoring QoS settings.

Chapter 5, Publishing the Data, and Chapter 6, Subscribing to Data, describes how
to publish data and make subscriptions for accessing information, respectively. A
primitive version of a message board, called MessageBoard, that sends all incoming
chat messages to your screen is introduced.

Chapter 7, Content-Subscription Profile and Listeners further develops the message
board application by adding content awareness through the use of filters, queries
and event-based data notification.

Chapter 8, Waiting for Conditions, describes how to display user activity and how to
keep track of usage history in the chat room through the use of Conditions, WaitSets,
and Quality of Service policies (QosPolicy) which are employed in a UserLoad
application.

The Appendices contain listings of all example source code used in the C Tutorial
Guide, plus the code listings for the other languages supported by OpenSplice.

The Bibliography contains a list of references used by the guide and which also may
provide useful or essential information.

Conventions

A

l

C++
C#

Java

X
C Tutorial Guide

The conventions listed below are used to guide and assist the reader in
understanding the C Tutorial Guide.

Item of special significance or where caution needs to be taken.
Item contains helpful hint or special information.

Information applies to Windows (e.g. XP, 2003, Windows 7) only.
Information applies to Unix-based systems (e.g. Solaris) only.

C language specific.

C++ language specific.

C# language specific.

Java language specific.

Hypertext links are shown as blue italic underlined.

On-Line (PDF) versions of this document: Items shown as cross-references, e.g.
Contacts on page xi, act as hypertext links: click on the reference to go to the item.

A
=/ ADLINK

Preface

[o)

% Commands or input which the user enters on the
command line of their computer terminal

Courier fonts indicate programming code and file names.

Extended code fragments are shown in shaded boxes:

NameComponent newName[] = new NameComponent[1l];

// set id field to “example” and kind field to an empty string
newName [0] = new NameComponent (“example”, ““);

Italics and Italic Bold are used to indicate new terms, or emphasise an item.

Sans-serif and Sans-serif Bold are used to indicate elements of a Graphical User
Interface (e.g. an OK button) and sequences of actions, such as selecting File > Save
from a menu.

Step 1: One of several steps required to complete a task.

Contacts

ADLINK can be reached at the following contact points for information and
technical support.

USA Corporate Headquarters European Head Office
ADLINK Technology Corporation ADLINK Technology Limited
400 TradeCenter The Edge
Suite 5900 5th Avenue, Team Valley
Woburn, MA Gateshead
01801 NE11 0XA
USA UK
Tel: +1 781 569 5819 Tel: +44 (0)191 497 9900
Web: http://ist.adlinktech.com
E-mail: ist_info@adlinktech.com

A ADLINK xi

C Tutorial Guide

http://ist.adlinktech.com
mailto: ist_info@adlinktech.com

Preface

oo A ADLINK
C Tutorial Guide

VORTEX OPENSPLICE
C TUTORIAL

CHAPTER

Introduction to Vortex OpenSplice

This section starts by introducing the concepts and philosophies behind the Object
Management Groups Data Distribution System (OMG DDS) standardization
process. It will explain the characteristics of the different DDS profiles, and will
explain how these profiles are incorporated in the Vortex OpenSplice product. Then
it will provide a short impression of the basic architecture of Vortex OpenSplice and
how this influences issues like scalability and configuration, followed by a detailed
overview of all the benefits that the Vortex OpenSplice product will offer you.
Finally the Vortex OpenSplice Productivity Tools are introduced and it is explained
how these might dramatically decrease the costs of your development and
maintenance efforts.

1.1 Overview

A
=~ _ADLINK

Real-time availability of information is of utmost importance in the large class of
network-centric systems. Information generated from multiple sources must be
distributed and made available to 'interested parties' taking into account Quality of
Service (QoS) offerings by information-producers and requests by
information-consumers. Especially in real-time and mission-critical systems, getting
'the right data at the right time at the right place' is not a trivial task at all and up until
recently, there were no standards nor COTS products that addressed this challenge
in an integrated solution. The OMG recognized this need for a Data Distribution
Service (DDS) and organized members with vast experience in both the 'underlying'
technologies (networking and information-management) as well as 'user-level'
requirements (distributed, real-time and mission-critical system characteristics),
including Thales Naval Netherlands, to join forces and these members defined the
'OMG-DDS' service. The OMG-DDS service specifies a coherent set of profiles that
target real-time information-availability for domains ranging from small-scale
embedded control systems up to large-scale enterprise information management
systems. Each DDS-profile adds distinct capabilities that define the service-levels
offered by DDS in order to realize this 'right data at the right time at the right place'
paradigm:

* Minimum Profile - this basic profile utilizes the well known publish/subscribe
paradigm to implement highly efficient information dissemination between
multiple publishers and subscribers that share interest in so called 'topics'. Topics
are the basic data structures expressed in the OMG's IDL language (allowing for
automatic generation of typed 'Readers' and "Writers' of those 'topics' for any mix

3
Vortex OpenSplice C Tutorial

1 Introduction to Vortex OpenSplice 1.1 Overview

4

of languages desired). This profile also includes the QoS framework that allows
the middleware to 'match’ requested and offered Quality of Service parameters
(the minimum profile offering basic QoS attributes such as 'reliability’, 'ordering'
or 'urgency').

Ownership Profile - this 'replication' profile offers support for replicated
publishers of the same information by allowing a 'strength' to be expressed by
each publisher so that only the 'highest strength' information will be made
available to interested parties.

Content Subscription Profile - this 'content awareness' profile offers powerful
features to express fine grained interest in specific information content (content
filters). This profile also allows applications to specify projection views and
aggregation of data as well as dynamic gueries for subscribed 'topics' by utilizing
a subset of the well known SQL language whilst preserving the real-time
requirements for the information access.

Persistence Profile - this 'durability' profile offers transparent and fault tolerant
availability of 'non volatile' data that may either represent persistent 'settings' (to
be stored on mass media throughout the distributed system) or 'state' preserved in
a fault tolerant manner outside the scope of transient publishers (allowing late
joining applications and dynamic reallocation).

ADLINK

Vortex OpenSplice C Tutorial

1 Introduction to Vortex OpenSplice 1.2 Vortex OpenSplice Summary

Object Orientated information view
Q Local object-model extending the distributed DCPS data-model
Q Manages relationships and supports native language constructs

Distributed QoS-driven information management
O Fault tolerant and global persistence of selected data

Content-
Subscription

Q Guaranteed data availability supports application fault-folerance
Q Content-aware filtering and dynamic queries:

U reducing application-complexity

Q improving system-performance

D _‘Li:'l 'HC';UT)”(JHS 'OH(?-I‘(J-HI(H]_']' ' .“(_’(h!-f.‘lﬂ'.i'(? ({ﬂ'fﬂ' commnication
U Dynamic data-flow based on ‘current-interest’ (pub sub)

Ownership ' Q Platform independent data-model (IDL)

U Strong-tvped interfaces for multiple langiages

Minimum- - Q) Information Ownership management for replicated publishers
Profile

Figure 1 OMG DDS Layers

1.2 Vortex OpenSplice Summary

A
A ADLINK

PrismTech's Vortex OpenSplice, is a second generation, fully compliant OMG DDS
implementation, offering support for all the DCPS profiles (minimum profile,
ownership profile, content subscription profile and persistence profile). Vortex
OpenSplice was initially developed as SPLICE-DDS by Thales Naval Netherlands
(TNL), one of the co-authors of the DDS specification and is the result of TNL's
over 15 year experience in developing distributed information systems for naval
Combat Management Systems (CMS). This field proven middleware is used as the
'information backbone' of TNL's TACTICOS CMS currently deployed in 15 navies
around the world. Vortex OpenSplice is the 2nd generation COTS evolution of this
successful product and consists of several modules that cover the full OMG
specification as well as provision of total lifecycle support by an integrated
productivity tool suite:

* Vortex OpenSplice core modules cover the "Minimum" and "Ownership"
profiles that provide the basic publish-subscribe messaging functions. The
minimum profile is meant to address real time messaging requirements, where
performance and low footprint are essential. The ownership profile provides basic
support for replicated publishers where 'ownership' of published data is governed
by 'strength' indicating the quality of published information.

5
Vortex OpenSplice C Tutorial

1 Introduction to Vortex OpenSplice 1.3 Vortex OpenSplice Architecture

* Vortex OpenSplice content subscription and persistence profiles provide the
additional information management features, key for assuring high information
availability (fault tolerant persistence of non-volatile information) as well as
powerful 'content aware' features (filters and queries), thus enabling unmatched
performance for the full range of small scale embedded up to large scale fault
tolerant systems.

Free evaluation licenses of Vortex OpenSplice are available by e-mailing
ist_info@adlinktech.com. Currently-supported platforms include Solaris Sparc,
Linux x86, x86 and VxWorks PowerPC, whereas supported languages are C, C++
(standalone or in seamless cohabitation with any ORB and related C++ compiler)
and Java.

Vortex OpenSplice Architecture
Overall

To ensure scalability, flexibility and extensibility, Vortex OpenSplice has an internal
architecture that utilizes shared memory to 'interconnect' not only all applications
that reside within one computing node, but also 'hosts' a configurable and extensible
set of services. These services provide 'pluggable' functionality such as networking
(providing QoS driven real-time networking based on multiple reliable multicast
'channels'), durability (providing fault tolerant storage for both real-time 'state' data
as well as persistent 'settings'), and remote control & monitoring 'soap service'
(providing remote web based access using the SOAP protocol from the Vortex
OpenSplice Tuner tools).

Scalability

Vortex OpenSplice utilizes a shared-memory architecture where data is physically
present only once on any machine, and where smart ad-ministration still provides
each subscriber with his own private 'view' on this data. This allows a subscriber's
data cache to be perceived as an individual 'database' that can be content-filtered,
queried, etc. (using the content-subscription profile as supported by Vortex
OpenSplice). This shared-memory architecture results in an extremely low
foot-print, excellent scalability and optimal performance when compared to
implementations where each reader/writer are 'communication-endpoints' each with
its own storage (in other words, historical data both at reader and writer) and where
the data itself still has to be moved, even within the same physical node.

Configuration

The Vortex OpenSplice middleware can be easily configured 'on the fly' by
specifying (only the needed) services to be used as well as configuring those service
for optimal matching with the application domain (networking parameters,
durability levels, etc). Easily maintainable XML files are utilized to configure all

6

ADLINK
Vortex OpenSplice C Tutorial ‘

mailto: ist_info@adlinktech.com
mailto: ist_info@adlinktech.com

1 Introduction to Vortex OpenSplice 1.4 Vortex OpenSplice Implementation Benefits

OpenSplice services. Vortex OpenSplice configuration is also supported by means
of the MDA tool set allowing system/network modelling and automatic generation
of the appropriate XML configuration files.

Computing-Node B

App-1 App-2 App-3
OpenSplice
Tool Suite

Shared memory

Config
(XML)
Config- Soap- Network- Durability-
Service Service Service Service
[

<_ network =

Figure 2 Vortex OpenSplice Pluggable Service Architecture

] Figure 2 only shows one node whereas there are typically many nodes within a
system.

1.4 Vortex OpenSplice Implementation Benefits
Table 1 below shows the following aspects of Vortex OpenSplice, where:

Features significant characteristics of OpenSplice
Advantages shows why a feature is important
Benefits describes how users of OpenSplice can exploit the advantages

7

A _ADLINK _ _
‘ Vortex OpenSplice C Tutorial

1 Introduction to Vortex OpenSplice

1.4 Vortex OpenSplice Implementation Benefits

Table 1 Vortex OpenSplice Features and Benefits

Features Advantages Benefits
General Information-centric Enable dynamic, loosely|Simplified & better scalable
coupled system. architectures
Open standard 'Off the shelf solutions Lower cost, no vendor lock
in
Built on proven|Intended for most the|Assured quality and
technology demanding situations. applicability
TNN/PT ‘inheritance’ |Decade long of ‘DDS’|Proven suitability in mission
experience critical domain
Functional Real-time pub/sub Dynamic/asynchronous data| Autonomous decoupled
communication applications
Persistence profile Fault tolerant data|Application fault tolerance
persistence and data high availability
Content-sub. Profile Reduced complexity & |Easier application design &
higher performance. scalable systems
Performance Shared memory low footprint, instant data | Processor Scalability
availability
Smart networking Efficient data transport Network Scalability
Extensive IDL sup. Includes unbounded strings, | Data Scalability
sequences
Usability Multiple language Any (mix) of C, C++, Java, | Supports (legacy) code,
Ada allows hybrid systems
Multiple platforms Any (mix) of Enterprise & | Intercons, enterprise and
RTE Oss embedded systems
Tooling and Ease | All metadata at runtime | Dynamic discovery of all | Guaranteed data integrity
of use ‘entity info'
Powerful tooling Support for complete system | Enhanced productivity and
lifecycle System Integration
Remote connect Web based remote access & | Remote diagnostics using
control standard protocols
Legend: Equal to competition | Better than competition Far surpassing competition

Vortex OpenSplice Tuner

The 100% Java based Vortex OpenSplice Tuner tool greatly aids the design,
implementation, test and maintenance of OpenSplice-based distributed systems:

8

Vortex OpenSplice C Tutorial

ADLINK

1 Introduction to Vortex OpenSplice 1.4 Vortex OpenSplice Implementation Benefits

ADLINK

* Design - During the design phase, once the information model is established (in

other words, topics are defined and 'registered' in a runtime environment, which
can be both a host environment as well as a target environment), the Vortex
OpenSplice Tuner allows creation of publishers/writers and subscribers/readers on
the fly to experiment and validate how this data should be treated by the
middleware regarding persistence, durability, latency, etc.

Implementation - During the implementation phase, where actual application
level processing and distribution of this information is developed, the Vortex
OpenSplice Tuner allows injection of test input data by creating publishers and
writers 'on the fly' as well as validating the responses by creating subscribers and
readers for any produced topics.

Test - During the test phase, the total system can be monitored by inspection of
data (by making 'snapshots' of writer and reader history caches) and behaviour of
readers & writers (statistics, like how long data has resided in the reader's cache
before it was read).

Maintenance - Maximum flexibility for planned and 'ad hoc' maintenance is
offered by allowing the 100% JAVA based Vortex OpenSplice Tuner tool suite
(which can be executed on any JAVA enabled platform without the need of Vortex
OpenSplice to be installed) to remotely connect via the web based SOAP protocol
to any 'reachable' Vortex OpenSplice system around the world (as long a HTTP
connection can be established with the Vortex OpenSplice computing nodes of
that system). Using such a dynamic connection, critical data may be logged and
data sets may be 'injected' into the system to be maintained (such as new settings
which can be automatically 'persisted' using the QoS features as offered by the
'persistence profile supported by Vortex OpenSplice).

9
Vortex OpenSplice C Tutorial

1 Introduction to Vortex OpenSplice

Splice-Tuner
TOTAL SYSTEM CONTROL

« 100 %o Java-based
* Remote connect via SOAP
* Monitor & Control:
« all DDS-entities & relations
* all QoS =ettings
= all services such as:
* comumumication
* durability-gervice
= Interactive browsing:
* inspect any data-cache
* make cache-snapshots
= view statistics
* Reading Writing data:
* create readers writers
= readwrite any data
* Multiple views:
* participant view
= Lopic view
* partition view
* Dvmamic creation of:
= readers (with filters quenes)
* writers (with input validation)
* Antomatic discovery of:
= Partitions & participants
* Topics with name type
* related publishers/writers
= related subscribers readers

1.5 Conclusion

1.5 Conclusion

o 5200 e e ok e TR =1 | o . P Suiicationter [Entty o =lolx
File Edi View e Eot Veow
SPLICE DO Tumer (k- iworkfossil2 splcaviion.. ~ | amiibutes | Stotus | 005 Datatype
[} Pameizane Spics Tuner Hame T [T | Vale
STATE]
DY senice:cusnap LNELINESS_LOST olal_saure]
Cgenice LVELIESS_LOST lal_caunt_changs 0
O Pubiisher Buihn puslisher (OFFERED_DEADUNE_MISSED atal_court]
[) Parmion: _BuaLTn PARTITON_ (OFFERED_DEADUNE MISSED _ ota_couré_change 0
§ Cwiter DCPSPartcipantine (FFERED_DEADUNE MISSED tast_nstance_hande _nul,
T R m—
¥ Syl J A BLE | Jotal_esurd_change !
Bt OFFERED NCONPATELE 005 et ity | — [
OB DEFOPUR-an OFFERED_NCONPATIELE G5 pobies 10.0,0,0,0.0.9,0,0,0.0,0,0,0.0.6,0,0,0.0,0,0]
) Weiter: DCPESubseriphonhiiter [PUBLICATION_MATCH Joatal_gaurt]
[0 Tople: DEPSSusergbon FUELICATION_NATCH ohal_ceurt_change 0
3 ¥nter: DCPETopteter PUBLICATION_MATCH Jaet_pubesrigion_handia [tNLLLY
[} Towic: DCPETap:
e it - 0o ccrscomtisie Lty .o
1 D 3 wastReader | Entity info ¢ 3
 CYDataRester DOPSPankipanteater I " =
+ CView: DCFSPaitipanhiew - - :
[Tope: DCPSFaricipant [Hitkntes [Ststwn [QoS [Dotaiyps |
¢ C3 DutaRuadir. DEPEPubbcationf vadi m:‘m | Fieid Value
. DURASL Jknd [TRANEIENT
r D‘S‘; DCIFDQ;"""" i DURREILITY [sarv charup, satay oo
L CEADLNE |pariod 1]
LI DalsReader DEPSSubstipbonamson LATENCY_BLOGET uraton T
+ CIView DEPSSebstrphonhiew LIVELINESS g (AUTONATIC
) Topic: D85 ubscripten LVELINESS ass_guishin 20
O3 DutsRester DCPETopcReader RELAGLITY jind FELIGLE
T S vhew DCPSTopicviw RELIABLITY |max_Biocking_sme Jan)
[Topic:DEFET: CESTINATIGN_GRDER |knd EY_RECEPTION_TMESTAW®
o ek HETORT |G HEEPLAST
[Pastiion: _ BUILT.IN PARTITION_ HETORY deph]
= C]View. DCPSPatcoantien [FEGOURCE LWTS _jmas_samgles e
o C]View: DCPEPuskcatariew [Festunce s mas_instances 4]
o CView: DCPSBURscrisbonview C Jmax_samgits arinstance |1
o= Clview: DCPETapichiew USERD _ s ol
o = MU BASED FLTER |minimum, separssion }
READER_DATA_LIFECTCLE |wiitpurga_pawelis_samples_telay 0.0
el Sl
7 Topic; DCPSParticpant | Entity infe 1= | [ox 7opic: DCPSPuiblcation | Entity i
[l Edt i i Eot w
Mibutes | Status | 005 | Dofatype | [mirkutrs | Sttus | aoS | Datate
typedel struet v_gd 1 | =] . Figid nama L _Fighd viag]
3 ind OB
<o Cm— 1
_Wog e hedeinge 14
¢_ong fecycleld, handi sorial 1211088630
bt Topuciley. aotess ead?d
hay st useDta ey syl
iruct v_participantInfe | tpe nama KameModug _pusl staning
v_taltimTopacKey key,
stroct v_userDataPulicy | |
Ptk iem C_ARRAY<c_ociel> vabue , -
[Reay Ll

Figure 3 Vortex OpenSplice Tuner

PrismTech's Vortex OpenSplice product complemented by its tool sup-port together
encompass the industry's most profound expertise on the OMG's DDS standard and

products.

The result is unrivalled functional DDS-coverage and performance in large-scale
mission-systems, fault-tolerance in information availability, and total lifecycle

support including round-trip engineering. A complete DDS solution to ensure a
customer's successful adoption of this exciting new technology and to support
delivery of the highest-quality applications with shortest time to market in the
demanding real-time world.

10

2 ADLINK
Vortex OpenSplice C Tutorial o

CHAPTER

2 A DDS-based Chatroom

This section introduces the basic architecture of a Chatroom that is based on Vortex
OpenSplice. Each subsequent section will elaborate on this basic architecture: a
data model will be defined first, then the publishing side will be created, followed by
the subscribing side, which will be developed in a number of iterations, increasing
its functionality step by step. Finally a monitor will be added that keeps track of the
number of Chatters that are currently logged on to the Chatroom.

2.1 Client-Server vs Peer-to-Peer

In this tutorial we want to build an application that uses Vortex OpenSplice to
distribute chat messages. Traditionally, chatrooms are examples of common
client-server architectures, where clients (the chatters) connect to a server (the
chatroom) and identify themselves by giving their user name. (In most cases they
will have to confirm their identity by providing a password as well.). After the
server has recorded their identity, the clients can send as many chat messages as
they like. The chatroom collects the chat messages of each client and will forward
them to all other participating clients. New clients can request to join a chatroom at
any moment in time: they will then have to identify themselves to the server, and the
server will make sure that all chat messages received from that moment on will also
be forwarded to the newly added client. An example of such a typical client-server
approach is presented in Figure 4.

11

A ADLINK _ _
‘ Vortex OpenSplice C Tutorial

2 A DDS-based Chatroom 2.1 Client-Server vs Peer-to-Peer

Node3

Node2

Figure 4 Client-Server Based Approach for a Chatroom

As can be seen from this example, the server is the single point of failure. If it fails,
all chatter applications get disconnected. On top of that, every connection is
point-to-point, meaning that every chat message is forwarded to each client
individually. If the number of connected clients is doubled, the number of messages
transmitted from the server is doubled as well. (Provided that the newly added
clients do not transmit any chat messages of their own, which would increase the
network load even further and could even quadruple it.)

To provide for a more efficient chatter approach, we will employ the DDS-DCPS.
The idea is to remove the Chatroom server altogether and let the chat applications
(which can now no longer be called clients) directly communicate with each other.
The architecture will then become less centralized and will look more like the
picture presented in Figure 5.

>

DomainParticipant

DomainParticipant

DomainParticipant

Nodel Node2 Node3

K.

Network Domain
Figure 5 DDS-based Approach

12
Vortex OpenSplice C Tutorial

ADLINK

2 A DDS-based Chatroom 2.2 Analysing the Chatroom Example

As can be seen from this picture, all applications are equal; there is no centralized
point of failure. If a node crashes, all Chatters on that node die, but all the others can
keep communicating with each other. What's more, every chat message only has to
be transmitted over the network once (using either multicast or broadcast) to deliver
it to all the other interested Chatters. Scaling up the number of Chatter applications
does not use up any more bandwidth, except of course for the messages sent by
these newly added Chatters.

Analysing the Chatroom Example

ADLINK

In order to focus on the DDS aspect of our Chatroom example, and not on things
such as its graphical representation, we will have to break down the problem into
several autonomous applications. The following separate applications are
distinguished:

* Chatter - This part is responsible for publishing the identity of the user, followed
by all chat messages he or she wishes to transmit. (This application is write only.)

* MessageBoard - This part is responsible for subscribing itself to all chat messages
and for displaying them in the order in which they are received. (This application
is read-only).

* UserLoad - This part is responsible for continuously keeping track of users that
join and leave the Chatroom. (This application is read only).

Each of these functional parts will be modelled as a separate process, each one using
the standard output to print its messages. Although this constitutes a very primitive
User Interface, it completely separates user input from user output thus completely
removing the need for any layout related function calls. This helps us to focus our
applications almost entirely on efficient utilization of the DCPS, which is the main
purpose of this tutorial.

13
Vortex OpenSplice C Tutorial

2 A DDS-based Chatroom 2.2 Analysing the Chatroom Example

14

2 ADLINK
Vortex OpenSplice C Tutorial —

CHAPTER

3 Data Modelling

Vortex OpenSplice distributes its data in structured data types, which are
transported by means of topics. The first step when using Vortex OpenSplice
consists of defining these data types. Since OpenSplice can be used on several
different platforms with several different programming languages, OMG IDL is
used as a language and platform independent modelling language.

This section starts by introducing some basic DDS terminology, which is required to
understand the conceptual differences between topics, data types, samples and
instances. After that, it will explain which subset of IDL you may use to model your
data types, and how to annotate this model with your key field definitions. Finally it
will explain how to use the OpenSplice preprocessor to compile the IDL model into
your language of choice.

3.1 Data Types, Samples and Instances

A
=~ _ADLINK

All data you want to distribute using Vortex OpenSplice has to be defined as a topic.
A topic is an aggregation of a structured data type, a keylist, and a specific Quality
of Service (QoS) annotation. The keylist is specified as part of the data-type, and
identifies the keyfields for that data type. These keyfields can be used to uniquely
identify instances of the data type in question, which is a very common approach in
relational modelling.

A topic is identified by a topic name that is unique in the context of the Domain
where it is used. Note that a topic name and a type name represent two different
things: the type name represents the name of the structured data type, the topic name
represents the aggregation of this data type with a specific QoS annotation. One data
type can be used in several different topic definitions (using different or even the
same QoS annotations).

To clarify the efficient usage of topics and to avoid confusion, some basic DDS
terms will have to be defined in more detail first:

* Data type - A DCPS data type represents the definition of a piece of information
and is normally declared in IDL as a structured datatype. A data type may embed
any number of other data types, but cyclic nesting data types is not possible.
Datatypes that are to be distrubuted using topics must be annotated by a
declaration of the key fields for that data type.

» Sample - A DCPS sample represents an allocated data type: in other words, a set
of attribute values that is to be distrubuted using a topic.

15
Vortex OpenSplice C Tutorial

3 Data Modelling

3.2 Modelling Data Types in IDL

* Keyfield - Some fields of a structured datatype can be annotated as being
keyfields. The combined values of all keyfields in a sample make up the identity
of the item whose state the sample describes.

* Instance - A DCPS instance represents the notion of a specific observable item,
whose state at a certain moment in time can be represented by a sample of a
specific data type. The observable item is uniquely identified by the values of its
key fields: two samples with different key values represent the states of different
instances; two samples with the same key values represent the state of the same
instance (but probably these samples represent the state of the instance at different
moments in time).

Modelling Data Types in IDL

16

A data type represents a structured data type, like an IDL struct with several
members and a keylist. Whenever you want to read or write topics, you will actually
be reading or writing samples of a specific data type. The definition of each data
type you will be using has to be written in (a subset of) OMG IDL. The keylist
cannot be expressed in IDL, so Vortex OpenSplice introduced a special #pragma
statement for that purpose. !

For our chatter application, we will have to define the data types that need to be used
to exchange messages between several chatters. We will need at least one topic to
transmit the chat messages, and these messages must be accompanied by the user ID
of its sender. We can of course use the sender's username as the user ID, but this will
mean that the topic's key field will be represented by a string, which may be
expensive to process. For this reason, and also for some illustrational purposes, we
will decide to make the user ID a 32 bit integer (in other words, an IDL 1ong), and
to introduce a second topic that maps this user ID to the user's name.

When a Chatter application starts, it will make its existence known to the world by
publishing a NameService instance, containing a unique userID value and the
name of the user (which can not be longer than 32 bytes, excluding the '\ 0'
terminator according to the IDL). The userID field will act as a key to find the
corresponding username. After the application has published his userID and
username, it can start sending chat messages into the world. Each chat message is
represented by a ChatMessage instance, containing the userID of its sender
(which acts as its key field), a sequence number expressing the number of chat
messages already transmitted, and the message itself, which is an unbounded
string. Unbounded strings can be of arbitrary length. The resulting topic model is
presented below:

1. The use of customized pragma statements is compliant with the IDL standard.

ADLINK

Vortex OpenSplice C Tutorial

3 Data Modelling

ADLINK

3.2 Modelling Data Types in IDL

1 module Chat {

2 const long MAX NAME = 32;

3 typedef string<MAX NAME> nameType;

4

5 struct ChatMessage {

6 long userID; // owner of message
7 long index; // message number

8 string content; // message body

9 }i

10 #pragma keylist ChatMessage userID

11

12 struct NameService {

13 long userlD; // unique user identification
14 nameType name; // name of the user
15 }i

16 #pragma keylist NameService userID

17 };

In line / a module called Chat is opened, that acts as a scope for all the following
declarations. Line 5 introduces the structured data type called ChatMessage, that
contains all the information that is required to identify a specific chat message. Line
10 defines the keylist for this data type (using the #pragma keylist statement): it
first identifies the data type to which it applies by name, followed by a list of the
names of all attributes that represent its key fields (use spaces in case of multiple
key fields).

Although the definition of ChatMessage is fully OMG IDL compliant, the keylist
definition is specific to OpenSplice and mandatory for all data types that are to be
used as a topic. The OpenSplice preprocessor will not generate appropriate
DataReaders and DataWriters for data types that do not have a corresponding keylist
definition. A keylist definition should always be located in the same module as the
data type it applies to. Apart from that requirement, the exact location of the keylist
statement is irrelevant (it may be located before or after the actual definition of the
data type).

Data Types without a keylist definition can still be used as embedded structures for
data types that do have a keylist definition. Data Types that are to be used as topics
but that do not require any keyfields (so called singleton instances) still require a
keylist definition, but with an empty keylist. In case of the example above, if we did
not require any keys, line /0 could be replaced by the following statement:

#pragma keylist ChatMessage

In the example above, only a very limited subset of IDL is being used. Apart from
the trivial primitives (e.g. structures consisting of (unsigned) short, (unsigned) long,
(unsigned) long long, float, double, boolean, octet and char), OpenSplice is also
capable of handling fixed length arrays, bounded and unbounded sequences,
bounded and unbounded strings, union types and enumerations. Types can be
nested, which means that a struct can contain a struct field or an array of structs, or a

17
Vortex OpenSplice C Tutorial

3 Data Modelling

3.3 Language Specific Representation

sequence of strings or an array of sequences containing structs or... many more
complex examples you can think of. Any definition following the OpenSplice IDL
subset is allowed (refer to the Vortex OpenSplice IDL Preprocessor Guide). 1t is
important to know that the preprocessor used by the DCPS accepts struct definitions
only, not interfaces or value types (occurrences of both types will be ignored by this
preprocessor).

You have to remember, however, that in the case of sequences and strings, you
as a programmer are responsible for claiming and releasing memory resources and
initializing the data type. For example, the string field content of the
ChatMessage can be used only after the programmer has allocated the necessary
memory. For more information on using the generated C structs see the OMG’s C
Language Mapping Specification.

Language Specific Representation

18

Even though the data type is defined using IDL, your application (when written in
C) will be using an equivalent C struct. This is achieved by invoking the Vortex
OpenSplice IDL preprocessor, an application that translates your IDL data type

definition into a matching C definition. The exact translation is defined by the OMG

IDL to C mapping. The ChatMessage definition will result in the following C code:
18 #include <dds_dcps.h>

20 #ifndef Chat ChatMessage defined

21 #define Chat ChatMessage defined

22 #ifdef cplusplus -

23 struct Chat ChatMessage;

24 #else /* _ cplusplus */

25 typedef struct Chat ChatMessage Chat ChatMessage;
26 #endif /* _ cplusplus */ -

27 #endif /* Chat ChatMessage defined */

28 Chat ChatMessage *Chat ChatMessage alloc (void);

30 struct Chat ChatMessage {

31 DDS long userID;

32 DDS_long index;

33 DDS string content;
34 }; B

As can be seen, the preprocessor alters the IDL typename by adding the prefix
Chat_(generated from the IDL module name), to allow for the scoping required by
the IDL module. It also provides a typedef named Chat ChatMessage, which
simplifies the declaration of a chatmessage variable because of its implicit struct
declaration, as can be seen from the following example application:

ADLINK

Vortex OpenSplice C Tutorial

3 Data Modelling

3.4 Invoking the IDL Pre-processor

35 // explicit struct declaration.
36 struct Chat ChatMessage messagel;
37

38 // implicit struct declaration.

39 Chat ChatMessage message2;

For C++, this way of declaring variables is already supported (so the typedef is not
applied when a C++ compiler is being used), but for convenience we added it to the
C API as well. The preprocessor also generates an allocation function, as mandated
by the IDL to C language mapping, which can be used to allocate samples of a data
type on heap. For our current example this allocation function is named
Chat ChatMessage alloc() (see line 28). Additional information is provided
in the Vortex OpenSplice C Reference Guide.

The type of each of the fields in the struct is based on the IDL to C mapping, with
the difference that the CORBA _ prefix of each primitive type is replaced by a DDS_

prefix. (The semantics for each of the types have not been changed with respect to
the language mapping). This deviation represents the fact that we are dealing with a
standalone C API, that has no dependencies on CORBA whatsoever. API's that
cohabitate with CORBA use the pre-processor that comes with the ORB to do the
IDL translation. In that case there will be plenty of CORBA dependencies in the
generated code.

Invoking the IDL Pre-processor

ADLINK

If you want to reproduce the example, create a file named Chat.idl. Insert the IDL
definition given in the previous example into this file. Run the IDL pre-processor
from the command line using;:

% 1dlpp -S -1 c Chat.idl

If it successfully completes, examine the resulting file called chatDcps. h, which
contains the C structs. Do not include this file directly into your application though,
but use the Chat.h file instead. That file is a collection of all relevant information
for your application. For now, ignore all other files that are also generated by the
preprocessor, we will get back on some of those in a later section.

The -s option specifies that the IDL pre-processor should run in StandAlone mode,
meaning that it does not have any dependency on CORBA and so can be used
without any ORB being installed.

The -1 option indicates the target language, which in this case represents C code.
Other supported languages are Java (-1 java) and C++ (-1 cpp). See the IDL
Pre-processor Guide for a summary of all other possible options.

19
Vortex OpenSplice C Tutorial

3 Data Modelling 3.4 Invoking the IDL Pre-processor

20

2 ADLINK
Vortex OpenSplice C Tutorial —

CHAPTER

4 Managing Domains and Topics

In this section you will write your first Vortex OpenSplice application. Before you
are ready to start writing the first lines of code, we need to explain a little about
some basic DDS building blocks and the way data is handled in Vortex OpenSplice.
The first example of an OpenSplice application is small and is just a declaration of
the Domain to use, the topics to use inside it and the QoS settings that need to be
applied to both.

The first section will introduce the generic API building blocks and explain their
purpose. The second section will introduce you to the concept of QoS policies and
will show the policies which are most relevant to our Chatter application. The third
section will show you how to connect your application to a specific DDS Domain.
The fourth section will demonstrate the steps that are necessary to introduce the
required topics into that Domain.

4.1 Entities, Policies, Listeners and Conditions

A
=~ _ADLINK

The DDS can be seen as a large toolbox full of different building blocks. To
understand the granularity of these DDS building blocks and the way in which they
interact, we will first explain some higher level DDS concepts in more detail:

 Entity - An Entity is a basic DCPS building block. It represents either a producer

of information (Publisher or DataWriter), a consumer of information (Subscriber
or DataReader), a connection to information (DomainParticipant) or the
information that is being communicated (Topic). The behaviour of each Entity can
be influenced by means of QoS Policies that must be associated to it at creation
time. To keep track of the communication status of an Entity, a StatusCondition
object can be obtained from it, or a Listener object can be attached to it. An Entity
can only be created or deleted using its corresponding factory. Some Entities may
act as a factory for other Entities.

QoS Policy - QoS Policies provide a generic mechanism for the application to
control the behaviour of an Entity: each policy controls one aspect of the Entity
and is represented by a structured type containing attributes for all relevant
parameters. Entities have a varying set of supported policies: some of them are
applicable to only one Entity, some others to more. To make sure neither more nor
less than the supported policies are attached to each specific Entity, each Entity
provides a specialized QoS structure that aggregates all applicable policies.

21
Vortex OpenSplice C Tutorial

4 Managing Domains and Topics 4.1 Entities, Policies, Listeners and Conditions

22

 StatusCondition - A StatusCondition object provides a generic mechanism for the
application to be informed about relevant status changes in Entities, such as the
availability of data corresponding to a subscription, conflicting QosPolicy settings
between related Entities, contracts that are being violated, etc. Each of these
individual statuses can be either TRUE or FALSE, and may change independently
from all the others. The application can make a selection of the statuses it is
interested in by setting a bit mask in the StatusCondition object, and when one or
more of the selected statuses is TRUE, the overall status flag in the
StatusCondition object itself becomes TRUE as well. This flag remains TRUE,
until each and every of the selected statuses has been reset to FALSE again.
Resetting these individual statuses can be done by invoking their corresponding
status accessor method in the related Entity object. To find out which individual
statuses are responsible for raising the StatusCondition flag, the Entity object
offers a helpful operation that returns a mask that specifies the statuses that are
currently set to TRUE.

* WaitSet - An application can use a WaitSet to block the current thread until one or
more of the (Status) Conditions attached to that WaitSet will have a trigger value
of TRUE, or until a specified timeout expires.

 Listener - A Listener provides a generic mechanism for the middleware to notify
the application of changes in StatusConditions. Each Entity supports its own
specialized kind of Listener interfaces, which offer specialized callback methods
for every individual status change. The application can make a selection of the
status changes it is interested in by setting a bit mask that can be supplied at
creation time, or in the set 1listener operation.

Although DDS Listeners and DDS_WaitSets both allow the middleware to
notify the application of the occurrence of certain events (so that it does not need to
poll for this) there are two differences in their intended usage:

1. Listeners are event based and trigger only when a selected status flag changes
from FALSE to TRUE. WaitSets are state based and will trigger as long as a
selected status flag remains TRUE.

2. Listeners offer callback methods that are invoked by a middleware thread. This
means that using Listeners always result in multi-threaded applications.
WaitSets can be used to block the current application thread temporarily, and do
not necessarily require your application to be multi-threaded.

If an application chooses to use both Listeners and WaitSets to be notified of status
conditions in the same DDS_Entities, then OpenSplice will first trigger the
DDS_Listeners, and after that (if the DDS StatusConditions have not yet
been reset by the listener operations) it will trigger the DDS WaitSets.

ADLINK

Vortex OpenSplice C Tutorial

4 Managing Domains and Topics 4.2 QoS Policies

QoS Policies

ADLINK

The way Vortex OpenSplice communicates and stores samples, either in main
memory or on disk, is defined by the key fields of their corresponding data type and
the Quality of Service (QoS) Policies of their corresponding topic. Every topic must
be created before it can be distributed by specifying its data type and associating a
QoS Policy.

The QoS Policies that need to be associated with a specific topic describe several
aspects of data management for that specific topic. In this tutorial we will not
discuss each individual policy, but simply focus on the two most important ones,
that define to a large extent the delivery characteristics of each participating Entity.

The Topic related QoS Policies that will be discussed in this tutorial are:

* DURABILITY - Vortex OpenSplice supports four types of durability.
DURABILITY defines the lifespan of the data, categorized into VOLATILE,
TRANSIENT LOCAL, TRANSIENT and PERSISTENT data. OpenSplice
realizes no backup storage for volatile data. When volatile data is delivered, no
guarantee is given that this data can be obtained again. Transient data is recorded
by OpenSplice for late joining readers, but only during the up time of the
OpenSplice infrastructure. As long as the OpenSplice infrastructure is
up-and-running, a copy of all transient data is preserved. Persistent data outlives
the lifetime of the OpenSplice infrastructure because it is saved on a number of
redundant disks (depending on your configuration). Therefore a copy of persistent
data is always available, even when the OpenSplice infrastructure is restarted.
Typically, your system configuration data will be persistent. It is not wise to mark
frequently updated information as PERSISTENT, since the benefits will probably
not outweigh the overhead.

* RELIABILITY - Two types of RELIABILITY can be used in OpenSplice, which
are BEST EFFORT and RELIABLE delivery. Data that is annotated for a reliable
delivery is guaranteed to arrive ultimately because of automatic re-transmission of
lost samples. Data that is marked for a best effort delivery gives no more
guarantees than the network does: it remains unnoticed when the data gets lost on
its way. Choosing not to re-transmit lost samples may be useful when data loses
its accuracy quickly; second tries may unnecessarily use the infrastructure when
more recent updates have already been sent.

23
Vortex OpenSplice C Tutorial

4 Managing Domains and Topics 4.3 Connecting to a Domain

All QoS policies have pre-defined (factory) settings. For the policies presented
above, the default settings are depicted in Table 2.Refer to the C Reference Guide

for all other policies and default settings.
Table 2 Default QosPolicy Settings

QoS Policy Attribute Value
DURABILITY kind DDS VOLATILE DURABILITY QOS
RELTABILITY kind DDS BEST EFFORT RELIABILITY QOS
max blocking time |100 ms.

Connecting to a Domain

With the following steps you will be guided to write a small OpenSplice application.
The goal of this application is to publish messages, but you start with opening a
connection to an OpenSplice Domain and will later add the creation of the required

topics.

1 /* CreateTopics.c */

2

3 #include "dds_dcps.h"

4 #include "Chat.h"

5

6 int

7 main (

8 int argc,

9 char *argvl[])

10 {

11

12 DDS DomainParticipantFactory dpf;

13 DDS DomainParticipant dp;

14 DDS DomainId t domain = DDS DOMAIN ID DEFAULT;
15 DDS_ReturnCode t status; N -

16

17 /* Create a DomainParticipantFactory and a DomainParticipant */
18 /* (using Default QoS settings). */
19

20 dpf = DDS DomainParticipantFactory get instance();

21 if (!dpf) { -

22 printf ("Creating ParticipantFactory failed!!\n");

23 exit (-1);

24 }

25 dp = DDS DomainParticipantFactory create participant (

26 dpf,

27 domain,

28 DDS PARTICIPANT QOS DEFAULT,

29 NULL, -

30 DDS STATUS MASK NONE) ;

31 if (!dp) { -

32 printf ("Creating Participant failed!!\n");

33 exit (-1);

34 }

35

36 /* Deleting the DomainParticipant */

37 status = DDS DomainParticipantFactory delete participant (

24
Vortex OpenSplice C Tutorial

A
=/ ADLINK

4 Managing Domains and Topics 4.3 Connecting to a Domain

ADLINK

38 dpf, dp):;

39 if (status != DDS RETCODE OK) {

40 printf ("Deleting participant failed. Status = %d\n", status);
41 exit (-1);

42 b2

43

44 /* Everything is fine, return normally. */

45 return 0;

46 };

This application is complete, and can be compiled and run. To do so, you need to
add the location of the OpenSplice header files to your compiler's include path and
link the result to the OpenSplice shared libraries. The location of the header files can
be found (relative to the Vortex OpenSplice installation directory) in the
include/dcps/C/SAC subdirectory. The installation directory is specified in the
OSPL_HOME environment variable, which should have been initialized when you
executed the release.com script. The shared library files can be found in the
subdirectory 1ib, and in this case you will need to link your application to the
dcpssac libraryl.

When the application has been successfully compiled and linked, you will need to
start the OpenSplice infrastructure before executing your application. This is
necessary because your application will try to setup a connection to a DDS Domain,
which does not exist if the OpenSplice infrastructure is not up and running. The
infrastructure can be started by issuing the following command:

[)

% ospl start

This command will launch all services specified in the configuration file that is
identified by the 0SPL_URI environment variable. The default configuration file
that comes with OpenSplice is good enough for the examples in this tutorial.

To see whether the OpenSplice infrastructure is already up and running, issue the
ospl list command, it will give you an overview of all instances of OpenSplice
that are running on your node. To stop a specific instance of OpenSplice, issue the
ospl stop command. It will detach all applications, stop the services and release
all memory on your node.

Now start your newly-created application. If it is correct, you will not get any error
messages, but you will not notice anything else happening as well. Let's have a look
at what happens at each code line that was presented above.

In line 3, the file dds_dcps.h is included. This file contains all generic API calls of
OpenSplice that are available. When dealing with reading or writing specific data
types, typed reader/writer calls are also required to handle these data types. These

1. Ona UNIX like platform this file is named libdcpssac.so, on the Windows platform it is
named depssac.dll.

25
Vortex OpenSplice C Tutorial

4 Managing Domains and Topics 4.3 Connecting to a Domain

26

S,

typed interfaces must be generated by the OpenSplice pre-processor, and the
resulting output file must be included as well. This is already done in line 4,
although no typed interfaces are yet presented in this stage.l

In line 20 the DDS_DomainParticipantFactory instance is obtained. The
DDS DomainParticipantFactory is a singleton, meaning that there can only be
one participant factory in each process. Obtaining the factory for the first time with
the DomainParticipantFactory get instance () call implicitly instantiates
it. Making this call at a later moment in time returns the already existing participant
factory.

Note that the DomainParticipantFactory get instance () function is not
re-entrant, so it may only be called by one thread at a time. (See also Section 8.8,
Cleaning Up, on page 96.)

In lines 2/-24 it is checked whether the factory handle obtained above is actually a
valid handle (i.e. does not represent a NULL pointer). ALWAYS CHECK THE
VALIDITY OF HANDLES RETURNED BY FUNCTION CALLS! Not doing so
may result in failing function calls later on in your application, which are not easy to
trace back to their root cause.

In lines 25-30 DDS_DomainParticipantFactory create participant () is
invoked to create a DDS_DomainParticipant, which represents our connection to
a specific DDS Domain. The first parameter for this operation (as for any DDS
operation) represents the entity that actually needs to execute the function call,
which in this case is our participant factory. The second parameter is the domain 1D
(which is an integer); this integer must match the domain Id of one of the domains
currently running on this node. In most cases the global
DDS DOMAIN ID DEFAULT can be used here. This tells DDS to read the
environment variable 0SPL_URI for a domain configuration file then join the
Domain with the Id found in it. (Please see also the Vortex OpenSplice Deployment
Guide, Section 1.3.2.1, The OSPL_URI environment variable.)

The third parameter specifies the QoS settings that will be used for the
DDS_ DomainParticipant. Since we are satisfied with the pre-defined (factory)
settings for the participant QoS, we indicate that we want to copy these factory
settings (as is) to our DDS DomainParticipant by using a so called convenience
macro. The DDS provides for each DDS_Entity a corresponding convenience
macro that represents the default QoS for that DDS_Entityz. The name of that
macro always consists of the prefix DDS_ followed by the name of the DDS Entity
(in the case of a DDS DomainParticipant this name is shortened to

1. In fact, the IDL preprocessor creates more files than just this one, but the file presented
here is the one that includes all the other files that are relevant for the application.
2. There are convenience macros for other purposes as well.

A
=/ ADLINK

Vortex OpenSplice C Tutorial

4 Managing Domains and Topics 4.3 Connecting to a Domain

PARTICIPANT), followed by the postfix 00S DEFAULT. This macro can be used at
any location where a QoS for the corresponding Entity needs to be supplied by the
application.

The last two parameters specify a DDS DomainParticipantListener object
that can be attached to the DDS DomainParticipant and a bit mask identifying
the status events on which it should trigger. In this example we are not interested in
handling any status changes on the DDS DomainParticipant, so we choose not
to attach a listener object here. We do that by providing a NULL pointer for this
parameterl. The bit mask specifies which status events should be handled by the
supplied DDS DomainParticipantListener object: each status is represented
by a special constant that represents its bit position in the bit mask. See Table 3 for
an overview of the names and meaning of all these status events and the
DDS_Entities to which they are applicable.

For all classes that inherit from DDS Entity all events not handled by their
attached listener objects will be propagated to the listener objects attached to their
factories. Since we are not interested in propagating our events anywhere (we just
want to ignore them) we select a bit mask that handles all appropriate events by our
NULL listener?. The special constant STATUS MASK ANY V1 2 can be used to
select all statuses specified in the “Data Distribution Service for Real-time Systems
Version 1.2” specification. (This supersedes DDS ANY STATUS, which has been
deprecated in Vortex OpenSplice version 5.X.)

Table 3 Status Events Overview

DDS_Entity Status Name Meaning
DDS_Topic DDS_INCONSISTENT TOPIC STATUS Another DDS_Topic exists with the same
name but with different characteristics.
DDS_Subscriber |DDS DATA ON READERS STATUS New information is available.

A
= ADLINK

1. A NULL listener behaves like a listener that handles all events it receives as a no-op.

2. ADDS DomainParticipant has no factory to which it can propagate its events, so
technically speaking it doesn’t matter what bit-mask you select in this case. For all other
DDS Entities however it is an important consideration to make.

27
Vortex OpenSplice C Tutorial

4 Managing Domains and Topics

4.3 Connecting to a Domain

Table 3 Status Events Overview (Continued)

DDS_Entity

Status Name

Meaning

DDS DataReader

DDS_SAMPLE REJECTED STATUS

A (received) sample has been rejected.

DDS LIVELINESS CHANGED STATUS

The liveliness of one or more
DDS_DataWriter objects that were
writing instances read through the
DDS_ DataReader has changed. Some
DDS_ DataWriter have become “active”
or “inactive”.

DDS_REQUESTED_DEADLINE_
MISSED STATUS

The deadline that the DDS_DataReader
was expecting through its
DDS DeadlineQosPolicy was not
respected for a specific instance.

DDS_REQUESTED
INCOMPATIBLE QOS STATUS

A QosPolicy setting was incompatible
with what is offered.

DDS DATA AVAILABLE STATUS

New information is available.

DDS SAMPLE LOST STATUS

A sample has been lost (never received).

DDS SUBSCRIPTION MATCHED STATUS

The DDS DataReader has found a
DDS DataWriter that matches the
DDS Topic and has compatible QoS.

DDS DataWriter

DDS LIVELINESS LOST STATUS

The liveliness that the

DDS DataWriter has committed
through its

DDS LivelinessQosPolicy wasnot
respected; thus DDS DataReader
objects will consider the

DDS_ DataWriter as no longer
“active”.

DDS_OFFERED DEADLINE
MISSED STATUS

The deadline that the

DDS DataWriter has committed
through its

DDS DeadlineQosPolicy was not
respected for a specific instance.

DDS_OFFERED INCOMPATIBLE
QO0S_STATUS

A QosPolicy setting was
incompatible with what was requested.

DDS PUBLICATION MATCHED STATUS

The DDS DataWriter has found
DDS_DataReader that matches the
DDS Topic and has compatible Qos.

28

Vortex OpenSplice C Tutorial

A
A _ADLINK

4 Managing Domains and Topics 4.3 Connecting to a Domain

Table 3 Status Events Overview (Continued)

DDS_Entity Status Name Meaning
AllDDS Entity |DDS_STATUS_MASK_ANY V1 2 All status events applicable to the
objects. DDS_Entity in question.

A
= ADLINK

When the DDS DomainParticipantFactory create participant
operation completed successfully, it returns the handle to the created
DDS DomainParticipant. Again, check whether the resulting handle is valid
before using it in other operations.

After the DDS DomainParticipant has been created, the application is ready to
use the OpenSplice infrastructure. The application could now create topics,
publishers and subscribers, but we will do that in a later stage. For now, we will
release the resources used by OpenSplice by deleting the participant again. We do
this in the DDS DomainParticipantFactory by invoking the
DDS DomainParticipantFactory delete participant () call. This
operation deletes all resources used by this participant and returns a status code of
type DDS_ReturnCode_t. Since we didn't do anything with our participant yet, the
status code should indicate a successful result, represented by DDS RETCODE_OK.
However, never assume everything will go according to plan: always check your
assumptions! In line 39 we check whether the result is what we expect. In a later
stage, when our application has expanded a little bit, the result could indicate that
we are not yet allowed to delete this participant. The possible return statuses of type
DDS_ ReturnCode t are depicted in Table 4, together with their value and their
meaning.

This concludes our first example. When you monitor all OpenSplice activity with
the Vortex OpenSplice Tuner, nothing seems to have happened. This is because the
participant was created and deleted so fast, that Vortex OpenSplice Tuner did not
have the time to depict it. If you run the application in a debugger, and stop the
execution before the DomainParticipantFactory delete participant ()
operation, then you will see that the Vortex OpenSplice Tuner actually detects the
DomainParticipant and shows it in its participant list. You can even check its QoS
settings to see if they match the defaults that you specified. In a later example we
will show you how you can provide your own QoS settings.

29
Vortex OpenSplice C Tutorial

4 Managing Domains and Topics 4.4 Registering Data Types and Creating Topics

Table 4 Return Code Definitions

Return Code Value Meaning

DDS_RETCODE OK 0 Successful return.

DDS_RETCODE ERROR 1 Generic, unspecified error.

DDS_RETCODE_UNSUPPORTED 2 Unsupported operation. Can only be returned
by operations that are optional.

DDS RETCODE BAD PARAMETER 3 Illegal parameter value.

DDS_RETCODE PRECONDITION NOT MET 4 A precondition for the operation was not
met.

DDS_RETCODE OUT OF RESOURCES 5 Service ran out of the resources needed to
complete the operation.

DDS_RETCODE_NOT_ENABLED 6 Operation invoked on an Entity that is not
yet enabled.

DDS_RETCODE IMMUTABLE POLICY 7 Application attempted to modify an
immutable QosPolicy.

DDS_RETCODE_INCONSISTENT POLICY 8 Application specified a set of policies that
are not consistent with each other.

DDS_RETCODE_ALREADY_ DELETED 9 The object target of this operation has
already been deleted.

DDS_RETCODE TIMEOUT 10 The operation timed out.

DDS_RETCODE_NO DATA 11 Indicates a transient situation where the

operation did not return any data but there is
no inherent error.

DDS_RETCODE_ILLEGAL OPERATION 12 An operation was invoked on an
inappropriate object or at an inappropriate
time (as determined by policies set by the
specification or the Service implementation).
There is no precondition that could be
changed to make the operation succeed.

4.4 Registering Data Types and Creating Topics

We can now start using the DDS_DomainParticipant created in the previous
example to actually create a DDS_Topic. Reiterating from the previous sections, a
topic was an aggregation between a data type (including its key list) and a
QosPolicy setting. So before being able to create a topic, first the corresponding data
type will need to be registered in the middleware. To register a data type, we require

30 A ADLINK
Vortex OpenSplice C Tutorial

4 Managing Domains and Topics 4.4 Registering Data Types and Creating Topics

ADLINK

a some source code that announces the type specific meta data to OpenSplice. This
code is embedded in a so called DDS TypeSupport class, which is generated by
the Vortex OpenSplice Preprocessor.

The OpenSplice preprocessor generates a number of files out of each IDL input file.
We already introduced two of these files:

* The file Chat.h is the overall include file. It includes all other files relevant for
the application. Its name is based on the name of the corresponding IDL file,
where the . id1 extension is replaced by the . h extension.

* The file ChatDcps . h contains the C representations of the data structures defined
in your IDL file. Its name is based on the base name of the corresponding IDL file,
but it is appended by the postfix Dcps. h.

We will now explain a third file generated by the pre-processor, called
ChatSacDcps . h. This file name is also based on the basename of the IDL file, but
it is appended by the postfix SacDcps.h (Sac stands for Standalone C API, which
is the Vortex OpenSplice API that you are now using). It contains the specialized
API interface definitions for the DDS TypeSupport, DDS DataReader and
DDS DataWriter classes parameterized for all data types mentioned in the IDL
file!. Itis a very big file, so we will not show it here entirely. Instead, we will focus
on the parts that define the DDS TypeSupport interface for our ChatMessage
data type.

47 #include "ChatDcps.h"

49 #define Chat ChatMessageTypeSupport DDS TypeSupport

51 Chat ChatMessageTypeSupport

52 Chat ChatMessageTypeSupport alloc (

53 void

54)

56 DDS ReturnCode t
57 Chat ChatMessageTypeSupport register type (

58 Chat ChatMessageTypeSupport this,
59 DDS DomainParticipant domain,

60 DDS string name

61);

In line 47 we see that this file includes the C representations of the data types, which
is necessary because the corresponding DataReaders and DataWriters will be
accessing this data. Line 49 introduces the definition of our specialized
Chat ChatMessageTypeSupport class. Its name is based on the name of our

1. The corresponding ChatSacDcps.c file contains the implementation code for these
interfaces.

31
Vortex OpenSplice C Tutorial

4 Managing Domains and Topics 4.4 Registering Data Types and Creating Topics

32

data type (prepended by the module name in which it is located), and it is followed
by the TypeSupport postfix. As can be seen from this declaration, the specialized
TypeSupport handle is just an alias for the handle of its parent class.

Lines 57-54 present an allocation function that is needed to actually instantiate a
TypeSupport object on heap. Its name is based on the specialized TypeSupport class,
followed by the alloc () postfix. Every DDS object allocated by an alloc ()
operation must be released by using the DDS_free () operation, which is included
from the dds_dcps.h file. Never try to de-allocate a DDS object any other way,
since it will almost definitely corrupt your memory and crash your application.

Lines 56-61 finally present the operation required to register the data type in a
DDS_ DomainParticipant. This operation can only be performed on an allocated
TypeSupport: forgetting to allocate the TypeSupport will probably result in a
DDS RETCODE BAD PARAMETER. A TypeSupport object may be registered in
different DDS DomainParticipants, but has no more purpose after the
registering is completed, so it may be released afterwards. There is no way to
un-register a data type, so after the DDS_TypeSupport has been released its
registered data types can still be used in the DDS DomainParticipant.

The Chat ChatMessageTypeSupport register type method requires three
parameters:

* the pointer to the allocated Chat ChatMessageTypeSupport object
+ the handle to the DDS DomainParticipant in which it is to be registered

* the name by which this data type can be identified within the specified
DDS DomainParticipant

This name parameter is a little bit tricky, since it identifies the data type only in the
scope of the specified DDS_DomainParticipant. Other participants could choose
to register the same data type using a different name. This makes setting up
communications between different DomainParticipants a hazardous task: what if
two DomainParticipants have registered the same data type using different names?

To avoid such configuration problems, we advise you to always register a data type
using its IDL type name. The DDS_TypeSupport offers helpful features for this:

* If you pass a NULL value to the name, the DDS TypeSupport will register the
data type using its IDL type name, including its scope, in other words. the names
of the modules that the IDL data type is embedded in, separated by the IDL
scoping operator, ::. In this example the resulting name will be:
Chat::ChatMessage.

* Alternatively, you can obtain the fully qualified IDL type name directly from a
DDS_TypeSupport itself using the Chat ChatMessageTypeSupport
get type name () operation in this example. The resulting name can then be
used for both the registration of the type and the creation of the topic.

A
=/ ADLINK

Vortex OpenSplice C Tutorial

4 Managing Domains and Topics 4.4 Registering Data Types and Creating Topics

A
= ADLINK

Using these tricks ensures you will always be using the same type name for a given
data type in every DDS_DomainParticipant. We strongly advise you to always
register the data types this way: only use different names when you have very
compelling reasons to do so.

The data types registered this way can be used to create topics: the basic DDS
communication entities. Creating a DDS Topic is very similar to creating a
DDS DomainParticipant (remember that there are lots of similarities since both
interfaces are specialiations of the DDS_Entity interface):

* A DDS Entity can only be created and deleted by using its factory. The
DDS_DomainParticipant acts as a factory for DDS_Topics.

* At creation time, a DDS Entity needs to be associated with a set of QoS
Policies.

* At creation time, a DDS_Listener can be attached to the entity, accompanied by
a bit mask that indicates which status events need to be handled by the provided
listener.

Below, we have expanded the example presented in Section 4.3, Connecting to a
Domain, with the code that actually creates the ChatMessage topic:
62 /* CreateTopics.c */

64 #include "dds dcps.h"
65 #include "Chat.h"

66

67 int

68 main (

69 int argc,

70 char *argv([])

71 {

72

73 DDS DomainParticipantFactory dpf;

74 DDS DomainParticipant dp;

75 DDS DomainId t domain = DDS DOMAIN ID DEFAULT;
76 DDS_ReturnCode t status; B o

77 Chat ChatMessageTypeSupport chatMessageTS;

78 DDS_Topic chatMessageTopic;

79 char *chatMessageTypeName;

80

81 /* Create a DomainParticipantFactory and a DomainParticipant */
82 /* (using Default QoS settings) . */
83

84 dpf = DDS DomainParticipantFactory get instance();
85 if (!dpf) {

86 printf ("Creating ParticipantFactory failed!!\n");
87 exit (=1);

88 b

89 dp = DDS DomainParticipantFactory create participant (
90 dpf, B B

91 domain,

92 DDS PARTICIPANT QOS DEFAULT,

93 NULL,

94 DDS_STATUS MASK NONE) ;

33
Vortex OpenSplice C Tutorial

4 Managing Domains and Topics 4.4 Registering Data Types and Creating Topics

95 if (!dp) |

96 printf ("Creating Participant failed!!\n);
97 exit (-1);

98 bi

99

100 /* Register the required data type for ChatMessage. */
101 chatMessageTS = Chat ChatMessageTypeSupport alloc();
102 if (!chatMessageTS) {

103 printf ("Allocating TypeSupport failed!!\n");

104 exit (-1);

105 ¥

106 chatMessageTypeName =

107 Chat ChatMessageTypeSupport get type name (chatMessageTS) ;
108 status = Chat ChatMessageTypeSupport register type (
109 chatMessageTS, dp, chatMessageTypeName) ;

110 if (status != DDS RETCODE OK) {

111 printf (B -

112 "Registering data type failed. Status = %d\n", status);
113 exit (-1);

114 2

115

116 /*Create the ChatMessage topic */

117 chatMessageTopic = DDS DomainParticipant create topic(
118 dp, - - -

119 "Chat ChatMessage",

120 chatMessageTypeName,

121 DDS TOPIC QOS DEFAULT,

122 NULL, -

123 DDS STATUS MASK NONE) ;

124 if (!chatMessageTopic) {

125 printf ("Creating ChatMessage topic failed!!\n");

126 exit (-1);

127 I 2

128

129 /* Deleting the Topic. */
130 status = DDS DomainParticipant delete topic(

131 dp, chatMessageTopic) ;

132 if (status != DDS RETCODE OK) {

133 printf ("Deleting topic failed. Status = %d\n", status);
134 exit (-1);

135 };

136

137 /* Deleting the DomainParticipant */
138 status = DDS DomainParticipantFactory delete participant (

139 dpf, dp):;

140 if (status != DDS RETCODE OK) {

141 printf ("Deleting participant failed. Status = %d\n", status);
142 exit (-1);

143 Y

144

145 /* Everything is fine, return normally. */
146 return 0;
147 };

As can be seen from this code example in lines [0/-114, a
Chat ChatMessageTypeSupport is allocated and its data type is registered in
our DDS DomainParticipant using its default name. Again, the result of every
operation is checked against our assumptions.

34

2 ADLINK
Vortex OpenSplice C Tutorial —

4 Managing Domains and Topics 4.5 Topics as Global Concepts

In lines [117-127, we create our first topic wusing the
DDS DomainParticipant create topic () operation. As always, the first
parameter is the handle to the object that actually needs to perform the operation
(our DDS DomainParticipant). The second parameter provides the name that
will be used to identify the topic. This is also the name that we will see when we
display our topic list in the Vortex OpenSplice Tuner. The third parameter is the
name of the data type that we wish to associate with our topic. In our case, this is the
default name provided by our Chat ChatMessageTypeSupport class. The
fourth, fifth and sixth parameters are the set of QoS Policies we wish to associate
with the topic, the DDS_TopicListener we wish to attach to it and the bit mask
which applies to that listener respectively. In this case we again used a convenience
macro to select the default set of QoS Policies for this topic, and we also specified
that we do not want to attach a Listener.

In this example, we don't use our topic for any purpose yet: we delete it just before
we delete our DDS_DomainParticipant. This is necessary, since in the DDS it is
not possible to delete any type of factory that still contains elements that are created
by it. In our case, the DDS DomainParticipant acted as a factory for our
DDS Topic, and can therefore not be deleted while our topic object still exists.
Trying to delete the participant in this stage will definitely result in a
DDS_RETCODE PRECONDITION NOT MET being returned.

That is why we need to delete the topic first. This is done in line /30, by means of
the DDS DomainParticipant delete topic () operation, whose parameter
signature is very obvious and needs no further explanation. After the topic has been
deleted, the DDS DomainParticipant can be deleted without any problems as
well. That ends our little application for now.

Topics as Global Concepts

ADLINK

When we look in the Vortex OpenSplice Tuner at the results of the application
presented in the previous section, we will see that although our DomainParticipant
has disappeared, our topic is still available in the list of topics. This is not a bug! To
understand what is happening here, we need to elaborate a little bit more on the
global concept of a topic. A topic represents the smallest undividable part of an
information model that can be communicated within a domain. In order for the
communication to be successful, all parties within the domain must agree upon how
the information is distributed and what it represents. That means that the topic
definition is not just something local: all participants in our domain must agree upon
it.

That means that if [create a topic in my DomainParticipant, this topic will
automatically be forwarded to all other participants in my domain. They will then
compare it to the topic definitions they already know. If my topic definition matches
with already existing definitions or does not yet exist, my topic definition is

35
Vortex OpenSplice C Tutorial

4 Managing Domains and Topics 4.6 Tailoring QosPolicy Settings

36

accepted and my call returns successfully. If my definition conflicts with an already
existing topic definition, my creation will fail and my call will return a NULL
pointer.

So the DDs_Topic I create is not just a local object; it represents a global concept of
a part of an information model, agreed upon by all parties within my domain. The
Topic object I create is just a 'proxy’ that represents this global concept. Deleting my
local DDS_Topic object will not destroy it globally: it will merely destroy my local
proxy that represents it. This seems natural: one party joining a system that already
agreed upon its topic model, cannot by itself decide to destroy this global topic
model when it decides to leave the system. It can only decide for itself that it is no
longer interested in the existence of certain topics, without interfering with the parts
of the system that still do want to know about them.

This is why a topic as a global concept cannot be deleted: you never know which
parts of the system may still have a need for it. When you really want to completely
remove a topic definition from a running system, you will need to bring down all
applications joining in your domain, stop their daemons and restart everything. This
is why you should be careful when introducing new topics into a running system:
you cannot easily undo any mistakes you make. Creating new topics is therefore not
something that everybody should be allowed to do: a system architect should be
made responsible for defining an overall information model that all participants
need to agree uponl.

Tailoring QosPolicy Settings

In the previous examples we defined a complete information model for our
Chatroom application in IDL, but we only created topics using default QoS settings.
In this section we will elaborate on the requirements for our Chatter application,
and decide which QosPolicy settings are best suitable for our application.

Since we do not want to lose any chat message or username, both topics will have to
be transmitted reliably. A late joining chatter application is probably not interested
in receiving the chat messages that were transmitted before he decided to join in, but
it will definitely want to be able to figure out which userID represents which
username once it starts to receive chat messages. That means that the ChatMessage
topic can be transmitted with volatile durability, but the NameService topic will
require either transient or persistent storage. Since chatter application will always
publish its username before writing its chat messages, the storage of these names
will not need to be persistent, and a transient store will be sufficient.

1. An individual application is however allowed to create its own local view of existing
topics by using a MultiTopic. This can only be used for reading information, not for
writing it.

ADLINK

Vortex OpenSplice C Tutorial

4 Managing Domains and Topics 4.6 Tailoring QosPolicy Settings

ADLINK

For a late joining application this means that once it subscribes itself to the
NameService topic, it will receive from the transient store the usernames and
userID's of all other Chatters that have already connected to the same Domain
before. In contrast, it will only receive those chat messages that have been
transmitted after its own subscription to the ChatMessage topic.

To make our Chatroom application work this way, we need to deviate from the
default QoS settings. These default QoS Policies have been chosen in such a way
that they form an internally consistent set that is most suitable to 'first time users'
and that gives a good 'out of the box' experience. When dedicated requirements call
for alternative QoS settings on your Entities, you can tailor these settings in the
following ways:

1. You can create Entities using a QoS in which each policy is set explicitly.

2. You can obtain the default QoS, modify some of its policies to match your own
preference, and use the result to create your Entities.

3. You can permanently make changes to the default QoS of each factory.

All these approaches have their benefits in certain conditions. You can explicitly set
each policy when you need very dedicated settings that do totally not comply with
the factory defaults. However, if you reuse the same settings in most of your
Entities, it makes sense to use the default settings from your factories, even when
you need to modify these factory defaults first. When you are satisfied with the
default policies, but need little deviations from them every now and then, it makes
sense to obtain the default QoS, modify some of the policies to fit a specific Entity,
and create that Entity with it.

The following code again expands our example application, but this time we will
create both topics using different QoS settings. The explicit checks on the validity of
return statuses and handles have all been replaced with specialized functions, which
are included from the Checkstatus.h file, and implemented in the
CheckStatus.c file. The code listings for both files can be found under
CheckStatus.h and CheckStatus.c in Appendix A, C Language Examples’ Code:

148 /* CreateTopics.c */

149

150 #include "dds_dcps.h"
151 4#include "Chat.h"

152 4#include "CheckStatus.h"

153

154 int

155 main (

156 int argc,

157 char *argvl[])

158 {

159 DDS DomainParticipantFactory dpf;

160 DDS DomainParticipant dp;

161 DDS DomainId t domain = DDS DOMAIN ID DEFAULT;
162 DDS ReturnCode t status;

37
Vortex OpenSplice C Tutorial

4 Managing Domains and Topics 4.6 Tailoring QosPolicy Settings

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

38
Vortex OpenSplice C Tutorial

Chat ChatMessageTypeSupport chatMessageTS;

Chat NameServiceTypeSupport nameServiceTS;

char *chatMessageTypeName;
char *nameServiceTypeName;
DDS TopicQos *reliable topic gos;
DDS TopicQos *setting topic gos;
DDS Topic chatMessageTopic;

DDS Topic nameServiceTopic;

/* Create DomainParticipantFactory and a DomainParticipant */
/* (using Default QoS settings) . */

dpf = DDS DomainParticipantFactory get instance();
checkHandle (dpf, "DDS DomainParticipantFactory get instance");
dp = DDS DomainParticipantFactory create participant (

dpf,

domain,

DDS PARTICIPANT QOS DEFAULT,

NULL,

DDS_STATUS MASK NONE) ;
checkHandle (

dp, "DDS DomainParticipantFactory create participant");

/* Register the required data type for ChatMessage. */
chatMessageTS = Chat ChatMessageTypeSupport alloc();
checkHandle (

chatMessageTS, "Chat ChatMessageTypeSupport alloc");
chatMessageTypeName =

Chat ChatMessageTypeSupport get type name (chatMessageTS) ;
status = Chat ChatMessageTypeSupport register type (

chatMessageTS, dp, chatMessageTypeName) ;
checkStatus (

status, "Chat ChatMessageTypeSupport register type");

/* Register the required data type for NameService. */
nameServiceTS = Chat NameServiceTypeSupport alloc();
checkHandle (

nameServiceTS, "Chat NameServiceTypeSupport alloc");
nameServiceTypeName =

Chat NameServiceTypeSupport get type name (nameServiceTS) ;

Chat NameServiceTypeSupport register type (

nameServiceTS, dp, nameServiceTypeName) ;
checkStatus (

status, "Chat NameServiceTypeSupport register type");

/* Change the default TopicQos to Reliable reliability. */
reliable topic gos = DDS TopicQos alloc();
checkHandle (reliable topic gos, "DDS TopicQos alloc");
status = DDS DomainParticipant get default topic gos(

dp, reliable topic gos);
checkStatus (

status, "DDS DomainParticipant get default topic gos");
reliable topic gos->reliability.kind =

DDS RELIABLE RELIABILITY QOS;

/* Make the tailored QoS the new default. */
status = DDS DomainParticipant set default topic gos(
dp, reliable topic gos);
checkStatus (
status, "DDS DomainParticipant set default topic gos");

A
A _ADLINK

4 Managing Domains and Topics

A
A_ADLINK

4.6 Tailoring QosPolicy Settings

224 /*Create the ChatMessage topic */
225 chatMessageTopic = DDS DomainParticipant create topic/(
226 dp,
227 "Chat ChatMessage",
228 chatMessageTypeName,
229 DDS TOPIC QOS DEFAULT,
230 NULL, -
231 DDS_STATUS_ MASK NONE) ;
232 checkHandle (
233 chatMessageTopic,
234 "DDS DomainParticipant create topic (ChatMessage)");
235
236 /* Obtain a private copy of the default QoS to tailor it. */
237 setting topic gos = DDS TopicQos alloc();
238 checkHandle (setting topic gos, "DDS TopicQos alloc");
239 status = DDS DomainParticipant get default topic gos(
240 dp, setting topic gos);
241 checkStatus (
242 status, "DDS DomainParticipant get default topic gos");
243
244 /* Note: changing the copy doesn't change the original
itself!*/
245 setting topic gos->durability.kind =
246 DDS_TRANSIENT DURABILITY QOS;
247
248 /* Associate the tailored policy with the NameService topic */
249 nameServiceTopic = DDS DomainParticipant create topic(
250 dp, - - -
251 "Chat NameService",
252 nameServiceTypeName,
253 setting topic gos,
254 NULL, B
255 DDS STATUS MASK NONE) ;
256 checkHandle (a
257 nameServiceTopic,
258 "DDS DomainParticipant create topic (NameService)");
259
260 /* Deleting the Topics to be able to delete my participant. */
261 status = DDS DomainParticipant delete topic(
262 dp, nameServiceTopic); B -
263 checkStatus (
264 status,
265 "DDS DomainParticipant delete topic (NameServiceTopic)");
266
267 status = DDS DomainParticipant delete topic(
268 dp, chatMessageTopic) ; B -
269 checkStatus (
270 status,
271 "DDS DomainParticipant delete topic (chatMessageTopic)");
272
273 /* De-allocate the QoS policies. */
274 DDS free(reliable topic gos);
275 DDS free(setting topic gos);
276 DDS free (pub gos); N
277 N N
278 /* De-allocate the type-names and TypeSupports. */
279 DDS free(nameServiceTypeName) ;
280 DDS free (chatMessageTypeName) ;
281 DDS free (nameServiceTS) ;
282 DDS free (chatMessageTs) ;
39

Vortex OpenSplice C Tutorial

4 Managing Domains and Topics 4.6 Tailoring QosPolicy Settings

40

283
284 /* Deleting the DomainParticipant */
285 status = DDS DomainParticipantFactory delete participant (

286 dpf, dp):

287 checkStatus (

288 status,

289 "DDS DomainParticipantFactory delete participant");
290

291 /* Everything is fine, return normally. */
292 return 0;
293 };

This example starts like the previous ones, but in line 209 we allocate a holder for
the DDS_TopicQos that we will be using to create our topics. Since the change we
want to make to our TopicQos is only minor compared to the default TopicQos, we
will not set each policy field explicitly, but instead in line 2// we request the
DDS_DomainParticipant to fill our holder with the current values of the default
Topic Qos. Now we only have to change explicitly those QoS fields in the holder
that are not suitable for our application. For our first topic, only the RELIABILITY
settings will need to be changed and this is done in line 215. Since all other topics
that we will create in this DDS DomainParticipant also require reliable
transportation, it makes sense to make this the new default setting for this
participant. (Note: default QoS settings are a property of the factory: different
factories can have different default settings!). The participant default is changed
according to the settings specified in our holder in line 279.

The creation of the ChatMessage topic now in lines 225-231 is not really different
from its creation it in the previous example, but since we changed the default QoS,
the resulting topic will be different as well. If you did not restart your OpenSplice
daemons after running the previous example, the creation of the current topic will
fail since its QoS settings conflict with the settings of the previous example. In the
Vortex OpenSplice Tuner you will now be able to see that the ChatMessage topic
indeed has different QoS settings and will be transported reliably.

The NameService topic requires another QoS change, so we will use the same
trick employed before. This time however, since it is the only topic that requires
transient durability, we will not change the default, but just create a custom QoS
holder that we adapt to our needs. Again we fill it with the default QoS settings in
line 239, but this time we change the durability field to TRANSIENT durability in
line 245. We can now use our customized QoS holder in the creation of the
NameService topic in lines 249-255.

Don't forget to de-allocate your QoS holders, type-names and TypeSupport objects
when you no longer need them. In our case, this is performed in lines 274-282.
Remember: the DDS free operation can and must be used on any handle that was
obtained by an operation whose name end with alloc (), and on any string that
is allocated as a result of a getter-operation on an entity.

ADLINK

Vortex OpenSplice C Tutorial

4 Managing Domains and Topics 4.6 Tailoring QosPolicy Settings

A
= ADLINK

This ends our first application now. We have shown you how to define an
information model that suits your needs, how to select an efficient QoS that fits this
model and how to create topics according to these choices. In the coming sections
we will show you how to use these topic definitions to publish information into the
system, and how to access this information in other applications by making
subscriptions to these topics.

41
Vortex OpenSplice C Tutorial

4 Managing Domains and Topics 4.6 Tailoring QosPolicy Settings

0

2 ADLINK
Vortex OpenSplice C Tutorial —

CHAPTER

Publishing the Data

In this section, you will be guided to create the publishing part of the chatter
application. You will use the topic definitions of the previous section to publish your
username and userlD into the chatter domain, send an arbitrary number of chat
messages afterwards, and then indicate that you leave the chatroom by disposing
your username and ID.

The first section will give a short explanation of the different DDS entities that play
a role in the publishing part of an application. The next section will teach you how
to create a Publisher with accompanying DataWriters. That is followed by a section
that describes the principles behind RxO QosPolicy matching between Readers and
Writers and a section that describes how to delete your Publishers and Subscribers.
The last two sections will show you how to use a DataWriters to register instances,
write data samples into the system, and how to unregister and dispose these
instances afterwards.

5.1 Publishers, DataWriters and their QoS Policies

A
=~ _ADLINK

Publishers and DataWriters are the building blocks required to publish information
into your system. Both classes are modelled as DDS_Entities, meaning both are
controlled by a set of QoS Policies, both have their own DDS_StatusCondition,
both classes can have their own DDS Listener object attached to them, and both
classes can only be created and deleted by means of their corresponding factories.
This section will introduce the reasons for separating Publishers from DataWriters
in the DDS specification and explain the different objectives of both entities.

* Publisher - A Publisher is responsible for the dissemination of publications, in
other words, the Publisher decides what information is to be published at what
time and in which partition. The Publisher’s QoS policiescontrol whether samples
will be transmitted individually or as coherent sets of information (in order to
allow for some primitive form of Transactions), whether the ordering between
them will be preserved, and in which Partitions the information will be made
available. The DomainParticipant acts as a factory for Publishers.

* Partition - The Partition QoSPolicy defines in which partitions information will
be made available. Partitions are identified by name, and allow you to logically
partition your information space: only when a publisher and a subscriber are
connected to the same partition, communication will be established!. The
PartitionQoSPolicy consists of an unbounded sequence of strings: each element

43
Vortex OpenSplice C Tutorial

5 Publishing the Data 5.1 Publishers, DataWriters and their QoS Policies

44

represents the name of a partition to which you will be connected. Elements
containing names that have not yet been used before result in the creation of new
Partitions. Elements may also contain wildcards, which will then be matched
against all existing Partitions.

* DataWriter - A DataWriter is a type specific interface for the Publisher, in other
words, it allows an application to offer samples for a specific topic to the
Publisher, which will then perform the actual transmission of these samples. A
Publisher acts as a factory for its own set of typed DataWriters, and can publish
information that spans more than one Topic. In such cases, it employs a separate
DataWriter for each individual Topic. The QoS Policies of a DataWriter control
how its samples will be transmitted by the Publisher (e.g. their reliability and
durability settings).

As you might have noticed from the previous bullet, some of the QoS Policies that
you need to specify on the DataWriter are already specified on the Topic as well.
That means that you might have conflicting QoS settings for a Topic on one hand,
and for the DataWriters that actually provide samples for that specific Topic on the
other hand. You might wonder why the DDS specification introduces such QoS
Policy overlaps.

The reason is quite simple: the Topic QoS Policies act as some sort of system
preference for all DataWriters (and also all DataReaders) of that Topic in your
system. Normally, the system architect will select the most appropriate QoS Policiy
settings that should be applicable to most DataReader/DataWriter combinations in
your system, and he will attach those QosPolicy settings to the Topic. If you, as an
application programmer, do not know what policies to use on your DataWriters (or
DataReaders), just use the policies specified on the Topic.

However, you as an application programmer may have a very good reason to deviate
from this system preference because of some dedicated knowledge you have about
the behaviour of your application. In such cases you can tailor the DataWriter QoS
Policy settings to your own needs, since it is always the QosPolicy settings on each
individual DataWriter that decide how the samples are being transmitted.

1. You can also partition your information space by using different Domains (physical
partitioning), which is a very static approach since an application cannot easily change
the Domain it is attached to. In contrast, logical partitioning allows you to change your
region-of-interest on the fly: you can change the number and type of partitions you are
attached to at any moment in time.

ADLINK

Vortex OpenSplice C Tutorial

5 Publishing the Data

5.2 Creating Publishers and DataWriters

5.2 Creating Publishers and DataWriters

A
= ADLINK

In this section we will expand the example presented in Section 4.6, Tailoring
QosPolicy Settings, with some code that creates our DDS_Publisher together with
its two DDS_DataWriters: one for the NameService Topic, and one for the

ChatMessage Topic.

The following code fragment shows the code fragments that should be inserted

(between lines 258 and 260) in order to create the DDS Publisher with its

DDS DataWriters (it does not show the code already provided under Tailoring

QosPolicy Settings.

1 DDS PublisherQos *pub_ qgos;

2 DDS DataWriterQos *dw gos;

3 DDS_Publisher chatPublisher;

4 Chat ChatMessageDataWriter talker;

5 Chat NameServiceDataWriter nameServer;

6 char *partitionName = NULL;

7

8 /* Adapt the default PublisherQos to write into the

9 "ChatRoom" Partition. */

10 partitionName = "ChatRoom";

11 pub gos = DDS PublisherQos alloc();

12 checkHandle (pub gos, "DDS PublisherQos alloc");

13 status = DDS DomainParticipant get default publisher gos (
14 participant, pub qos);

15 checkStatus (

16 status, "DDS DomainParticipant get default publisher qos");
17 pub gos->partition.name. length = 1;

18 pub gos->partition.name. maximum = 1;

19 pub gos->partition.name. buffer = DDS StringSeq allocbuf (1);
20 checkHandle (

21 pub gos->partition.name. buffer, "DDS StringSeq allocbuf");
22 pub gos->partition.name. buffer[0] = DDS string alloc (

23 strlen (partitionName)) ;

24 checkHandle (

25 pub gos->partition.name. buffer[0], "DDS string alloc");
26 strcpy (pub gos->partition.name. buffer[0], partitionName);
27

28 /* Create a Publisher for the chatter application. */

29 chatPublisher = DDS DomainParticipant create publisher (

30 participant, pub gos, NULL, DDS STATUS MASK NONE) ;

31 checkHandle (

32 chatPublisher, "DDS DomainParticipant create publisher");
33

34 /* Create a DataWriter for the ChatMessage Topic

35 (using the appropriate QoS). */

36 talker = DDS Publisher create datawriter (

37 chatPublisher,

38 chatMessageTopic,

39 DDS_DATAWRITER QOS USE TOPIC QOS,

40 NULL,

41 DDS_STATUS MASK_NONE) ;

42 checkHandle (

43 talker, "DDS Publisher create datawriter (chatMessage)");
44

45 /* Create a DataWriter for the NameService Topic

45

Vortex OpenSplice C Tutorial

5 Publishing the Data 5.2 Creating Publishers and DataWriters

46

46 (using the appropriate QoS). */

47 dw gos = DDS DataWriterQos alloc();

48 checkHandle (dw_gos, "DDS DataWriterQos alloc");
49 status = DDS Publisher get default datawriter gos(

50 chatPublisher, dw gos);

51 checkStatus (

52 status, "DDS Publisher get default datawriter gos");
53 status = DDS Publisher copy from topic gos(

54 chatPublisher, dw gos, setting topic gos);

55 checkStatus(status, "DDS Publisher copy from topic gos");
56 dw _gos->writer data lifecycle.autodispose unregistered instances =
57 FALSE;

58 nameServer = DDS Publisher create datawriter (

59 chatPublisher,

60 nameServiceTopic,

61 dw_qgos,

62 NULL,

63 DDS_STATUS MASK NONE) ;

64 checkHandle (

65 nameServer, "DDS Publisher create datawriter (NameService)");

As you can see, in lines //-14 a holder for the PublisherQos is allocated on heap
and the default QosPolicy settings are copied into it. In lines /7-26, the
PartitionQosPolicy value is changed from its default value into a user defined
Partition called ChatRoom. It is interesting to elaborate a little bit more on this,
since besides demonstrating the Partition mechanism it also shows how to use IDL
sequences and strings in the C language mapping.

As stated before, the PartitionQosPolicy is a sequence of strings. The default policy
value is a sequence of zero elements, which is interpreted as a connection to the
default Partition!. To attach to our own user defined Partition, we first need to
allocate elements for the Partition sequence. A sequence in C is mapped onto a
structure that contains a number of attributes:

» A field named maximum: indicates the number of allocated elements.
» A field named length: indicates the number of assigned elements.
» A field named buffer: indicates a pointer to the first element.

In order to connect to only one Partition, we will need to allocate and assign at least
one element. That means that the maximum and length fields can be set to 1,
and that the buffer field should point to a memory location that is able to hold a
pointer to a string. The easiest way to allocate sequence elements is to use the
convenience function that is generated by the Vortex OpenSplice preprocessor
specifically for that purpose. It is named after the sequence type (in this case
DDS_StringSeq), followed by the postfix allocbuf. Its parameter specifies the
number of elements that need to be allocated.

1. The name of this default Partition is an empty string (""), so a Partition-sequence of 0
elements is equal to a Partition sequence of 1 element with an empty string.

A
=/ ADLINK

Vortex OpenSplice C Tutorial

5 Publishing the Data 5.2 Creating Publishers and DataWriters

A
= ADLINK

In line 22 we actually allocate the memory for the ChatRoom string itself, using
another dedicated function provided by the DDS API: DDS string alloc, where
the parameter specifies the number of bytes to allocate!. The functions used to
obtain the string length and to copy string contents are included from the standard
string.h library. The reason why we use our own allocation functions instead of
the more common malloc and free will become clear when we will release the
memory later on.

Now that the PublisherQos has been tailored to our own needs, we invoke the
DDS DomainParticipant create publisher function in line 29, to instruct
the DDS DomainParticipant (1st parameter) to create a new DDS_ Publisher
using our tailored QoS (2nd parameter) and no DDS_PublisherListener for all
status events (3rd and 4th parameter). Again, the result is checked for correctness in
line 31.

In line 36, we invoke the DDS Publisher create datawriter function to
instruct the DDS_Publisher (1st parameter) to create a typed DataWriter for the
chatMessageTopic (2nd parameter) with QosPolicy values that are copied
directly from the corresponding DDS TopicQos (3rd parameter) and no
DDS DataWriterListener for all status events (4th and 5th parameter). The
third parameter we used is again an example of a convenience macro: it is a
substitute for a number of explicit steps, which would normally be:

* Allocate a DDS_DataWriterQos holder (DDS DataWriterQos alloc)

* Fill it with the default DDS DataWriterQos settings of the DomainParticipant
(DDS_DomainParticipant get default datawriter gos)

» Overwrite the policy values that overlap with the corresponding DDS TopicQos
by the values of that
DDS TopicQos (DDS Publisher copy from topic gos).

In lines 47-55 an example of setting the DDS DataliriterQos using these explicit
steps is shown. In this case, we do not use the convenience macro because we want
to make one small modification to the resulting QoS (see lines 56-57): we want to
change the writer data lifecycle QosPolicy so that the nameServer does
not automatically dispose a username when the user leaves the chatroom, which is
its default behaviour. The exact meaning of this QosPolicy setting will be explained
in Section 5.6, Unregistering and Disposing of Instances.

1. The DDS string alloc function allocates one more byte to accommodate for the
"\ 0' terminator as well.

47
Vortex OpenSplice C Tutorial

5 Publishing the Data

5.3 Requested/Offered QosPolicy Semantics

5.3 Requested/Offered QosPolicy Semantics

If the QosPolicies that are applicable to the DataWriter are closely examined, it will
be observed that some of these policies overlap with the policies applicable to the
topic. The DDS_Publisher copy from topic gos function is used to match
all overlapping QosPolicies between topic and DataWriter.

Why do some of these policies overlap and what happens if they do not match?
Before explaining the underlying mechanisms, let’s first take a look at Table 5,
which gives an overview of all QosPolicies that are applicable to Topics,
DataWriters and DataReaders:

Table 5 Applicable Topic, DataWriter and DataReader Policies

QoS Policy Concerns RxO
DURABILITY Topic, DataWriter, DataReader Yes
DEADLINE Topic, DataWriter, DataReader Yes
OWNERSHIP Topic, DataWriter, DataReader Yes
LIVELINESS Topic, DataWriter, DataReader Yes
RELIABILITY Topic, DataWriter, DataReader Yes
DESTINATION ORDER Topic, DataWriter, DataReader Yes
HISTORY Topic, DataWriter, DataReader No
RESOURCE LIMITS Topic, DataWriter, DataReader No

48

In some of these cases, the QosPolicy settings are local to an entity and do not affect
the behaviour of other (related) entities. Examples of these are HISTORY and
RESOURCE LIMITS, that specify how much storage space an entity reserves for
buffering samples. In those situations, the DataWriterQos specifies how much
storage space is reserved in the DataWriter and the DataReaderQos specifies how
much storage space is reserved by the DataReader. DataWriters and DataReaders
can make different choices without affecting each other’s behaviour.

In the other cases, QosPolicy settings are not local to an entity and the DataReader
and DataWriter will need to agree on the QosPolicy settings in order to establish
successful communication. If the QosPolicies are considered compatible, then the
DataWriter and DataReader will establish a successful connection. If the
QosPolicies are considered incompatible, then the DataWriter and DataReader will
be disconnected and not be able to communicate.

So when are policy settings considered compatible? That is decided by means of a
subscriber-Requested/publisher-Offered (RxO) pattern. In this pattern, the
DataReader can specify a requested value for a particular QosPolicy, while the
DataWriter can specify an offered value for that QosPolicy. The Service will then
determine whether the value requested by the DataReader is not considered ‘higher’

A
A _ADLINK

Vortex OpenSplice C Tutorial

5 Publishing the Data 5.3 Requested/Offered QosPolicy Semantics

ADLINK

than what is offered by the DataWriter. For this purpose, each RxO enabled
Qospolicy will specify an ordering between its possible values to be able to make a
comparison and determine the higher value. As long as the requested value is
considered smaller than or equal to the offered value, the policies are considered
compatible. If the requested value is higher than the offered value, the policies are
considered incompatible, and the concerned DataWriter will raise an
OFFERED INCOMPATIBLE QOS status, while the concerned DataReader will raise
its REQUESTED INCOMPATIBLE QOS status. The application can detect this status
change by means of a Listener or a StatusCondition (see Section 7.3.2,
Attaching a Listener and Section 8.3, Using a StatusCondition).

Take as an example the ReliabilityQosPolicy: RELIABLE communication is
considered better than BEST EFFORT communication and so it has a higher value.
A DataWriter that offers BEST EFFORT communication will not attempt to
retransmit samples that are lost, and so cannot satisfy the reliability request of a
DataReader. In that case the requested value is higher than the offered value so the
DataWriter and DataReader will be considered incompatible and can not
communicate. However, a DataReader that requests BEST EFFORT communication
can be connected to a DataWriters that offers RELIABLE data, since the quality of
the data that it gets is ‘better’ than what it required. In that case the requested value
is lower than the offered value and so the policies are considered compatible.

Likewise for the DurabilityQosPolicy, the ordering of the possible values is
PERSISTENT > TRANSIENT > TRANSIENT LOCAL > VOLATILE. All other
QosPolicies are outside the scope of this tutorial, so for the ordering of their
QosPolicy values please consult the Reference Manuals.

So now it is clear what happens when you set different QosPolicy values on
DataReaders and DataWriters, but how exactly do they relate to the QosPolicy
values set on the Topic? To answer that question, it is important to realize what the
QosPolicy settings on each Entity actually represent:

* The QosPolicy settings on a DataWriter define the amount of quality used to
transport each sample written by that DataWriter.

* The QosPolicy settings on a DataReader define the requirements for the minimal
amount of quality that each of the received samples should have. Samples that are
transmitted with a lower quality will not be received.

* The QosPolicy settings on the Topic focus on global information-availability
aspects rather than transmission-aspects of individual applications and represent
the intended system behaviour.

49
Vortex OpenSplice C Tutorial

5 Publishing the Data 5.3 Requested/Offered QosPolicy Semantics

50

Typically the information model is defined by a system architect, whose job is not
only to think about the information content, but also about the Quality of Service
that is normally required to transmit this information with. So he is responsible for
designing an overall Topic model, which is an aggregation of datatypes and
TopicQos settings.

The applications are typically designed by application developers, who will define
all required publications and subscriptions, including the DataWriterQos and
DataReaderQos settings. In normal circumstances, they will just copy the
QosPolicy settings from the Topics, since those contain the settings as they are
intended by the System Architect. Only in very special circumstances should an
Application Developer deviate from TopicQos settings, for example when he
knows that the samples he will read or write require different treatment than the rest
of the samples of the same topic. Be careful with deviating from the TopicQos
settings though, there is a good chance you will get disconnected from most of the
other DataWriters or DataReaders who do follow the TopicQos.

Summarizing: the TopicQos specifies the QosPolicy settings the system architect
intends the samples to be transmitted with, and so makes a good default setting for
your DataWriters and DataReaders. However, deviating from the TopicQos
settings does not violate any rules, and you will not be notified about it, although it
may impact the connectivity of your Entity. RxO matching only takes place between
DataWriters and DataReaders, the TopicQos settings are irrelevant for determining
compatibility.

There is one exception to this: the durability service will only look at the TopicQos
to see whether it needs to prepare storage facilities for a specific Topic. If the
DurabilityQosPolicy is not set to TRANSIENT or PERSISTENT on the topic,
then no storage facilities will be prepared for it, regardless of the settings of each
individual DataWriter. So when the durability is set to VOLATILE on the topic, but a
DataWriter specifies TRANSIENT durability, then the samples of that DataWriter
will not be stored by the durability service. Be careful about that, because you will
not be notified about such incompatibilities between Topic and DataWriter. The
other way around is not a problem: if the topic specifies a TRANSTIENT durability,
but a DataWriter does not want its samples to be stored by the durability service,
then it can specify a VOLATILE durability. That is not considered a conflict: in that
case the service has prepared storage facilities, but the DataWriter intentionally
chooses not to use them.

ADLINK

Vortex OpenSplice C Tutorial

5 Publishing the Data 5.4 Deleting Publishers and DataWriters

Deleting Publishers and DataWriters

ADLINK

Of course, at the end of the application we will need to delete the Publisher and
DataWriters before we can delete the DomainParticipant itself. We must also not
forget to delete the DDS_PublisherQos structure that we allocated on heap, which
also includes our Partition string sequence. The following code releases all the
resources allocated in the previous code fragment:

66 /* Remove the DataWriters */
67 status = DDS Publisher delete datawriter (chatPublisher,

68 talker);

69 checkStatus (status,

70 "DDS Publisher delete datawriter (talker)");

71

72 status = DDS Publisher delete datawriter (

73 chatPublisher, nameServer);

74 checkStatus (

75 status, "DDS Publisher delete datawriter (nameServer)");
76

77 /* Remove the Publisher. */

78 status = DDS DomainParticipant delete publisher (

79 participant, chatPublisher); n

80 checkStatus(status, "DDS DomainParticipant delete publisher");

82 /* De-allocate the PublisherQoS holder. */
83 DDS free(pub gos); // Note that DDS free recursively
84 // de-allocates all indirections!!

This code seems very straightforward, each entity is deleted by the same factory that
created it, and the result status is always checked for correctness. Now also take a
look at the part where we release the DDS_PublisherQos. As you can probably
remember, the DDS PublisherQos is a structure that embeds all QoS Policies
relevant to the DDS Publisher. One of these policies is the PartitionQosPolicy,
that embeds a sequence containing a number of string elements. The normal way to
release all these indirections is to de-allocate all elements in the reverse order in
which they were allocated, in other words,:

* Release the ChatRoom string of the Partition sequence.
* Release the sequence buffer itself.
* Release the DDS_PublisherQos.

All these steps are automatically performed by the DDS free function, which is
very powerful: its function parameter is un-typed, so it can be used to release any
type of memory (including all its indirections) that has been allocated using the
specialized DDS allocation functions. In this case it will recursively traverse
through all attributes of the DDS PublisherQos, release all encountered
indirections in there (provided these have also been allocated by the specialized
DDS allocation routines), and then release the DDS PublisherQos itself. So the

51
Vortex OpenSplice C Tutorial

5 Publishing the Data 5.5 Registering Instances and Writing Samples

specialized DDS allocation and de-allocation routines should always be used in
pairs: mixing them up with other allocation algorithms will most definitely result in
corruption of your memory.

5.5 Registering Instances and Writing Samples

In this section we will actually write our first samples into the system. The first
sample will be of type Chat NameService and will contain our user name and
user id. The samples following after that will be our actual chat messages. When we
are done and want to leave the Chatroom, we will dispose our user information. For
that purpose, the example presented in Section 5.2, Creating Publishers and
DataWriters, is extended with the following lines of code:

85 /* Initialize a data sample for the ChatMessage on heap.

86 Chat ChatMessage *msg; // Example on Heap.

87

88 /* Initialize a data sample for the NameServer on stack.
89 Chat NameService ns; // Example on Stack.
90 ns.userID = ownlID;

91 ns.name = DDS string alloc(Chat MAX NAME+1) ;

92 checkHandle (ns.name, "DDS string alloc");

93 if (chatterName) {

94 strncpy (ns.name, chatterName, Chat MAX NAME + 1);

95 } else {

96 snprintf (ns.name, Chat MAX NAME+1, "Chatter %d", ownID);
97 1}

98

99 /* Write the user-information into the system

100 (registering the instance implicitly). */

101 status = Chat NameServiceDataWriter write(

102 nameServer, &ns, DDS HANDLE NIL);
103 checkStatus (status, "Chat ChatMessageDataWriter write");

104
105 /* Initialize the chat messages that will be written into
106 the ChatRoom on Heap. */

107 msg = Chat ChatMessage alloc();

108 checkHandle (msg, "Chat ChatMessage alloc");
109 msg->userID = ownID;

110 msg->index = 0;

111 msg->content = DDS string alloc (MAX MSG LEN) ;
112 checkHandle (msg->content, "DDS string alloc");

113 if (ownID == TERMINATION MESSAGE) {

114 snprintf (msg->content, MAX MSG LEN, "Termination message.");
115 } else {

116 snprintf (msg->content, MAX MSG LEN,

117 "Hi there, I will send you %d more messages.", NUM MSG) ;
118 }

119

120 /* Register a chat message for this user

121 (pre-allocating resources for it!!) */

122 DDS InstanceHandle t userHandle;
123 userHandle = Chat ChatMessageDataWriter register instance (
124 talker, msqg);

126 /* Write a message using the pre-generated instance handle. */
127 status = Chat ChatMessageDataWriter write(

32 . . A ADLINK
Vortex OpenSplice C Tutorial

5 Publishing the Data 5.5 Registering Instances and Writing Samples

ADLINK

128 talker, msg, userHandle);

129 checkStatus(status, "Chat ChatMessageDataWriter write");
130

131 sleep (1); /* do not run so fast! */

132

133 /* Write any number of messages, re-using the existing

134 string-buffer: no leak!!. */

135 for (1 = 1; i <= NUM MSG && ownID != TERMINATION MESSAGE; i++) {
136 msg->index = i; - -

137 snprintf (msg->content, MAX MSG LEN,

138 "Message no. %d", msg->index) ;

139 status = Chat ChatMessageDataWriter write (

140 talker, msg, userHandle);

141 checkStatus (status, "Chat ChatMessageDataWriter write");
142 sleep (1); /* do not run so fast! */
143 }

We first start with the allocation of two samples for the data types that we will be
writing. For demonstrational purposes, one of them will be allocated on heap (the
Chat ChatMessage) and one will be allocated on stack (the
Chat NameService). The advantage of allocating samples on stack is that when
they run out of scope, the memory they occupy is automatically reclaimed.
However, when such a sample contains indirections, these will have to be released
manually in order to avoid a memory leak (see lines §9-91 for the allocation of the
NameService sample and its indirection, and line /60 for the de-allocation of this
indirection).

In contrast, the Chat ChatMessage sample that is allocated on heap (together with
its indirections in lines /07-111) must be manually de-allocated before it runs out of
scope, but by using the DDS _free function for that purpose (as demonstrated in line
162 of Section 5.6, Unregistering and Disposing of Instances) all indirections will
recursively be released as well.

Every sample we write into the system belongs to a specific instance, which is
identified by the values of its keyfields. The identity of the Chat NameService
sample is determined by its userID field. The Chat NameService sample we
intend to write will effectively introduce a new instance into the system. Normally it
is a good habit to announce the creation of a new instance, so that the system can
pre-allocate and reserve resources for the samples that are to come. This means that
the time it takes to write samples describing the state of that instance (which is often
the main loop of your applications) can be minimized, since the administrative
overhead has already been incurred outside the main loop. In this specific situation,
where we only write one sample in the entire lifetime of the instance, it doesn't
really profit to announce the existence of the instance explicitly.

Therefore in line /01 we will just write the sample immediately, using the typed
DataWriter function Chat NameServiceDataWriter write, as it is generated
by the OpenSplice preprocessor. Again, the first parameter represents the
DataWriter that actually performs the operation, the second parameter must be a

53
Vortex OpenSplice C Tutorial

5 Publishing the Data 5.5 Registering Instances and Writing Samples

54

pointer to the sample we intend to write (since it was allocated on stack, we need to
use the '&' operator here), and the last parameter is the handle to the instance that
corresponds to this sample. Since we did not announce the existence of our instance
yet, we have no handle to it and therefore use the special constant
DDS HANDLE NIL instead. This forces the DataWriter to deduce the identity of the
sample from its key fields, registering the existence of the instance implicitly during
the process.

We are then ready to send our chat messages into the world. Since we intend to write
more than one chat message, and each message is only identified by the userID of its
sender (which is the same for each message we send), it makes sense to announce
our new Chat ChatMessage instance first, so that the Publisher can pre-allocate
resources for it and we can get its handle immediately. In line /23 we register the
existence of our new instance using the typed DataWriter function
Chat ChatMessageDataWriter register instance, as itis generated by
the OpenSplice preprocessor. Again, the first parameter represents the DataWriter
that actually performs the operation and the second parameter must be a pointer to a
sample that uniquely identifies the new instance by the values of its keyfields.
(Since this time the sample is allocated on heap, we do not need to use the '&'
operator here). The result of this operation is a handle that uniquely identifies our
instance. We will use it in the subsequent write operations.

Before we start writing the chat messages we will first examine their content to see
if one of them resembles a termination message. For our simple chatroom
application we need a way to tell the MessageBoard that it is allowed to terminate,
and we do that by sending a special termination message using our Chatter
application. A termination messages is a chat message that has a user ID that
resembles the special macro TERMINATION MESSAGE, which is an alias for -1.
When our Chatter encounters such a message it will write this message to the
system and print a special message on the screen stating that it just transmitted a
termination message, see lines /73-118.

When the user ID does not resemble a termination request, we enter a loop in lines
135-143 where we write a number of Chat messages into the system, reusing the
same sample over and over again by overwriting its string content. In these
consecutive write operations we can now pass the instance handle we obtained as a
result of the register instance call, so that the DataWriter does not longer need
to process the keyfields of the sample in order to deduce the identity of its
corresponding instance.

Be careful with this however: if the identity of the instance, as described by the
keyfields of the sample, does not match the handle you supply, you will get

undefined behaviour: the DataWriter will not give an error message in such a case!.

A
=/ ADLINK

Vortex OpenSplice C Tutorial

5 Publishing the Data 5.6 Unregistering and Disposing of Instances

Unregistering and Disposing of Instances

ADLINK

When an instance is no longer relevant for the system it must be unregistered to be
able to release the resources it claimed. An instance not only claims resources on the
writer side (for example to accommodate for the re-send buffer in case of reliable
transmission) but ultimately also on the reader side (to accommodate for the
samples it has received so far). As long as a DataWriter has registered an instance, it
indicates to the system that it reserves the right to send future updates of that
instance. That means that even the readers will need reserve resources to
accommodate for these potential updates. So when a writer drops the intention to
update a specific instance any longer, it makes sense to announce this decision to the
rest of the system. That way not only the writer itself but also all readers
communicating with it may reclaim resources they reserved especially for those
potential updates.

Be very vigilant about this: writers that keep adding new instances to the system but
that fail to unregister the instances they no longer intend to update will not only
drain resources on the writer side but also on all readers connected to this writer. A
reader is simply not allowed to cleanup resources for instances that are still
registered to a datawriter. Don’t be afraid that unregistering an instance on the writer
side will immediately clean up its resources on the reader side as well, potentially
losing information that the reading application didn’t have a chance to consume yet:
that is not the case. A reader will only reclaim resources of an instance once the
writer has unregistered that instance and once the reading application has consumed
all samples for that instance.

So ultimately each instance introduced by a writer must on some moment in time be
unregistered by that writer: it is not relevant whether that instance was registered
implicitly or explicitly. Unregistering can be done explicitly by invoking the
unregister instance operation on the appropriate datawriter or implicitly by deleting
the datawriter. When the system detects that a datawriter has crashed or has simply
been deleted, it will automatically unregister all its instances throughout the system.

Besides unregistering an instance, it is also possible to dispose it. The difference
between them is predominantly semantical: an instance that is no longer registered
to a DataWriter implies that the system does no longer expect any updates for that
instance by that DataWriter. That does not imply anything about the lifecycle of the
instance: it could be that the DataWriter crashed or that the DataWriter is no longer
able to observe the item whose state it was publishing before. Maybe another

1. Caching the instance handle and passing it to the DataWriter with each sample that you
write for that instance saves you some performance, since the DataWriter does not need
to extract the identity of the instance from the sample. If the DataWriter was forced to
check whether sample and instance handle actually match, you would loose this
performance gain.

55
Vortex OpenSplice C Tutorial

5 Publishing the Data 5.6 Unregistering and Disposing of Instances

56

(backup) DataWriter has also registered the instance and is still able to publish
updates for it. In that case a DataReader won’t even need to deallocate any resources
since it can still expect updates from that other DataWriter for the same instance.

By disposing an instance you explicitly tell the system that the instance is no longer
alive, for example because the item whose state you were publishing does no longer
exist. Normally that means you no longer expect any updates, so a typical response
would be to try to reclaim the resources used by that instance. However, since the
dispose does not implicitly release any resources by itself, it is typically followed by
an explicit unregister operation. Again, on the DataReader side the resources
claimed by a disposed and unregistered instance will only be released after the
application has consumed all samples for that instance.

144 /* Leave room by disposing & unregistering message instance.*/
145 status = Chat ChatMessageDataWriter dispose (

146 talker, msg, userHandle);

147 checkStatus (status, "Chat_ChatMessageDataWriter_dispose");
148 status = Chat ChatMessageDataWriter unregister instance (

149 talker, msg, userHandle); - -

150 checkStatus (

151 status, "Chat ChatMessageDataWriter unregister instance");
152

153 /* Also unregister our name. */

154 status = Chat NameServiceDataWriter unregister instance (

155 nameServer, &ns, DDS HANDLE NIL); -

156 checkStatus (

157 status, "Chat NameServiceDataWriter unregister instance");
158

159 /* Release the data-samples. */

160 DDS free(ns.name); // ns allocated on stack:

161 - // explicit de-allocation of indirections!!
162 DDS free (msqg) ; // msg allocated on heap:

163 - // implicit de-allocation of indirections!!

When we are done writing chat messages in our chatter application, we will dispose
and un-register the ChatMessage instance, thus announcing the end of our chat
session and freeing the resources that it claimed. For this purpose we will use the
typed DataWriter functions Chat ChatMessageDataWriter dispose and
Chat ChatMessage Dataliriter unregister instance, since they are
generated by the OpenSplice preprocessor, in lines /45-149. Their parameter
signature is exactly identical to that of the
Chat ChatMessageDataWriter write operation.

It seems logical to also dispose and unregister our user name from the nameservice
after we leave the chatroom, but in this case we want to keep track of our user name
for future reference. (For example to prevent others from claiming our unique user
ID, or to be able to keep track of a list of favorite chat friends.) If we would dispose
our user name here, it would be marked for destruction not only in the subscribing
chatroom but also in the NameService’s transient store, so that late joining
subscribers will not be aware of our former existence.

ADLINK

Vortex OpenSplice C Tutorial

5 Publishing the Data 5.6 Unregistering and Disposing of Instances

LTS

A
= ADLINK

So instead of disposing and unregistering our user name, we only want to unregister
it so that it remains available in the transient store. This is more tricky then it looks
however, because according to the default QoS settings of a DataWriter, an instance
is automatically disposed when it is unregistered. Only ommitting the explicit
dispose of a user name will merely result in an implicit dispose upon unregistering
of that sane user name. That’s why we needed to change the DataWriter’s
WriterDataLifecycleQosPolicy to an autodispose unregistered
instances setting of FALSE in lines 47-57 of Section 5.2, Creating Publishers and
DataWriters.

Note that in most cases transient data will need to outlive the lifetime of the
DataWriter that published it (for example for reasons of fault tolerance), so in
general it makes sense to set the autodispose unregistered instances
policy of your transient DataWriters to FALSE.

In this particular case, it was not necessary to explicitly unregister the message and
the user name instances since both instances will implicitly be unregistered when we
delete their datawriters This happens very soon afterwards (see lines 67-73 in the
last code example in Section 5.2, Creating Publishers and DataWriters). However,
in a typical application, the lifetime of an instance is shorter than the lifetime of the
DataWriter that publishes it, so it is a good habit to explicitly unregister the
instances you no longer need.

This ends the publishing side of our Chatter application. The full code listing of this
application is under Chatter.c in Appendix A, C Language Examples’ Code.

57
Vortex OpenSplice C Tutorial

5 Publishing the Data 5.6 Unregistering and Disposing of Instances

58

2 ADLINK
Vortex OpenSplice C Tutorial —

CHAPTER

6 Subscribing to Data

In this section, you will be guided to create the first (basic) subscribing part of the
chatter application, which is the MessageBoard. You will reuse the ChatMessage
topic definition of the previous sections to subscribe to all chat messages and to
print each of these messages on the message board, together with the userlD of its
sender. In a later section we will try to substitute this UserID by the appropriate
user name of its sender.

The first section will give a short explanation of the different DDS entities that play
a role in the subscribing part of an application and the way in which they interact
with the publishing side. The next section will teach you how to create a Subscriber
with accompanying DataReaders, and how to delete them afterwards. The last
section will show you how to use these DataReaders to access samples, how to
obtain information about their life cycles and how to manage the memory that holds
these samples.

6.1 Subscribers, DataReaders and their QoS Policies

A
=~ _ADLINK

Subscribers and DataReaders are the building blocks required to retrieve
information from your system. Both classes are modelled as Entities, meaning both
are controlled by a set of QoS Policies, both have their own StatusCondition, both
classes can have their own Listener object attached to them, and both classes can
only be created and deleted by means of their corresponding factories. This section
will introduce the reasons for separating Subscribers from DataReaders in the DDS
specification, present the different objectives of both entities, and explain the way in
which they interact with their publishing counterparts.

» Subscriber - A Subscriber is responsible for collecting information coming from
various publications, in other words, the Subscriber decides what information is to
be retrieved at what time and in which partition. The QoS Policies of the
Subscriber control whether samples will be expected to arrive as coherent sets of
information, whether the ordering between them will be preserved, and from
which Partitions the information will be retrieved. The DomainParticipant acts as
a factory for Subscribers.

* DataReader - A DataReader is a type specific interface for the Subscriber, in
other words, it allows an application to access samples of a specific topic from the
Subscriber, which actually collects all incoming samples. A Subscriber acts as a
factory for its own set of typed DataReaders, and can subscribe to information that

59
Vortex OpenSplice C Tutorial

6 Subscribing to Data

6.1 Subscribers, DataReaders and their QoS Policies

spans more than one Topic. In such cases, it employs a separate DataReader for
each individual Topic. The QoS Policies on each DataReader control for the
corresponding data type which of the transmitted samples will be accepted into
the Subscriber. This acceptance is allocated on the basis of a Request/Offered
(RxO) protocol.

Request/Offered Protocol - Some policies are applicable to Topics as well as
DataWriters and DataReaders (like durability and reliability for example). We
already saw in Section 5.1, Publishers, DataWriters and their QoS Policies, that
in the cases where there is an overlapping QosPolicy between a Topic and a
DataWriter, the DataWriter actually decides how the samples are to be
transmitted. The TopicQos is only there to provide the DataWriter with a sensible
suggestion, and it is free to make another choice. The DataReader has a similar
philosophy: for its QoS Policies that overlap with Topics and DataWriters, the
TopicQos only serves as a sensible suggestion and the DataReader is free to make
another choice. Although the DataReader cannot control with what policy settings
the samples are to be offered by the DataWriters, it can control to which
DataWriters it will connect. The Request/Offered protocol specifies that a
DataReader will only connect to DataWriters with compatible settings: in other
words, when DataReaders do not request "more" than what is offered by the
DataWriters!. DataWriters will not be able to deliver their samples to DataReaders
with incompatible QosPolicy settingsz.

Samplelnfo - Each sample describes the state of a specific instance and may
change the lifecycle of that instance. This lifecycle related information might be
of interest to the application and is made available through Samplelnfo. Each data
sample comes with a corresponding Samplelnfo structure that contains, among
other things, the following fields:

- SampleState - Whether the sample has been read before
(DDS_READ SAMPLE STATE) or not (DDS_NOT READ SAMPLE STATE).

- ViewState - Whether the corresponding instance has already been observed by
the application before (DDS_NEW_VIEW STATE) or not
(DDS_NOT NEW VIEW STATE).

60

The DDS specification explicitly formulates an ordering between the different policy
values of each QosPolicy to which the Request/Offered (RxO) protocol applies. For our
particular example: the ReliabilityQosPolicy value RELIABLE > BEST EFFORT and
the DurabilityQosPolicy value PERSISTENT > TRANSIENT > TRANSIENT LOCAL
> VOLATILE. Refer to the Vortex OpenSplice C Reference Guide.

If a DataReader and a DataWriter have incompatible QosPolicy settings, then both
Entities can be notified of this event by their StatusConditions or by their Listeners: the
DataWriter will get an OfferedIncompatibleQosStatus event and the DataReader will get
an RequestedIncompatibleQosStatus event.

ADLINK

Vortex OpenSplice C Tutorial

6 Subscribing to Data 6.2 Creating Subscribers and DataReaders

- InstanceState - Whether the instance is still considered alive
(DDS_ALIVE INSTANCE STATE), has already been disposed
(DDS_NOT ALIVE DISPOSED INSTANCE STATE), or is no longer registered
in any of the DataWriters that are associated to this DataReader
(DDS_NOT ALIVE NO WRITERS INSTANCE STATE).

- SourceTimestamp - The time at which the sample was written by the
DataWriter.!

With these building blocks we should be able to build the first elements of our
MessageBoard: an application that collects all chat messages and prints them onto
the screen.

Creating Subscribers and DataReaders

ADLINK

In this section we will start to build our entirely new MessagBoard application. The
first steps however, are very similar to the ones we took in our Chatter application
and are in fact very common for any type of DDS application:

1. Connect to a Domain.
2. Register the required data types to your DomainParticipant
3. Specify the Topics that you want to use

In the previous section, we implemented the last step by creating two new Topics.
Creating a Topic is required when you can not be sure that your Topic definition is
already available within your Domain. If it was not, creating the Topic will make its
definition available to the Domain. If it already was, then creating the Topic for the
second time will have no effect on the Domain: your definition is checked against
the already available definition and if it conflicts, your Topic creation fails. If it does
not conflict, you just get another proxy to the already existing Topic definition (see
also Section 4.5, Topics as Global Concepts).

If we already know in advance that the Topic definition that we want to use is
already available within our Domain, we can also try to obtain a proxy to it without
having to actually recreate the Topic ourselves. We can use the
DDS DomainParticipant find topic function for that purpose. As always,
the first parameter specifies the DDS DomainParticipant object that is to
execute our function. The second parameter specifies the name of the Topic for
which we want to obtain the proxy, and the third parameter specifies the maximum
time we want to wait for the topic definition to become available.

1. For this field is to be interpreted correctly by the DataReader, the time on different nodes
within the system should be aligned.

2. Itis perfectly possible that the application that actually creates the Topic you are waiting
for is started after you have been started. In that case you have to wait until its definition
is available.

61
Vortex OpenSplice C Tutorial

6 Subscribing to Data 6.2 Creating Subscribers and DataReaders

Be aware that even when you try to find an already existing Topic definition, you
still need to register its data type locally within your DomainParticipant to be able to
read and write samples of it.

In our particular case, we do not know which application will be started first: the
Chatter or the MessageBoard. In fact, we want to be able to experiment a little
bit with this ordering to test the effects of the Durability service. That's why in this
case we will just create a similar Topic definition for the ChatMessage topic as we
did in Section 4.6, Tailoring QosPolicy Settings. Since we already know how to do
that, we will not repeat all these necessary steps. In the following pieces of code, we
will therefore just focus on the parts that have to do with the creation of the
subscribing entities.

1 DDS SubscriberQos *sub qgos;

2 DDS_Subscriber chatSubscriber;

3 Chat ChatMessageDataReader mbReader;

4 char *partitionName = NULL;

5

6 /* Adapt the default SubscriberQos to read from the

7 "ChatRoom" Partition. */

8 partitionName = "ChatRoom";

9 sub gos = DDS SubscriberQos alloc();

10 checkHandle (sub_gos, "DDS SubscriberQos alloc");

11 status = DDS DomainParticipant get default subscriber gos (
12 participant, sub gos); - - -

13 checkStatus (

14 status, "DDS DomainParticipant get default subscriber qos");

15 sub gos->partition.name. length = 1;

16 sub gos->partition.name. maximum = 1;

17 sub gos->partition.name. buffer = DDS StringSeq allocbuf (1);
18 checkHandle (

19 sub gos->partition.name. buffer, "DDS StringSeq allocbuf");
20 sub_gos->partition.name. buffer[0] = B

21 DDS string alloc (strlen(partitionName)) ;

22 checkHandle (—

23 sub gos->partition.name. buffer[0], "DDS string alloc");
24 strcpy (sub_gos->partition.name. buffer[0], partitionName) ;
25

26 /* Create a Subscriber for the MessageBoard application. */
27 chatSubscriber = DDS DomainParticipant create subscriber (
28 participant, sub _gos, NULL, DDS_STATUS MASK NONE) ;

29 checkHandle (

30 chatSubscriber, "DDS DomainParticipant create subscriber");
31

32 /* Create a DataReader for the ChatMessage Topic

33 (using the appropriate QoS). */

34 mbReader = DDS Subscriber create datareader (

35 chatSubscriber,

36 chatMessageTopic,

37 DDS DATAREADER QOS USE TOPIC QOS,

38 NULL, - B

39 DDS STATUS MASK NONE) ;

40 checkHandle (mbReader, "DDS Subscriber create datareader");

62

2 ADLINK
Vortex OpenSplice C Tutorial —

6 Subscribing to Data 6.3 Managing and Reading Samples

As you can see, this code is very similar to the code used for creating the publishing
part of our Chatter application (see Section 5.2, Creating Publishers and
DataWriters). Since we want to attach to the same Partition as the Chatter
application, we first have to adapt the PartitionQosPolicy of our
DDS_SubscriberQos holder (which is filled with the default settings in line /7) in
a similar way as we did for the DDS_PublisherQos in the Chatter application.

We then instruct the DDS_DomainParticipant to create a DDS Subscriber
(DDS DomainParticipant create subscriber), using this
DDS_SubscriberQos holder (2nd argument) and no DDS_SubscriberListener
for all status events (3rd and 4th argument).

In line 34, we invoke the DDS Subscriber create datareader function to
instruct the DDS_ Subscriber (1st parameter) to create a typed DataReader for the
ChatMessage topic (2nd parameter) with QosPolicy values that are copied directly
from the corresponding DDS TopicQos (3rd parameter) and no
DDS_DataReaderListener for all status events (4th and 5th parameter). For the
third parameter we used another convenience macro, which has identical
functionality as the one explained in Section 5.2, Creating Publishers and
DataWriters.

Like we already saw in the Chatter application, at the end of the application we will
need to delete all these created Entities before we can delete the
DDS DomainParticipant. And we must also not forget to delete the
DDS_SubscriberQos structure that we allocated on heap, which also includes our
Partition string sequence. The following code fragment, which is very similar to the
one shown in Section 5.2, Creating Publishers and DataWriters, releases all the
resources allocated in the previous code.

41 /* Remove the DataReader */
42 DDS Subscriber delete datareader (chatSubscriber) ;
43 checkStatus (status, "DDS Subscriber delete datareader");

45 /* Remove the Subscriber. */

46 status = DDS DomainParticipant delete subsciber (

47 participant, chatSubscriber); -

48 checkStatus (status, "DDS DomainParticipant delete subscriber");
49

50 /* De-allocate the SubscriberQoS holder. */

51 DDS free(sub _gos); // Note that DDS free recursively

52 // de-allocates all indirections!!

Managing and Reading Samples

A
= ADLINK

In this section we will actually be reading ChatMessage samples from our
DataReader and we will print their contents on the standard output. The
MessageBoard will be running in a loop, reading all available samples that
correspond to live Chatters. The loop is ended when a termination message is

63
Vortex OpenSplice C Tutorial

6 Subscribing to Data 6.3 Managing and Reading Samples

received: that is a chat message whose userID field resembles
TERMINATION MESSAGE (a macro for the value -1): see line 78. The code to do all
this is presented below.

53 DDS sequence Chat ChatMessage *msgSeq =

54 DDS sequence Chat ChatMessage alloc();

55 checkHandle (msgSeq, "DDS sequence Chat NamedMessage alloc");
56 DDS_SampleInfoSeq *infoSeq = DDS SampleInfoSeq alloc();

57 checkHandle (infoSeq, "DDS SampleInfoSeq alloc");

58 DDS unsigned long i;

60 DDS boolean terminated = FALSE;
6l while (!terminated) {

62 /* Note: using read does not remove the samples from
63 unregistered instances from the DataReader. This means
64 that the DataRase would use more and more resources.
65 That's why we use take here instead. */

66

67 status = Chat ChatMessageDataReader take (

68 mbReader, - a

69 msgSeq,

70 infoSeq,

71 DDS LENGTH UNLIMITED,

72 DDS_ANY SAMPLE STATE,

73 DDS ANY VIEW STATE,

74 DDS_ALIVE INSTANCE STATE);

75 checkStatus (status, "Chat NamedMessageDataReader take");
76 for (i = 0; i < msgSeg-> length; i++) { -

77 Chat ChatMessage *msg = & (msgSeqg-> buffer[i]);

78 if (msg->userID == TERMINATION MESSAGE) {

79 printf ("Termination message received: exiting...\n");
80 terminated = TRUE;

81 } else {

82 printf ("%$s: %s\n", msg->userName, msg->content);
83 }

84 }

85 status = Chat ChatMessageDataReader return loan (

86 mbReader, msgSeq, infoSeq); - -

87 checkStatus (

88 status, "Chat ChatMessageDataReader return loan");

89

90 /* Sleep for some amount of time, as not to consume

91 too much CPU cycles. */

92 usleep (100000) ;

93 1}

The most important part of this code is located in lines 67-74, where samples are
obtained from the Chat ChatMessageDataReader, using the typed DataReader
function Chat ChatMessageDataReader take, as it is generated by the Vortex
OpenSplice preprocessor. This function has a number of interesting characteristics:

* It destructively obtains the samples from the DataReader, meaning the samples
will no longer be available next time you access the DataReader. There is also an
alternative function that is generated by the OpenSplice preprocessor named

64

2 ADLINK
Vortex OpenSplice C Tutorial —

6 Subscribing to Data 6.3 Managing and Reading Samples

ADLINK

Chat ChatMessageDataReader read that non-destructively obtains the
samples, meaning the samples will still be available next time you access the
DataReader.

* Both the take and the read functions are non-blocking, meaning they return what
is currently available. If nothing is available then no samples are returned and no
time is spent waiting for samples to arrive. If you do want to wait until samples
are available you will need to use Listeners or WaitSets for that purpose (see also
Chapter 7, Content-Subscription Profile and Listeners and Chapter 8, Waiting for
Conditions). To keep this application as simple as possible we will not wait for
data to arrive, but will simply take all available samples every 100 milliseconds.
In line 92 we use the usleep () function (imported from unistd.h) to wait
between two successive attempts, as not to use to much processing bandwidth.

* Both the take and the read functions have similar signatures in which the
following parameters need to be specified:

- The DataReader whose samples need to be obtained.

- A sequence that will hold the returned samples.

- A sequence that will hold the returned Samplelnfo.

- The maximum number of samples that you want to obtain.
- A SampleState mask for the samples you want to obtain.

- A ViewState mask for the samples you want to obtain.

- An InstanceState mask for the samples you want to obtain.

As stated above, both the samples that are to be obtained and their corresponding
DDS SampleInfo are returned in sequences that are to be provided by the
application as function input parameters. For that reason, both sequences are
prepared in advance in lines 53 and 56 using the allocation functions generated by
the OpenSplice preprocessor (for each IDL data type <type> in module <module>,
the preprocessor will generate an allocation function called
DDS_sequence <module> <type> alloc). As you may have noticed in this
example, we allocated the sequences on heap, but we did not allocate their internal
buffers. That is because the read and take functions are able to perform the
allocation of the sequence buffer on account of the application. Both functions have
two modes in which they can be operated:

1. The DataReader can /oan memory to the application (demonstrated above): the
sequence buffers are allocated by the DataReader and 'loaned' to the application.
If the application does no longer need the samples, it needs to return the 'loan' to
the DataReader. Memory that is loaned to the application cannot be used in
subsequent read/take function calls.

65
Vortex OpenSplice C Tutorial

6 Subscribing to Data 6.3 Managing and Reading Samples

66

2. The DataReader can pre-allocate the sequence buffers himself. The DataReader
will then just overwrite the allocated memory with the samples that are to be
returned. The application itself is responsible for releasing the buffers when no
longer required, but the same buffers can be reused in subsequent read/take
function calls.

By not pre-allocating the sequence buffers, you indicate the DataReader of the fact
that it has to do the allocation on your account. Since we do not know how much
samples we may expect, it is hard to give a good estimate for the number of
elements that needs to be pre-allocated in your sequence buffer. That's why we make
the DataReader responsible for allocating the memory for us: that way it can exactly
allocate the number of elements required to return all available samples that match
the specified criteria.

The fourth parameter specifies the maximum number of samples you want to obtain
as a result of this call. This is very convenient if you pre-allocate your sequence
buffer because it can avoid a buffer overflow, or when you can only process a
specific number of samples at maximum. In our case neither applies, so we use the
special constant DDS_LENGTH UNLIMITED to indicate any number of samples may
be returned.

The last three parameters specify the kind of samples that you want to obtain. In
Section 6.1, Subscribers, DataReaders and their QoS Policies, we saw that every
sample had a number of corresponding states (DDS SampleState,
DDS ViewState and DDS InstanceState), each of which is represented by a
separate bit value. The read/take functions allow you to specify in a bit mask
exactly which states you are interested in: only samples with a state that satisfies the
bit mask will be returned to you. For our MessageBoard, the only requirement is
that we obtain samples from live Chatters, in other words, messages that have a
DDS_InstanceState of DDS ALIVE INSTANCE STATE. We don't care about the
other states, meaning we can raise all bits in their masks. For this purpose the DDS
specification provides a special ANY constant for each mask, which has already
raised all the relevant bits. In lines 7/-74 both the number and the kind of samples
we want to obtain are selected.

When the read/take function returns, the samples and corresponding
DDS_SampleInfo are available in the sequences we provided. The exact number of
returned samples can be found in the length field of each sequence. In lines 76-84
we iterate through all of the returned samples and print both their userID and their
message content. When we do not longer need both sequences we return the so
called 'loan’ using the typed DataReader function
Chat ChatMessageDataReader return loan, as it is generated by the
OpenSplice preprocessor. This allows the DataReader to reclaim the allocated
memory.

A
=/ ADLINK

Vortex OpenSplice C Tutorial

6 Subscribing to Data 6.3 Managing and Reading Samples

A
= ADLINK

To make a good distinction between loaned buffers and pre-allocated buffers, we
will present the same code below, now using pre-allocated buffers with an estimated
maximum number of 100 elements.

94 DDS sequence Chat ChatMessage *msgSeq =

95 DDS sequence Chat ChatMessage alloc();

96 checkHandle (msgSeq, "DDS sequence Chat NamedMessage alloc");
97 DDS_ SampleInfoSeq *infoSeq = DDS SampleInfoSeq alloc();

98 checkHandle (infoSeq, "DDS SampleInfoSeq alloc");

99 DDS unsigned long i;

101 msgSeg-> buffer = DDS sequence Chat ChatMessage allocbuf (100) ;
102 checkHandle (

103 msgSeq-> buffer, "DDS sequence Chat ChatMessage allocbuf");
104 infoSeg-> buffer = DDS SampleInfoSeq allocbuf (100);

105 checkHandle (infoSeq-> buffer, "SampleInfoSeq allocbuf");

106 DDS sequence set release (msgSeq, TRUE) ;

107 DDS sequence set release(infoSeq, TRUE);

108

109 while (!terminated) {

110 /* Note: using read does not remove the samples from
111 unregistered instances from the DataReader. This means
112 that the DataRase would use more and more resources.
113 That's why we use take here instead. */

114 status = Chat ChatMessageDataReader take (

115 mbReader,

116 msgSeq,

117 infoSeq,

118 DDS LENGTH UNLIMITED,

119 DDS_ANY SAMPLE STATE,

120 DDS ANY VIEW STATE,

121 DDS_ALIVE INSTANCE STATE) ;

122 checkStatus (status, "Chat NamedMessageDataReader read");
123 for (i = 0; i < msgSeg-> length; i++) {

124 Chat ChatMessage *msg = & (msgSeqg-> buffer[i]);

125 if (msg->userID == TERMINATION MESSAGE) {

126 printf ("Termination message received: exiting...\n");
127 terminated = TRUE;

128 } else {

129 printf ("$s: $s\n", msg->userName, msg->content) ;
130 }

131 }

132

133 /* Sleep for some amount of time, as not to consume too
134 much CPU cycles. */

135 usleep (100000) ;

136 }

137

138 /* Delete the sequences and their contents. */
139 DDS free (msgSeq) ;
140 DDS free(infoSeq);

The main differences with the previous code can be found in lines /07-107 where
we actually pre-allocate our sequence buffer. As you can see, pre-allocating the
buffer requires another generated function named
DDS_sequence <module> <type> allocbuf, where the parameter specifies
the number of elements that need to be allocated. Another function you see here for
67

Vortex OpenSplice C Tutorial

6 Subscribing to Data 6.3 Managing and Reading Samples

68

the first time is named DDS_sequence set release and is responsible for
setting the release flag of the sequence. (There is also a corresponding function,
DDS_sequence get release (), that returns the value of the release flag).

This release flag is another property of a sequence in C and describes whether the
buffer is actually 'owned' by the sequence or not. If it is owned by the sequence, it
means the sequence may release the buffer if it is being de-allocated itself (for
example by the DDS_free () function). However, if the sequence does not own the
memory (for example because it just copied an existing pointer instead of all the
contents), it may not release that memory when de-allocated by means of the
DDS_free () function. Since in this example we explicitly allocate buffer space for
the sequence, the sequence may consider itself owner of that memory and that's why
we need to set the release flag to TRUE as well.

If we look at the release flag of a sequence that has 'loaned' a buffer, we will see that
its release flag is set to FALSE. That means DDS_free will not release the buffer
when you de-allocate the sequence. You will explicitly need to return this loan
before de-allocating the sequence. The read/take functions will not accept sequences
that have a release flag set to FALSE and that have allocated more than 0 elements,
because it will assume it will then be overwriting 'loaned' buffers.

Another difference is the fact that because we now 'own' the buffers ourselves, we
do not longer need to return the loan any more: we simply reuse the same buffers
over and over again. Notice that we may still use the special
DDS_LENGTH UNLIMITED constant to indicate the number of samples we want to
obtain, but in this case it represents 100 samples or less, since that is the maximum
number of samples that can be stored in the buffers. It is also possible to specify an
exact number instead, but that number may not be bigger then the maximum number
of samples that the sequences are able to hold. Specifying a bigger number here will
result in a return value of DDS PRECONDITION NOT MET.

When we exit our loop now, we still own the sequences and their contents, so we
should release them manually by using the DDS free () function for that purpose,
see lines 739 and /40.

That concludes our simple MessageBoard for now. In the next section we will
expand the MessageBoard to incorporate some smart algorithms to display the
username instead of the userID of the sender of a message.

ADLINK

Vortex OpenSplice C Tutorial

CHAPTER

7 Content-Subscription Profile and

Listeners

In this section we will expand the MessageBoard with some code to display the
userName instead of the userlD for each chat message and to filter out our own
messages. Instead of doing all the necessary processing in our application, we will
instruct Vortex OpenSplice to substitute the userID with a userName by using the
principles of aggregation/selection/projection offered by the MultiTopic.

Unfortunately, the MultiTopic is not supported yet in this version of Vortex
OpenSplice, so we will be simulating its behaviour using a dedicated data type, a
ContentFilteredTopic, a private DataReader and DataWriter, a Listener and a
QueryCondition.

The first section will introduce the concepts behind the ContentFilteredTopic, the
MultiTopic, the ReadCondition and the QueryCondition. The second section shows
us how to employ the MultiTopic in our MessageBoard example. The third section
will show us how to simulate this MultiTopic, using the above mentioned building
blocks, in dedicated code.

7.1 SQL Controlled Building Blocks

A
=~ _ADLINK

This section explains some of the more advanced API building blocks you can use
to access only the data you are interested in. These building blocks allow you to use
the SQL selection, aggregation, andprojection facilities to express your interest in a
greater detail:

* ContentFilteredTopic - A ContentFilteredTopic allows you to filter out
samples based on their state. It allows you to specify the WHERE clause of an SQL
expression, and each sample that does not match the expression will not be
inserted into the attached DataReader.

* MultiTopic - When information coming from several sources needs to be merged
into a single (new) data type, so that it is much easier to handle for the application,
the MultiTopic is a good candidate. It is more advanced than just a
ContentFilteredTopic and allows advanced features like:

- Projection - Specifies how each original field is projected into the merged data
type (the As clause of the SQL expression).

69
Vortex OpenSplice C Tutorial

7 Content-Subscription Profile and Listeners 7.2 Creating and Using a MultiTopic

70

- Aggregation - Select the fields and their Topics that need to merged (using the
SELECT clause of the SQL expression).

- Selection - Specify a filter that the merged data type must pass (using the WHERE
clause of the SQL expression).

* ReadCondition - A ReadCondition allows you to specify your interest (with
respect to SampleState, ViewState and InstanceState) by means of bit
masks. It will raise a flag when data is available that matches the criteria. When
attached to a WwaitsSet, this will trigger the WaitSet. The ReadCondition can be
passed to a specialized accessor function, that only returns samples that match its
criteria.

* QueryCondition - A QueryCondition 1is more expressive then a
ReadCondition and also allows you to specify your interest in more detail by
adding an SQL SELECTION clause. When used in combination with specialized
accessor functions, only samples that satisfy the criteria will be returned.

Using these building blocks, we should be able to expand our MessageBoard and to
simulate MultiTopics. The coming sections will show how.

Creating and Using a MultiTopic

If we want to print the userName instead of the user1D for each ChatMessage,
we require the merged information from two different Topics. The merge criterion is
the userID, since that is the common keyfield for both Topics. So the easiest thing
to do is to create a new data type that aggregates the user name from the
NameService Topic with the message and index fields of the ChatMessage
Topic. An IDL expression for such a merged data type can be found below.

i

#pragma keylist NamedMessage userID

1 struct NamedMessage {

2 long userID // user ID

3 nameType userName; // user name

4 long index; // message number
5 string content; // message body
6

7

As you can see, this is the definition for a data type as the MessageBoard application
would like to see it: with userName and content in one structured data type, were
the user1D acts as the keyfield. The next step the application will have to consider
is how to map this 'projection type' onto the existing Topics using an SQL
expression. Since we want to filter out our own messages on the MessageBoard, but
our MessageBoard doesn’t know by which userID these messages are
represented, we will use an SQL parameter for that (that parameter can then later be
substituted with the correct value, which will be passed as a command line
parameter to the MessageBoard application):

ADLINK

Vortex OpenSplice C Tutorial

7 Content-Subscription Profile and Listeners 7.2 Creating and Using a MultiTopic

SELECT userID, name AS userName, index, content
FROM Chat NameService NATURAL JOIN Chat ChatMessage
WHERE userID <> %0

In the above SQL expression you can clearly distinguish the three different aspects
of Projection, Aggregation and Selection. The first line specifies which fields will
be copied into the merged projection type: if there is an AS clause, the projected
field will be named accordingly, if there is no AS clause, the projected field will
have the same name as its original. The second line specifies the source Topics of
these fields: since there is more than one source, the several source Topics need to
be JOINED togetherl. The third line specifies the conditions that the merged Topics
need to satisfy.

Now the only thing the MessageBoard will need to change in order to print a name
instead of a userID is the fact that it also needs to obtain a proxy to the
NameService Topic now (the code will not be shown for that), that it needs to
register the projection type, and that it needs to create the DDS MultiTopic
according to the above mentioned SQL expression. The DataReader for the
ChatMessage Topic can then simply be replaced by a similar DataReader for the
DDS_MultiTopic, as can be seen in the following code.

8 Chat NamedMessageTypeSupport namedMessageTS;
9 DDS_StringSeg *parameterList;
10 Chat NamedMessageDataReader mbReader;

11

12 /* Options: MessageBoard [ownID] */

13 /* Messages having owner ownID will be ignored */

14 parameterList = DDS StringSeq alloc();

15 checkHandle (parameterList, "DDS StringSeq alloc");

16 parameterList-> length = 1;

17 parameterList—>:maximum = 1;

18 parameterList-> buffer = DDS StringSeq allocbuf (1);

19 checkHandle (parameterList-> buffer, "DDS StringSeq allocbuf");

20

21 if (argc > 1) {

22 parameterList-> buffer[0] = DDS string alloc(strlen(argv([1l]));
23 checkHandle (parameterList-> buffer[0], "DDS string alloc");
24 strcpy (parameterList-> buffer[0], argv[1l]);

25 }

26 else

27 {

28 parameterList-> buffer[0] = DDS string alloc(1);

29 checkHandle (parameterList-> buffer[0], "DDS string alloc");
30 strcpy (parameterList-> buffer[0], "0");

31 }

32

33 /* Register the required data type for NamedMessage. */
34 namedMessageTS = Chat NamedMessageTypeSupport alloc();
35 checkHandle (

36 namedMessageTS, "Chat NamedMessageTypeSupport alloc");

1. In case of a name-clash between two joined Topics: it is possible to indicate the source
Topic explicitly by prefixing the field name by the Topic name, separated by a dot.
71

A ADLINK _ _
‘ Vortex OpenSplice C Tutorial

7 Content-Subscription Profile and Listeners 7.2 Creating and Using a MultiTopic

72

37 status = Chat NamedMessageTypeSupport register type (

38 namedMessageTs,

39 participant,

40 namedMessageTypeName) ;

41 checkStatus (

42 status, "Chat NamedMessageTypeSupport register type");
43

44 /* Create a multitopic that substitutes the userID with
45 its corresponding userName. */

46 namedMessageTopic = DDS DomainParticipant create multitopic(
47 participant,

48 "Chat NamedMessage",

49 namedMessageTypeName,

50 "SELECT userID, name AS userName, index, content "

51 "FROM Chat NameService NATURAL JOIN Chat ChatMessage "
52 "WHERE userID <> %0",

53 parameterlList) ;

54 checkHandle (

55 namedMessageTopic, "DDS DomainParticipant create multitopic");
56

57 /* Create a DataReader for the NamedMessage Topic

58 (using the appropriate QoS). */

59 chatAdmin = DDS Subscriber create datareader (

60 chatSubscriber,

6l namedMessageTopic,

62 DDS_DATAREADER QOS_USE_TOPIC QOS,

63 NULL,

64 DDS_STATUS MASK NONE) ;

65 checkHandle (chatAdmin, "DDS Subscriber create datareader");

In lines 74-31 you see that the SQL parameter variable (representing our own
userID) is obtained from the command line. The projection data type is registered
in lines 34-40, under namedMessageTS. This name is then used in lines 46-53,
where the DDS DomainParticipant create multitopic function is called to
instruct the DDS DomainParticipant (lst parameter) to create a
DDS MultiTopic with the name that is specified in the 2nd parameter for the type
that is registered under the name specified by the 3rd parameter. The SQL
expression is specified in the 4th parameter, and a sequence containing all parameter
values (if applicable) is specified in the 5th parameter. SQL parameter values are
always specified as strings, since they can refer to variables of different types,
depending on the preceding SQL expression.

As you can see in line 59, creating a DataReader for a DDS MultiTopic is
identical to creating a DataReader for a normal DDS_Topic: the same function is
used. That is possible because the parameter that specifies the Topic is of type
DDS TopicDescription, which is the common parent for DDS Topics, as well
as for DDS MultiTopics and DDS ContentFilteredTopics.

The last change we need to make of course is to change the print statement to
actually display the userName instead of the userID. We will not show the code
for that here, but you can find the full code listing for the MessageBoard under
MessageBoard.c in Appendix A.

A
=/ ADLINK

Vortex OpenSplice C Tutorial

7 Content-Subscription Profile and Listeners 7.3 Simulating a MultiTopic Using Other Building Blocks

Simulating a MultiTopic Using Other Building Blocks

The code presented in the previous section should work according to the DDS
specification, but the problem is that this release of Vortex OpenSplice does not yet
support the DDS MultiTopic. For that reason, and for educational reasons of
course, we will simulate the behaviour of the DDS MultiTopic using other
building blocks. The idea is that we substitute the DDS DomainParticipant
create multitopic function with our own function called
DDS DomainParticipant create simulated multitopic. This function
will do the following things:

1. It will subscribe itself to both the NameService and the ChatMessage Topics.
2. It will attach the specified Content Filter to the ChatMessage Topic

3. It will attach a Listener to the ChatMessage DataReader.
4

For each incoming ChatMessage it will issue a Query based on its userID, to
find the corresponding userName in the NameService.

5. It will then manually merge the results into the projection data type.
6. Finally, it will publish this manually created projection type.

The nice thing about this approach is that we can completely hide its functionality to
the MessageBoard: the code to make the subscriptions and attach the Listener
(steps 1 to 3) can be encapsulated in the create simulated multitopic call,
and the manual merge activities for each incoming ChatMessage (all the other
steps) can be encapsulated in the Listener implementation. We have isolated all this
code from the MessageBoard and introduced a separate file named
multitopic.c for it. We already showed you how to make subscriptions, so we
will not repeat those steps here, but it is interesting to demonstrate how to create a
DDS ContentFilteredTopic, how to implement and attach a Listener interface
and how to use DDS_QueryConditions to search for information. Those steps
will be presented in the following sections. The full implementation for the
multitopic.c file can be found under multitopic.c in Appendix A, C
Language Examples’ Code.

Using a ContentFilteredTopic

A
= ADLINK

To avoid unnecessary merging of information, it makes sense to assure that the
newly arriving samples match the interest of the user first (in other words, the
WHERE clause of his SQL expression). A DDS ContentFilteredTopic is a very
convenient in such cases: it allows you to attach an SQL Filter expression to an
existing Topic and to create a normal DataReader for it. This DataReader will then
only receive samples that match the filter expression of the
DDS ContentFilteredTopic.

73
Vortex OpenSplice C Tutorial

7 Content-Subscription Profile and Listeners 7.3 Simulating a MultiTopic Using Other Building Blocks

74

To avoid awkward string parsing to extract the WHERE clause of our MultiTopic SQL
expression, we will cheat a little bit and manually provide a compatible filter
expression for our DDS ContentFilteredTopic.

66 DDS Topic chatMessageTopic;

67 DDS ContentFilteredTopic filteredMessageTopic;

68 Chat ChatMessageDataReader chatMessageDR;

69 DDS Duration t infiniteTimeOut = DDS DURATION INFINITE;
70

71 /* Lookup the original ChatMessage Topic. */
72 chatMessageTopic = DDS DomainParticipant find topic(

73 participant,

74 "Chat ChatMessage",

75 sinfiniteTimeOut) ;

76 checkHandle (

77 chatMessageTopic,

78 "DDS DomainParticipant find topic (Chat ChatMessage)");
79

80 /* Create a ContentFilteredTopic to filter out our
81 own ChatMessages. */

82 filteredMessageTopic =

83 DDS DomainParticipant create contentfilteredtopic(
84 participant,

85 "Chat FilteredMessage",

86 chatMessageTopic,

87 "userID <> %0",

88 expression parameters) ;

89 checkHandle(

90 filteredMessageTopic,

91 "DDS DomainParticipant create contentfilteredtopic");
92

93 /* Create a DataReader for the FilteredMessage Topic
94 (using the appropriate QoS). */

95 chatMessageDR = DDS Subscriber create datareader (
96 multiSub,

97 filteredMessageTopic,
98 DDS DATAREADER QOS USE TOPIC QOS,
99 NULL,

100 DDS STATUS MASK NONE) ;

101 checkHandle (" B

102 chatMessageDR,

103 "DDS Subscriber create datareader (ChatMessage)");

Since this code is in a separate file from the MessageBoard, it does not have access
to all variables it needs, except for the ones that were passed as parameters to our
create simulated multitopic function. One of the first things we need is a
proxy to the ChatMessage Topic. Of course we can create our own, like we did
before, but that would require us to specify the same QoS parameters and stuff.
Right now is easier to just look up the Topic by name: we used the
DDS DomainParticipant find topic call for that in lines 72-75, which
returns a new proxy to an existing DDS_Topic that is identified by the name
specified in its 2nd parameter. If a Topic identified by that name cannot yet be found
in the DDS DomainParticipant specified in the 1st parameter, it will wait for the
time specified in its 3rd parameter to become available (in case it is created by

A
=/ ADLINK

Vortex OpenSplice C Tutorial

7 Content-Subscription Profile and Listeners 7.3 Simulating a MultiTopic Using Other Building Blocks

another, connected, DomainParticipant). If after the specified time it is still not
available, it returns a NULL pointer. The time out value we provided here is based on
the special constant DDS DURATION INFINITE, which indicates it should wait
indefinitely for the Topic to become available.

An alternative operation we could have used for this purpose was the
DDS DomainParticipant lookup topicdescription: here you also look
for a topic by name, but only in your own DomainParticipant: if it is not yet
available, it will immediately return NULL. However, this operation also allows you
to get proxies to DDS_ContentFilteredTopics and DDS MultiTopics that are
available in the specified DDS DomainParticipant. Because this means that the
result can be of different types, the return type is of type
DDS_ TopicDescription, the common parent for all kinds of Topics.

In lines 83-88 we actually create the ContentFilteredTopic itself: the 2nd parameter
specifies the name with which this DDS ContentFilteredTopic can be
identified (though only locally in the DDS DomainParticipant specified in the
1st parameter, since ContentFilteredTopic definitions are not communicated to other
participants), the 3rd parameter specifies the DDS_Topic it should filter on, the 4th
parameter specifies the filter expression (in SQL), and the 5th parameter specifies
the optional filter parameters. Although we cheated a little bit with the creation of
the filter expression, we can reuse the SQL expression parameters from the
MultiTopic as is, since they are only applicable to the filter part.

In lines 95-100 you can see that creating a DataReader for a
DDS_ContentFilteredTopic is similar to creating a DataReader for a normal
DDS Topic oraDDS MultiTopics.

Attaching a Listener

A
= ADLINK

One of the problems of the IDL to C language mapping is that it does not state how
to map a callback interface to C. Vortex OpenSplice has solved that problem (like
most well known DDS implementations have done) by mapping the callback
interface onto a structure that contains a function pointer for each of the contained
callback methods. As an example, the Listener of the DDS_DataReader is mapped
to a structure named DDS_DataReaderListener that contains seven function
pointer attributes: one for each of the seven callback methods. Besides that, it also
contains one extra pointer called 1istener data, that can be used to store any
type of data that needs to be available during each callback that the Listener will
make.

Since we only want to respond to incoming data, we only need to implement the
on_data_ available callback function: the other functions we will leave blank,
as is demonstrated in the following code.

75
Vortex OpenSplice C Tutorial

7 Content-Subscription Profile and Listeners

149

/* Declaration of the DataReaderListener. */
static struct DDS DataReaderListener *msgListener = NULL;
struct MsgListenerState {

/* Type-specific DDS entities */

Chat ChatMessageDataReader chatMessageDR;
Chat NameServiceDataReader nameServiceDR;
Chat NamedMessageDataWriter namedMessageDW;
/* Query related stuff */

DDS QueryCondition nameFinder;

DDS StringSeq
}i

*nameFinderParams;

/* Implementation for callback function "on data available".

void on message available (
void *listener data, DDS DataReader reader) ({

/* Allocate the DataReaderListener interface. */
msgListener = DDS DataReaderListener alloc();
checkHandle (msgListener, "DDS DataReaderListener alloc");

/* Fill the listener data with pointers to all entities
needed by the Listener implementation. */

struct MsglListenerState *listener state =

malloc (sizeof (struct MsgListenerState));
checkHandle (listener state, "malloc");
listener state->chatMessageDR = chatMessageDR;
listener state->nameServiceDR = nameServiceDR;
listener state->namedMessageDW = namedMessageDW;
listener:state->nameFinder = nameFinder;
listener state->nameFinderParams = nameFinderParams;
msgListener->listener data = listener state;

/* Assign the function pointer attributes
to their implementation functions. */
msgListener.on data available =
(void (*) (void *, DDS DataReader))
msgListener.on requested deadline missed =
msgListener.on requested incompatible gos =
msgListener.on sample rejected = NULL;
msgListener.on liveliness changed = NULL;
msgListener.on subscription match = NULL;

msgListener.on sample lost = NULL;

on message available;
NULL;
NULL;

7.3 Simulating a MultiTopic Using Other Building Blocks

*/

In line /05, the DDS_DataReaderListener struct is allocated on the heap. Each
of the function pointer attributes is then assigned to its corresponding function

implementation in lines /42-749, which in this case only concerns the

on_data_ available function that is implemented in lines //9-121. (The actual
implementation for this function will be presented later on). Please note in line /43
that you will need to cast your function implementation into the proper type, to
match the attribute definition of the DDS DataReaderListener.

76

A
A _ADLINK

Vortex OpenSplice C Tutorial

7 Content-Subscription Profile and Listeners 7.3 Simulating a MultiTopic Using Other Building Blocks

S,

A
= ADLINK

In this case the on _data available callback will need to access the following
Entities: it will need to read a sample from the ChatMessage DataReader, Query for
a matching userName in the NameService DataReader and write a merged sample
using the namedMessageDataWriter. To be able to access all these Entities
during this listener callback, we created a special structure called
MsgListenerState containing pointers to each of them: see lines /107-116. To
make this information available during each listener callback, we first have to
allocate and assign the contents of this struct (see lines /30-137) and then assign its
pointer to the 1istener data fields of the DDS DataReaderListener, see line
138.

As you can see, the first parameter of each callback function in each listener type is
always named listener data, and is in fact exactly the 1istener data field
you store in the corresponding listener structure. That way you have full control
over what type of information should be available for each individual Listener
instance. Be aware however that for the Listener itself the 1istener data is an
opaque type, it doesn’t know what it represents. The implementation for the
callback function will always need to cast the 1istener data field to its correct
type before it will be able to access its contents.

Apart from the on_data available function, all the other function pointer
attributes have no corresponding implementation and are assigned to NULL. Be
careful with this though: if the DataReader tries to invoke a function using a
function pointer that is set to NULL you will definitely get a Segmentation Violation.
That's why we need to make sure that the DataReader never tries to invoke the
functions that we didn't implement. We can do that by specifying a Listener bit
mask: in other words, a mask that tells the DataReader for which events it may
notify the Listener and for which events it may not. Each event is represented by its
own bit in the bit mask, and each of these bits has its own identifier. Selecting the
events for which you want to receive a callback is thus simply a matter of chaining
their identifiers in the bit mask when attaching the Listener. For the data available
event, this identifier is named DDS_ DATA AVAILABLE STATUS, see also Table 3,
Status Events Overview, on page 27:

150 /* Attach the DataReaderListener to the DataReader,

151 only enabling the data available event. */
152 status = DDS DataReader set listener (
153 cmReader, msglListener, DDS DATA AVAILABLE STATUS) ;

154 checkStatus(status, "DDS DataReader set listener");

The DDS_DATA AVAILABLE STATUS is event-based, not state based: it does not
trigger on the availability of data (as its name may imply), but on incoming samples
or events that have not yet been viewed by the application.

77
Vortex OpenSplice C Tutorial

7 Content-Subscription Profile and Listeners 7.3 Simulating a MultiTopic Using Other Building Blocks

78

Using a QueryCondition

As stated in Section 7.3, Simulating a MultiTopic Using Other Building Blocks,
when a new ChatMessage sample triggers the Listener we will have to perform the
following steps:

1. Extractits userID.

2. Execute a query to look for the corresponding userName in the NameService
DataReader.

3. Manually merge the results into a projection sample.
4. Publish this sample.

You should already be able to write the code for most of the above mentioned steps
except for the query part, which will be the focus of this section. Before executing a
query, you will first need to describe what you are looking for. In DDS terms it
means you will need to create a DDS_QueryCondition first, where your interest is
expressed in SQL. The next step is then to execute this query in a DataReader and to
obtain all samples that satisfy it. Since every query is dedicated to look for a specific
userID, you might be tempted to create new queries for every incoming
ChatMessage. However, creating the DDS_QueryCondition objects is rather
expensive, and since all queries are very similar (they only differ with respect to the
value of the user1D they are looking for), it makes sense to parameterise our
DDS_QueryCondition and reuse it over and over again, only changing the value
of the parameter when required.

Such an approach can save you a lot of performance, especially when the creation of
DDS QueryConditions can be done outside the main loop, so that this main loop
can limit itself to executing queries and changing their parameters. Following this
approach, our example will create the DDS QueryCondition during the
DDS DomainParticipant create simulated multitopic call (outside the
main loop), and adjust and execute it during the Listener callback (inside the main
loop). Let's focus on the creation of the DDS_QueryCondition first.

155 DDS StringSeq *nameFinderParams;
156 const char *nameFinderExpr;

157

158 /* Define the SQL expression (using a parameterized value). */
159 nameFinderExpr = "userID = $0";

160

161 /* Allocate and assign the query parameters. */

162 nameFinderParams = DDS StringSeq alloc();

163 checkHandle (nameFinderParams, "DDS StringSeq alloc");
164 nameFinderParams-> length = 1;

165 nameFinderParams-> maximum = 1;

166 nameFinderParams-> buffer = DDS StringSeq allocbuf (1);
167 checkHandle (

168 nameFinderParams-> buffer, "DDS StringSeq allocbuf");
169 nameFinderParams-> buffer[0] = DDS string alloc(

170 strlen (expression parameters-> buffer[0]));

A
=/ ADLINK

Vortex OpenSplice C Tutorial

7 Content-Subscription Profile and Listeners 7.3 Simulating a MultiTopic Using Other Building Blocks

A
= ADLINK

171 checkHandle (nameFinderParams-> buffer[0], "DDS string alloc");
172 /* Large enough to hold biggest value */

173 strcpy(

174 nameFinderParams-> buffer[0],

175 expression parameters-> buffer([0]);

176 DDS sequence set release(nameFinderParams, TRUE);

177

178 /* Create a QueryCondition to only read corresponding
179 nameService information by key-value. */

180 nameFinder = DDS DataReader create querycondition (
181 nameServiceDR, - -

182 DDS ANY SAMPLE STATE,

183 DDS_ANY VIEW STATE,

184 DDS ANY INSTANCE STATE,

185 nameFinderExpr,

186 nameFinderParams) ;

187 checkHandle (

188 nameFinder, "DDS DataReader create querycondition");

As you can see, line /59 specifies the SQL expression, which simply states that the
userID should be equal to the first parameter. (Parameters in SQL are numbered
starting with zero, and are prefixed by the % character). Lines /62-176 allocate and
initialize the sequence that will represent the query parameters (in this case only 1).
Here also all parameters, regardless of their type, must be represented as strings. We
have allocated enough string space to make sure that it can hold even the biggest
value of the userID.

The DDS_QueryCondition itself is created in lines /80-186, where the 1st
parameter specifies the DataReader that has to execute the query, the 2nd, 3rd and
4th parameters specify the desired lifecycle states, the Sth parameter specifies the
SQL expression and the 6th parameter its parameters.

So this query will be used during a Listener callback to look up the name for a given
ChatMessage. Let's take a look at what happens during that Listener callback,
when we have read a ChatMessage sample and want to find the corresponding
NameService entry.

189 /* Find the corresponding named message. */
190 struct MsgListenerState *listener state;

191

192 /* Obtain all entities mentioned in the listener state. */
193 listener state = (struct MsglistenerState *) listener data;
194

195 /* Take available samples and process each one individually. */
196

197

198 if (infoSegl. buffer[i].valid data)

199 {

200 if (msgSeq. buffer[i].userID != previous)

201 {

202 previous = msgSeq. buffer[i].userID;

203 snprintf (

204 listener state->nameFinderParams-> buffer([0],

205 15, "%d", previous);

206 status = DDS QueryCondition set query parameters (

79
Vortex OpenSplice C Tutorial

7 Content-Subscription Profile and Listeners 7.3 Simulating a MultiTopic Using Other Building Blocks

80

207 listener state->nameFinder,

208 listener state->nameFinderParams) ;

209 checkStatus (

210 status, "DDS QueryCondition set query parameters");
211 status = Chat NameServiceDataReader read w condition(
212 listener state->nameServiceDR,

213 &nameSeq,

214 &infoSeqg2,

215 DDS LENGTH UNLIMITED,

216 listener state->nameFinder);

217 checkStatus (

218 status, "Chat NameServiceDataReader read w condition");
219

220 /* Extract Name (there should only be one result). */
221 DDS free (userName) ;

222 if (status == DDS_RETCODE NO DATA)

223 {

224 userName = DDS string alloc (40);

225 checkHandle (userName, "DDS string alloc");

226 snprintf (userName, 40, "Name not found!! id = %d",previous) ;
227 }

228 else

229 {

230 userName = DDS string alloc(

231 strlen (nameSeq. buffer[0].name)) ;

232 checkHandle (userName, "DDS string alloc");

233 strcpy (userName, nameSeq. buffer[0].name) ;

234 }

235

236 /* Release the name sample again. */

237 status = Chat NameServiceDataReader return loan (

238 nameServiceDR, &nameSeq, &infoSeqg2?);

239 checkStatus (

240 status, "Chat NameServiceDataReader return loan");
241 } - - N

242 '}

The first thing that happens during our listener callback is that we cast the
listener data fieldtoa listener state structure, to be able to obtain all the
Entities we need during the rest of the callback: see lines 790-193.

Then we take all available samples (which are not displayed here) and iterate
through them. For each sample, we check its SampleInfo to see whether its contents
are valid (see line 7/98). This is necessary since in some cases a sample is only a
placeholder for an instance of a state change. This is an example: the case when a
writer disposes of an instance while on the reader side when all samples for that
instance have already been taken. Since the dispose operation only changes the
instance state, but does not actually transmit the sample it received as one of its
parameters,1 the reader side has no sample with which it can add a change in the

1. Use the writedispose operation if you want both the instance to be disposed and the
sample to be transmitted.

A
=/ ADLINK

Vortex OpenSplice C Tutorial

7 Content-Subscription Profile and Listeners 7.3 Simulating a MultiTopic Using Other Building Blocks

A
= ADLINK

Samplelnfo. In such cases, the reader will insert a dummy sample of which only the
keyfields have any meaningful data. The other fields are not initialized and should
therefore not be accessed.

Since this can have drastic consequences for the application, it is important that the
application is made aware of which samples are real and which samples are not, so
that is does not try to access uninitialized fields of a dummy sample. The field
named valid data in the Samplelnfo contains exactly that information: if it is
TRUE, then the sample is a real sample for which all fields are initialized properly, if
it is FALSE, then only its keyfields should be accessed.

When we know that we have a valid sample, we check (line 200) whether the
current userID that needs to be resolved is not equal to the previous one. If so, we
still have the previous name and need not look for it again. If this is not the case, we
need to look it up anyway, and therefore change the expression parameter to the
current userID: first we translate the decimal userID into a string and insert it into
element 0 of the parameter sequence (lines 203-205), then we use the

DDS QueryCondition set query parameters operation to tell the
DDS_QueryCondition is has to accept this new expression parameter sequence.

We then execute the query on our Chat NameServiceDataReader by invoking
the specialized Chat NameServiceDataReader read w condition
operation, as it is generated by the OpenSplice preprocessor (lines 2/7/-216). This
operation is similar to the normal read/take methods, and also has a take
counterpart. The first 4 parameters are identical to the normal read/take methods,
and the last parameter specifies the DDS_ReadCondition that the samples need to
match. Since a DDS QueryCondition is a specialization of a
DDS ReadCondition, it can be used here to make the DataReader only return
samples that satisfy our query.

The rest of the code is very straightforward, either one sample is returned (there can
be at most one sample that matches the query since user1D is a key field) or none at
all. If there is a sample, we will extract its name, cache it (possibly the next sample
that needs to be resolved has the same user1D) and return the loan. We can then
copy the resolved userName into the projected data type, together with the content
of the ChatMessage, and write it into the system. Not all that code is presented
here, but see multitopic.c in Appendix A for the full code listing.

81
Vortex OpenSplice C Tutorial

7 Content-Subscription Profile and Listeners 7.3 Simulating a MultiTopic Using Other Building Blocks

82

2 ADLINK
Vortex OpenSplice C Tutorial —

CHAPTER

8 Waiting for Conditions

A
A _ADLINK

In this example we will be working on another application called UserLoad, that
continuously monitors what is going on in the ChatRoom. It keeps track of all users
that come and go, and of all the messages they have sent. It will print a message on
the screen when users enter and leave the ChatRoom, and for users that leave the
room it will also print the number of messages they have sent while the UserLoad
program was monitoring.

For the UserLoad program to detect incoming events, we will use several kinds of
Condition objects. A Condition object can be configured to raise a flag when a
certain predefined situation occurs. Our application will use different types of
Conditions to notify of situations where new users join our ChatRoom, where active
users leave it, and when it is time for our application to stop monitoring the
ChatRoom. These Conditions are all attached to a WaitSet, that will immediately
trigger the main application thread when any of these attached Conditions becomes
TRUE.

Section 8.1, Conditions and WaitSets, introduces the general rationale behind
Conditions and WaitSets and explains the purpose of each Condition type.

Section 8.2, Using a ReadCondition, explains how to use ReadConditions to signal
a thread on the arrival of new instances.

Section 8.3, Using a StatusCondition, describes the alternative StatusCondition
mechanism to detect when a user leaves the ChatRoom example.

Section 8.4, Using a GuardCondition , describes how a GuardCondition can be
used to manually trigger a WaitSet for any user defined reason.

Section 8.5, Using a WaitSet, describes how to attach Conditions to a WaitSet, and
how to use this WaitSet to be notified of incoming events.

Section 8.6, Processing Expired Transient Data describes how the transient store
treats samples for which the originating writers are no longer alive and the impact it
has for an application.

Section 8.7, Using the HistoryQosPolicy, shows how the HistoryQosPolicy can be
used to keep track of the history of all messages that are received from the various
users.

The last section, Section 8.8, Cleaning Up, explains how to release resources when
an application is terminated.

83
Vortex OpenSplice C Tutorial

8 Waiting for Conditions 8.1 Conditions and WaitSets

84

Conditions and WaitSets

There are several different types of Condition objects, each one dedicated to detect a
certain type of situation. Each DDS Condition has a flag that becomes TRUE when
a certain situation occurs, and that remains TRUE until that situation has elapsed.
The value of this flag can be examined at any time by the application by using the
DDS Condition get trigger value operation.

By examining the value of this flag, it is possible for an application to use a polling
mechanism to detect the occurrence of a certain event. However, polling might be
quite expensive and therefore it may be better to use a mechanism that can block a
thread until a certain situation occurs. That is were the DDS_WaitSet comes in: a
WaitSet allows you to attach any number of DDS Condition objects to it, and to
block a thread until one or more of these attached condition objects will have a
trigger value that is TRUE.

Vortex OpenSplice offers the following types of DDS_Condition objects:

* ReadCondition - We already introduced the DDS ReadCondition in Section
7.1, SOL Controlled Building Blocks. What we did not mention there is that, since
it inherits from the DDS_Condition class, it also has a trigger value. This trigger
value is TRUE as long is data is available that matches the selected lifecycle
criteria.

* QueryCondition - We already introduced the DDS QueryCondition in SQL
Controlled Building Blocks as well. What we did not mention there is that, since it
inherits from the DDS ReadCondition, it also has a trigger value. This trigger
value is TRUE as long as data is available that matches both the selected lifecycle
criteria and the SQL expression.

* StatusCondition - The DDS_StatusCondition was already introduced in SOL
Controlled Building Blocks. We repeat in here that a DDS_StatusCondition
may be configured to monitor a user defined set of Entity conditions (being
reports of contract violations, reports of conflicting QosPolicy settings with
related Entities, reports of the availability of data, etc.), and that the flag of the
DDS StatusCondition will be raised as long as at least one of these Entity
conditions is TRUE.

* GuardCondition - A DDS_GuardCondition's trigger value is under full control
of the application, which can manipulate its state by using the
DDS StatusCondition set trigger value operation.

For our UserLoad application we will use a DDS WaitSet to block the main
thread. The the following DDS Conditions will be attached to this
DDS WaitSet:

A
=/ ADLINK

Vortex OpenSplice C Tutorial

8 Waiting for Conditions 8.2 Using a ReadCondition

1. A DDS ReadCondition that is used to trigger on the event of a new user
joining the ChatRoom. It will be created by the NameService DataReader and
will be set to trigger on any NameService sample that has a SampleState of
NOT READ, a ViewState of NEWand an InstanceState of ALIVE.

2. A DDS StatusCondition thatis used to trigger on the event of an active user
leaving the system. Of course we could do this using another
DDS_ReadCondition on the NameService DataReader that would trigger on
an InstanceState of NOT ALIVE DISPOSED, but for educational purposes
we will use the DDS_StatusCondition of the ChatMessage DataReader
instead. It will trigger when an associated ChatMessage DataWriter leaves the
system.

3. A DDS GuardCondition that is used to trigger the WaitSet when a
pre-defined amount of time has passed. This prevents the UserLoad application
from running forever.

When one or more of these Conditions raise their flag, they will trigger the WaitSet,
which will then unblock the main application thread. This application thread then
receives a list of all the Conditions responsible for the trigger and can handle each
one of them individually. The following sections will focus on each of these
Conditions.

Using a ReadCondition

A
= ADLINK

In Section 7.3.3, Using a QueryCondition, we already saw an example of how to
create a DDS_QueryCondition. Creating a DDS_ReadCondition is very similar
to this, since it is a generalization of the DDS QueryCondition: the only
difference is that it doesn't have a corresponding SQL expression.

In our application we want to be informed of new Chatters joining our ChatRoom.
Since every Chatter publishes his name and ID in a NameService Topic before
joining in, and since each userID represents a unique instance within our
NameService DataReader, it seems logical that new instances represent new
users joining our ChatRoom. (Note that an instance is marked NEW until its first
sample has actually been read. That means that a NEW ViewState can never be
combined with a READ SampleState.)

So to detect new users joining our ChatRoom, we only need to get triggered on the
arrival of new NameService instances. That means we need to configure our
NameService ReadCondition to trigger on samples that have a ViewState of NEW
and a SampleState of NOT READ. Since we only want to signal new users that are
still logged in (we will ignore the users that have already logged out before we even
got the chance to discover their presence), we will configure our InstanceState
to ALIVE. That results in the following code fragment.

1 /* A ReadCondition that will contain new users only */
85
Vortex OpenSplice C Tutorial

8 Waiting for Conditions 8.3 Using a StatusCondition

86

newUser = DDS DataReader create readcondition (
nameServer,
DDS_NOT READ SAMPLE STATE,
DDS NEW VIEW STATE,
DDS ALIVE INSTANCE STATE) ;
checkHandle (
newUser, "DDS DataReader create readcondition (newUser)");

O Joy Ul WN

As you can see, its very similar to the code presented in Using a QueryCondition.
The same approach could also be used to detect users that leave our ChatRoom: just
select an InstanceState thatis NOT ALIVE DISPOSED

In the coming section however, we will use an alternative way of detecting when a
user leaves the ChatRoom.

Using a StatusCondition

A DDS_StatusCondition is available on every DDS Entity object, just by
invoking its DDS _Entity get statuscondition operation. Since a
DDS DataReader inherits from DDS Entity, it also has a
DDS StatusCondition. As stated before, StatusConditions can be used to
notify the Entity of certain situations, like a violation to one of its contracts.

We will not treat each and every possible contract in this tutorial, but we will
mention one type of contract here, just to explain the mechanism of the
DDS StatusCondition.

When a DataWriter connects to a DataReader, it will establish a contract with it to
keep it informed about its Liveliness: in other words, the DataWriter will promise to
give a sort of heartbeat to the DataReader, so that the DataReader knows whether it
can still expect any updates coming from that DataWriter. If a DataWriter crashes or
is deleted, this heartbeat stops, which is a violation of the contract, and so the
DataReader must be informed about that. It can then (if applicablel) change the
InstanceState of the concerned instances, in other words, the instances that were
being transmitted by that DataWriter, from ALIVE to NOT ALIVE NO WRITERS.
This is important information because it could mean that the resources occupied by

these concerned instances may be released after some amount of time?.

1. Decisions on the liveliness aspects and their consequences are under the control of lots
of different QoS Policies, the most important ones being the
LivelinessQosPolicy, the OwnershipQosPolicy and the
DeadlineQosPolicy. Refer to the Vortex OpenSplice C Reference Guide.

2. That is controlled by the ReaderDatalLifecycleQosPolicy.

A
=/ ADLINK

Vortex OpenSplice C Tutorial

8 Waiting for Conditions 8.3 Using a StatusCondition

A
= ADLINK

What is interesting for our application is that we can be notified of the fact that a
DataWriter loses its Liveliness, meaning a user effectively leaves the ChatRoom. So
besides monitoring the NameService for the disposal of a specific userID, we can
also monitor the Liveliness of each ChatMessage DataWriter instead. Let's see
how that works.

9 /* Obtain a StatusCondition that triggers only when a
10 Writer changes Liveliness */
11 leftUser = DDS DataReader get statuscondition (loadAdmin);
12 checkHandle (leftUser, "DDS DataReader get statuscondition");
13 status = DDS StatusCondition set enabled statuses(
14 leftUser, DDS LIVELINESS CHANGED STATUS) ;
checkStatus (status, "DDS StatusCondition set enabled statuses");

In line /7 you see that we use the DDS DataReader get statuscondition
operation to obtain the DDS StatusCondition of our ChatMessage
DataReader. (This operation is inherited from the Entity class and is also available
as the DDS_Entity get statuscondition operation.) By default, the
StatusCondition is configured to trigger on all Statuses that are relevant to the
corresponding Entity. We only want to respond to the event where a connected
ChatMessage DataWriter loses its Liveliness, so we will configure the
StatusCondition only to trigger on that occasion. The StatusCondition uses a bit
mask to select the Statuses it has to monitor, so for that reason we need to set a new
bit mask, using the DDS _StatusCondition set enabled statuses
operation. Each Status is identified by a separate bit and has a unique identifier: the
Status we need is named DDS LIVELINESS CHANGED STATUS, see also
Table 3, Status Events Overview on page 27. You can see in lines /3-14
how we use this identifier to set up the new bit mask.

Once the StatusCondition has triggered, it only means that there is a change in
Liveliness in one of the connected DataWriters: the LivelinessStatus keeps
track of the current number of alive DataWriters and of the current number of
not alive DataWriters. Any change to these numbers will trigger the
StatusCondition. So if we get a trigger, we do not know which user is effected by
that, and we do not know whether that user just entered (was added to the
alive count) or just left (was removed from the not alive count). There are
two special change counters that keep track of the changes to both the
alive countandnot alive count, butthese treat both additions and removals
in the same way: a removal followed by an addition of a DataWriter leads to an
alive count change of 2. Both change counters will be reset each time the
LivelinessStatus is obtained.

Since we can't distinguish between users entering and leaving the ChatRoom by just
studying the LivelinessStatus, we will need to keep track of the previous
number of alive users. That way we can see whether the current number of users is
bigger or smaller than the previous number, and so whether a user has actually

87
Vortex OpenSplice C Tutorial

8 Waiting for Conditions 8.4 Using a GuardCondition

88

entered or left the ChatRoom. To access this LivelinessStatus, we use the
DDS DataReader get liveliness changed status operation on the
DataReader.

So now we know when a user actually leaves the ChatRoom, but we still don't know
which user that was. We could use a complicated algorithm to map the effected
DataWriter to a specific user, but because we already know that a user also
unregisters its userID in the NameService when leaving the room, we will just
take all NOT ALIVE NO WRITERS instances from the NameService DataReader
instead, which is much easier to do. So each time we get a trigger for a change in
Liveliness, we execute the following code:

15 /* Some liveliness has changed (either a DataWriter joined
16 or a DataWriter left) */

17 status = DDS DataReader get liveliness changed status(

18 loadAdmin, &livChangStatus);

19 if (livChangStatus.active count < prevCount) {

20 R

21 /* A user has left the ChatRoom, since a DataWriter lost
22 its liveliness. Take the effected users so they will

23 not appear in the list later on. */

2 status = Chat NameServiceDataReader take (

25 nameServer,

26 &nsList,

27 &infoSeq,

28 DDS LENGTH UNLIMITED,

29 DDS ANY SAMPLE STATE,

30 DDS ANY VIEW STATE,

31 DDS NOT ALIVE NO WRITERS INSTANCE STATE);

32 checkStatus (status, " Chat NameServiceDataReader take ");
33 600

34 prevCount = livChangStatus.active count;

35}

Much more happens in the real code, but we will get back on that later in Section
8.7, Using the HistoryQosPolicy.

Using a GuardCondition

We want the UserLoad application to run only for 60 seconds, so we could check in
every loop whether this time has already elapsed, and if so, terminate the
application. However, if the UserLoad's main thread is blocked on a WaitSet, and
no incoming events unblock it, the application can not check our timing constraint
and could theoretically be stuck in that WaitSet forever is no more events would
allow it to unblock first.

This is where the DDS _GuardCondition comes in. As stated before, a
DDS_GuardCondition is simply a DDS_Condition whose trigger value is under
full control of the application. In this specific example we could add a
GuardCondition to all the other Conditions already attached to the WaitSet. If the
DDS_GuardCondition has an initial trigger value of FALSE, it will not influence

A
=/ ADLINK

Vortex OpenSplice C Tutorial

8 Waiting for Conditions 8.5 Using a WaitSet

the WaitSet in any way. However, as soon as we change its trigger value into TRUE,
the WaitSet must trigger and unblock the main thread, regardless of the settings of
all other attached Conditions.

What we will do in our application is to spawn a separate thread that sleeps for 60
seconds. As soon as it wakes up, it will set the trigger value of the
DDS GuardCondition to TRUE. First we will show you how the
DDS GuardCondition is created:

36 /* Create a bare guard which will be used to close the room */
37 escape = DDS GuardCondition alloc();
38 checkHandle (escape, "DDS GuardCondition alloc");

40 /* Start the sleeper thread. */
41 pthread t tid;
42 pthread create (&tid, NULL, delayedEscape, NULL);

As you can see, a DDS_GuardCondition has no corresponding factory and must
be created by a DDS GuardCondition alloc operation (see line 37). A new
thread is spawned in line 42, which is instructed to invoke the delayedEscape
function as soon as it is ready to be executed. The implementation of that function is
depicted below:

43 void *
44 delayedEscape (

45 void *arg)

46 {

47 DDS ReturnCode t status;

48

49 sleep (60) ; /* wait for 60 sec. */

50 status = DDS GuardCondition set trigger value (escape, TRUE);
51 checkStatus (status, "DDS GuardCondition set trigger value");
52

53 return NULL;

54 }

As you can see, the DDS_GuardCondition is actually a very simple object that can
be very convenient if you manually want to unblock a WaitSet. But let's first focus
some more on the WaitSet itself, which is the subject of the next section.

Using a WaitSet

A
= ADLINK

In the previous sections we create a number of DDS_Conditions with the intention
of attaching them to a DDS WaitSet, so that the DDS WaitSet could unblock the
main thread in case of any necessary activity. Let's first see how a DDS_ WaitSet is
created and how all these DDS_Conditions can be attached to it:

55 DDS WaitSet userLoadWsS;

56

57 /* Create a waitset and add the ReadConditions */
58 userLoadWS = DDS WaitSet alloc();

89
Vortex OpenSplice C Tutorial

8 Waiting for Conditions 8.5 Using a WaitSet

90

59 checkHandle (userLoadWS, "DDS WaitSet alloc");

60 status = DDS WaitSet attach condition (userLoadWS, newUser) ;

61 checkStatus (status, "DDS WaitSet attach condition (newUser)");
62 status = DDS WaitSet attach condition (userLoadWsS, leftUser);
63 checkStatus (status, "DDS WaitSet attach condition (leftUser)");
64 status = DDS WaitSet attach condition (userLoadWS, escape);

65 checkStatus (status, "DDS WaitSet attach condition (escape)"):;

As with the DDS GuardCondition, the DDS WaitSet has no corresponding
factory and needs to be created using a special DDS_WaitSet alloc operation
(see line 58). Because of this, there is no dependency on any DomainParticipant and
so a DDS_WaitSet can be used to combine DDS_Conditions coming from
different DomainParticipants. This makes WaitSets extremely useful to build
bridges between several Domains, since they allow an application to react on events
coming from different origins.

In lines 60-65 you see how each Condition is attached to the WaitSet, simply using
the same DDS WaitSet attach condition operation for each type of
Condition. For the WaitSet it doesn't matter what type of Condition is attached, it
will only monitor its trigger value.

Now that we have set up our DDS_WaitSet, we can block our main application
thread until one of the attached Conditions actually raises its flag. In such cases,
the WaitSet will unblock and return you the Conditions responsible for that. (Note
that more than one Condition could have caused the WwaitsSet to unblock). Let's
look at the following code, where the main thread blocks itself and then handles the
triggered Conditions.

66 DDS ConditionSeq * guardList = NULL;

67 DDS Duration t timeout = DDS DURATION INFINITE;

68 int closed = 0;

69 DDS_unsigned long i, J¢

70

71 /* Initialize and pre-allocate the GuardList used to obtain
72 the triggered Conditions. */

73 guardList = DDS ConditionSeq alloc();

74 checkHandle (guardList, "DDS ConditionSeq alloc");

75 guardList-> maximum = 3; a T

76 guardList-> length 0;

77 guardList-> buffer = DDS ConditionSeq allocbuf (3);

78 checkHandle (guardList-> buffer, "DDS ConditionSeq allocbuf");

80 while (!closed) {

81 /* Wait until at least one of the Conditions in
82 the waitset triggers. */

83 status = DDS WaitSet wait (userLoadWS, guardList, &timeout);
84 checkStatus (status, "DDS WaitSet wait");

85

86 /* Walk over all guards to display information */
87 for (i = 0; i < guardList-> length; i++) {

88 guard = guardList-> buffer[i];

89 if (guard == newUser) {

90

91 } else if (guard == leftUser) {

A
=/ ADLINK

Vortex OpenSplice C Tutorial

8 Waiting for Conditions 8.6 Processing Expired Transient Data

92

93 } else if (guard == escape) {

94 printf ("UserLoad has terminated.\n");
95 closed = 1;

96 } else {

97 assert (0) ;

98)

99 } /* for */

100 } /* while (!closed) */

In line 83 you see how the main thread blocks itself on the WaitSet using the
DDS_WaitSet wait operation. The purpose of the guardList parameter is to
pass back a sequence of all Conditions that were responsible for the trigger: since it
is an inout type parameter, we can pre-allocate its contents so that the WaitSet
doesn’t have to allocate new resources in each and every iteration. Since we already
know we attached 3 Conditions to the WaitSet, the guardList can never
contain more than 3 elements. That’s why we pre-allocate the guardList with the
worst-case number of elements in lines 73-78, so that we know we can re-use this
buffer in all subsequent iterations without ever having to re-allocate to a bigger
buffer. The last parameter specifies how long the WwaitSet should block at
maximum: if the specified time has elapsed but no Condition has triggered, the
WaitSet will unblock anyway and return a DDS_RETCODE _TIMEOUT and will set the
length of the Condition sequence to 0. In this case we have supplied the special
constant DDS DURATION INFINITE to indicate that the WaitSet should wait
indefinitely until one of its Conditions raises its flag (which is no problem since
we use our GuardCondition to escape it).

Once the WaitSet has triggered, we need to handle all the Conditions that were
responsible for that. We will do that by just iterating through the guardList we
obtained (line §7-99) and comparing each element inside it to the Conditions we
attached to this WaitSet. That way we know which Condition represents which
purpose, and we can handle each Condition in its own special way.

All this said and done, we are almost finished with the UserLoad application: the
only thing we still need to do is to explain how to keep track of the entire
ChatMessage history of each Chatter that joined our ChatRoom. That will be the
subject of the next section.

Processing Expired Transient Data

ADLINK

Since our UserLoad application subscribes itself to the NameService Topic,
which has TRANSTENT durability, it will automatically receive all known usernames
at startup from the Durability service. Since Chatters leaving the chatroom do not
dispose their names from the NameService (see section Section 5.6, Unregistering
and Disposing of Instances), these names will not be removed from the transient

91
Vortex OpenSplice C Tutorial

8 Waiting for Conditions 8.7 Using the HistoryQosPolicy

92

store'. That means that a late joining NamerService DataReader at its startup
will receive usernames of both currently active users and of users that already left
the chatroom.

Since the UserLoad application is only interested in displaying usernames of
currently active users, it must have a way to filter out the ones that are not currently
active. Luckily, the durability service does not influence the instance state of a
sample: if an instance has no active DataWriters, it is delivered with an
instance state thatis set to DDS NOT ALIVE NO WRITERS, while the ones
that do have on or more active DataWriters are set to DDS_ALIVE.

101 /* Remove all known Users that are not currently active. */

102 status = Chat NameServiceDataReader take (

103 nameServer, a

104 &nslList,

105 &infoSeq,

106 DDS LENGTH UNLIMITED,

107 DDS ANY SAMPLE STATE,

108 DDS ANY VIEW STATE,

109 DDS_NOT ALIVE INSTANCE STATE);

110 checkStatus (status, "Chat NameServiceDataReader take"):;
111 status = Chat NameServiceDataReader return loan(
112 nameServer, &nsList, &infoSeq);

113 checkStatus(status, "Chat NameServiceDataReader return loan");

In the listing above, we use of this behaviour to filter out the usernames of user that
already left the chatroom. In lines /02-110 we take away all instances that have their
instance_state set to NOT ALIVE, leaving only the instances that are currenly still
alive®. We use the loaning mechanism here because it is difficult to anticipate how
many instances that are not considered alive will be delivered by the transient store.
That means we may not forget to return the loan right after we took away these
samples (see lines 7/1-113).

Using the HistoryQosPolicy

Until now, our DataReaders were configured to store at maximum only one sample
for each instance. As you know, a new instance is produced on the DataReader side
as soon as its first sample has arrived. When the next sample arrives before the first
sample was consumed by the application, it will overwrite the previous one: the idea
is that the DataReader always stores the sample that represents the most recent state
of an instance.

1. A DataWriter that disposes an instance, also removes it from the transient store. Late
joining DataReaders will not be aware of that instance’s former existence.

2. The NOT ALIVE instance_state mask specifies both the NOT ALIVE DISPOSED and
NOT ALIVE NO WRITERS state.

A
=/ ADLINK

Vortex OpenSplice C Tutorial

8 Waiting for Conditions 8.7 Using the HistoryQosPolicy

It may be possible however that you are not interested in just the most recent state of
an instance, but that you want to keep track of the latest n samples of an instance, or
maybe even of all samples of an instance. The DataReader can be configured in
such a way that it provides you exactly the kind of storage you need. The storage
spectrum of a DataReader is under the full control of a QosPolicy named
HistroyQosPolicy, that has two main settings:

 KEEP LAST - This setting comes with a second variable named depth. If this
depth variable equals n, the DataReader will store the latest n samples of each
instance for you. For newly arriving samples it will behave like a FIFO queue, the
oldest sample is shifted out when a new sample arrives.

* KEEP ALL - This setting prevents newer samples from overwriting older ones:
samples can only disappear when they are actually consumed by the application.
If the application does not 'take' its samples and new samples continue to arrive,
the DataReader will allocate more and more space, until it reaches its resource
limits'. If that is the case, it will reject newly arriving samples until the
application releases some resources by consuming the older samples. As you may
expect, this behaviour can be dangerous if the data is labelled as RELIABLE, since
the DataWriter may not just drop the data and therefore continuously will need to
re-transmit it until it is finally accepted by all the connected DataReaders.

The default HistoryQosPolicy settings are configured to be KEEP LAST with a
history depth of 1. For our UserLoad application we want to keep track of all
messages sent by each of the Chatters. That means we will have to change the
HistroyQosPolicy to KEEP ALL. We do not have a depth setting in this case,
since the DataReader will just allocate all resources it can claim. This is potentially
dangerous if too much users stay online too long, sending out thousands of chat
messages while logged in. We will just assume for now that is not the case, so if we
take care of the fact that when a user leaves the ChatRoom we will release all the
messages it had sent, we should not get into trouble with respect to our resource
limits. The following code will show you how to tailor the DataReader QoS settings
for this purpose.

114 /* Adapt the DataReaderQos for the ChatMessageDataReader
115 to keep track of all messages. */

116 message gos = DDS DataReaderQos alloc();

117 checkHandle (message gos, "DDS DataReaderQos alloc");
118 status = DDS_Subscriber get default datareader gos (

119 chatSubscriber, message gos);

120 checkStatus (-

121 status, "DDS Subscriber get default datareader gos");
122 status = DDS_Subscriber copy from topic gos (N

123 chatSubscriber, message gos, reliable topic gos);

1. These resource limits are under full control of the ResourcelLimitsQosPolicy,
and by default are set to unlimited, meaning all the memory available on that specific
machine.

93

ADLINK) i
‘ Vortex OpenSplice C Tutorial

8 Waiting for Conditions

124
125
126
127
128
129
130
131
132
133
134
135
136

8.7 Using the HistoryQosPolicy

checkStatus (status, "DDS Subscriber copy from topic gos");
message qgos->history.kind = DDS KEEP ALL HISTORY QOS;

/* Create a DataReader for the ChatMessage Topic (using the
appropriate QoS). */
loadAdmin = DDS Subscriber create datareader (
chatSubscriber,
chatMessageTopic,
message_ Jos,
NULL,
DDS_STATUS MASK NONE) ;
checkHandle (
loadAdmin, "DDS Subscriber create datareader (ChatMessage)"):;

As you can see in line /76, we start with allocating a DDS DataReaderQos holder,
which is filled with the default DataReader settings in line //8. We then overwrite
the QoS Policies that overlap with the Topic policies with the QosPolicy settings of
our ChatMessage topic in line /22. Finally we change its History to the KEEP ALL
setting in line /25. (The HistroyQosPolicy is no Request/Offered policy, it can
be configured independently from the DataWriter settings). We then simply create
our DataReader with it in lines /29-134.

Now let's look at how to access the historical data of a user when he leaves our

ChatRoom.

137 DDS LivelinessChangedStatus livChangStatus;

138 DDS long prevCount = 0;

139

140 if (guard == leftUser) {

141 /* Some liveliness has changed (either a DataWriter

142 joined or a DataWriter left). */

143 status = DDS DataReader get liveliness changed status (
144 loadAdmin, &livChangStatus) ; - -

145 if (livChangStatus.alive count < prevCount) {

146 /* A user has left the ChatRoom, since a DataWriter lost
147 its liveliness. Take the effected users so they will not
148 appear in the list later on. */

149 status = Chat NameServiceDataReader take (

150 nameServer, -

151 &nslList,

152 &infoSeq,

153 DDS LENGTH UNLIMITED,

154 DDS_ANY SAMPLE STATE,

155 DDS ANY VIEW STATE,

156 DDS_NOT ALIVE INSTANCE STATE) ;

157 checkStatus (status, "Chat NameServiceDataReader take");
158

159 for (j = 0; j < nsList. length; j++) {

160 /* re-apply query arguments */

161 sprintf (args. buffer[0], "%d", nsList. buffer[]j].userID);
162 status = DDS QueryCondition set query parameters (

163 singleUser, &args);

164 checkStatus (

165 status, "DDS QueryCondition set query parameters");
166

167 /* Read this users history */

168 status = Chat ChatMessageDataReader take w condition(

94

A
=/ ADLINK

Vortex OpenSplice C Tutorial

8 Waiting for Conditions 8.7 Using the HistoryQosPolicy

ADLINK

169 loadAdmin,

170 &msglist,

171 &infoSeq2,

172 DDS LENGTH UNLIMITED,

173 singleUser) ;

174 checkStatus (

175 status, "Chat ChatMessageDataReader take w condition");
176

177 /* Display the user and his history */

178 printf (

179 "Departed user %s has sent %d messages\n",

180 nsList. buffer[j].name,

181 msgList. length);

182 status = Chat ChatMessageDataReader return loan (
183 loadAdmin, &msglList, &infoSeq2);

184 checkStatus (

185 status, "Chat ChatMessageDataReader return loan");
186 }

187 status = Chat NameServiceDataReader return loan (

188 nameServer, &nsList, &infoSeq);

189 checkStatus (

190 status, "Chat NameServiceDataReader return loan");
191 }

192 prevCount = livChangStatus.alive count;

193 }

Parts of this code were already presented in Section 8.3, Using a StatusCondition,
where we explained how to interpret the StatusCondition trigger. After we have
obtained all disposed wusers by wusing the instance state
DDS _NOT ALIVE INSTANCE STATE in lines /49-156, we iterate over each of
these users and try to find their corresponding ChatMessages by tailoring the SQL
expression parameters (lines /67-165) and executing this DDS QueryCondition
on the ChatMessage DataReader (lines /68-173). We take the data to avoid the
DataReader from exhausting its resources, and also because we no longer need
ChatMessages of a user that has already left. The result is a sequence that contains
all the ChatMessages of a single user (we queried on userID, which is unique for
every user), so the length of this sequence tells us how many messages were
received from that user.

In case the result would contain information from multiple instances, all samples
would still be returned in the same, one dimensional sequence. The ordering of the
different samples belonging to the different instances is under full control of the
PresentationQosPolicy of the Subscriber. When using default policy settings
the samples will be ordered as a list, where samples belonging to the same instance
are consecutive. The DDS SampleInfo that comes with each sample will give you
a sample rank, that tells you how much more of the following samples belong to
the same instance as the current sample. This may be a very convenient feature if
you want to collect all samples that belong to the same instance.

95
Vortex OpenSplice C Tutorial

8 Waiting for Conditions 8.8 Cleaning Up

8.8 Cleaning Up

96

When the GuardCondition has triggered our WaitSet, and the application leaves
its main loop, we need to clean up lots of resources. However, since lots of Entities
are currently attached to each other, we will first have to break them apart before we
can start to delete them. (Otherwise we would create dangling relationships, in
which one entity points to another, already deleted, entity). Let's see what happens
when our application leaves the main loop.

194 /* Remove all Conditions from the WaitSet. */

195 status = DDS WaitSet detach condition (userLoadWS, escape);
196 checkStatus (status, "DDS WaitSet detach condition (escape)");
197 status = DDS WaitSet detach condition (userLoadWsS, leftUser);
198 checkStatus (status, "DDS WaitSet detach condition (leftUser)");
199 status = DDS WaitSet detach condition (userLoadWS, newUser);
200 checkStatus (status, "DDS WaitSet detach condition (newUser)");
201

202 /* Free all resources */

203 DDS free (guardList);

204 DDS free(args. buffer);

205 DDS free (userLoadWs) ;

206 DDS free (escape);

207 DDS free(setting topic gos);

208 DDS free(reliable topic gos);

209 DDS free (nameServiceTypeName) ;

210 DDS free (chatMessageTypeName) ;

211 DDS free (nameServiceTS) ;

212 DDS free (chatMessageTS) ;

213 status = DDS DomainParticipant delete contained entities(

214 participant) ;

215 checkStatus (

216 status, "DDS DomainParticipant delete contained entities");
217 status = DDS DomainParticipantFactory delete participant (

218 DDS TheParticipantFactory,

219 participant) ;

220 checkStatus (

221 status, "DDS DomainParticipantFactory delete participant");

In lines 795-200 we detach all Conditions from the DDS WaitSet. Now both the
DDS WaitSet and the DDS GuardCondition can be released, and since neither
of them has a corresponding factory, we will have to use the DDS free operation to
do that (see lines 205, 206). After deleting all QoS holders and sequence buffers, it
is now time to delete all our Entities using their corresponding factories. Normally
we would recursively travel from our DDS DomainParticipant to all its
embedded factories, delete all embedded Entities in there, then delete these factories
and finally delete our DDS_DomainParticipant.

There is however a convenience operation on each factory named
DDS <factory> delete contained entities that does exactly that: it
recursively travels through all embedded entities and deletes them all. That means
that if we invoke it on the DDS_DomainParticipant (like we do in line 273), all

A
=/ ADLINK

Vortex OpenSplice C Tutorial

8 Waiting for Conditions 8.8 Cleaning Up

A
= ADLINK

Entities underneath it will be deleted. That leaves only the
DDS DomainParticipant itself to be deleted (line 217-219). Here you see an
example of the last convenience macro called DDS TheParticipantFactory.

This macro represents the singleton DomainParticipantFactory handle, which
can be used at any location where the DomainParticipantFactory is required.
It allows you to skip the explicit DDS DomainParticipantFactory
get instance function call that normally provides you with that handle. So
creating a DDS_DomainParticipant can be as easy as this.

222 /* Create a DomainParticipant (using the

223 'TheParticipantFactory' convenience macro). */

224 participant = DDS DomainParticipantFactory create participant (
225 DDS TheParticipantFactory,

226 domain,

227 DDS PARTICIPANT QOS DEFAULT,

228 NULL, -

229 DDS STATUS MASK NONE) ;

We do not need to obtain the DomainParticipantFactory handle first; we can just
directly insert its convenience macro in here. Be careful when using this specific
convenience macro in multi-threaded applications though! Although all other API
calls of OpenSplice are re-entrant, the DDS DomainParticipantFactory
get instance call is not.

Invoking it simultaneously by two or more threads may result in the corruption of
memory. This restriction no longer applies after a successful return from its first
invocation. Since the convenience macro is just an alias for this function call, it
should be used carefully in multi-threaded environments as well.

Finally, as you may have noticed, we did not clean up the sequences used to read
and take NameService and ChatMessage samples. In this case that was not
necessary, since we allocated all these sequences on stack.

230 DDS sequence Chat ChatMessage msgList =

231 {0, 0, DDS OBJECT NIL, FALSE };

232 DDS_sequence Chat NameService nsList =

233 {0, 0, DDS_OBJECT NIL, FALSE };

234 DDS_SamplelInfoSeq infoSeq = { 0, 0, DDS OBJECT NIL, FALSE };
235 DDS SampleInfoSeq infoSeq2 = { 0, 0, DDS OBJECT NIL, FALSE };

Allocating a sequence on stack is allowed, but you should not forget to manually
release the buffer when the sequence runs out of scope. In this case that was not
necessary as well, since we 'loaned' our buffer from the DataReader and we already
returned the loan. When allocating sequences on stack though, be sure to initialize
them correctly: not only the length, maximumand buffer fields should be
initialized correctly, but also the corresponding release flag. According to the IDL C
language mapping, this flag can only be set using the appropriate getter and setter

97
Vortex OpenSplice C Tutorial

8 Waiting for Conditions 8.8 Cleaning Up

98

functions (see Section 8.3, Using a StatusCondition), but when allocating the
sequence on stack it is very convenient to know that the release flag is just a fourth
attribute, that can be initialized just like its predecessors.

This completes the tutorial. The full code listing for this application can be found
under UserLoad.c in Appendix A. Of course there is a lot more to learn, especially
with regard to all the QoS settings and the corresponding Statuses, but all the basic
DDS principles have been covered now. The best way to go from here is to start
experimenting yourself now: build some small applications and try to get them to
work. While mastering the basics, try to familiarize yourself with the Reference
Manual: examine the details of the more complicated API calls and try to get a good
overview of all the available QoS settings. Don't be afraid to experiment: it's the
best way to increase your knowledge.

A
=/ ADLINK

Vortex OpenSplice C Tutorial

APPENDICES

Appendix

C Language Examples’ Code

This appendix lists the complete C source code for the examples provided in the C
Tutorial Guide.

Chat.idl

1 /********‘k**********‘k*‘k*‘k*‘k**
2 *

3 * Copyright (c) 2007

4 * PrismTech Ltd.

5 * All rights Reserved.

6 *

7 w3 LOGICAL NAME: Chat.idl

8 * FUNCTION: Vortex OpenSplice Tutorial example code.

9 * MODULE: Tutorial for the C programming language.

10 * DATE june 2007.

11 KA A AR AR AR AR A KA AR AR AR AR AR A A A A A A A A Ak A Ak A hhhkhkhkhkhkhkhkhkkkkxK* k%
12 =

13 * This file contains the data definitions for the tutorial examples.
14 =

15 ***/

16

17 module Chat {

18

19 const long MAX NAME = 32;

20 typedef string<MAX NAME> nameType;

21

22 struct ChatMessage ({

23 long userID; // owner of message

24 long index; // message number

25 string content; // message body

26) g

27 #pragma keylist ChatMessage userID

28

29 struct NameService {

30 long userID; // unique user identification
31 nameType name; // name of the user

32) g

33 #pragma keylist NameService userID

34

35 struct NamedMessage {

36 long userID; // unique user identification
37 nameType userName; // user name

38 long index; // message number

39 string content; // message body

40 }i

41 #pragma keylist NamedMessage userID

42

43 };

A ADLINK 101

C Tutorial Guide

Appendices

CheckStatus.h

1 /**
2 *

3 * Copyright (c) 2007

4 * PrismTech Ltd.

5 * All rights Reserved.

6 *

7 * LOGICAL NAME: CheckStatus.h

8 * FUNCTION: Vortex OpenSplice Tutorial example code.

9 * MODULE: Tutorial for the C programming language.

10 * DATE Jjune 2007.

11 Ak hkhkkhkhkhkhkhkhhhkhkhhhhhkhhkdh kb hkhhkhhhk kb dhkhkhh bk bk bk bk hkhkhkhr kb h kb hkrhkhkrhkhkhkhhkhkhkrkhxkhx
12 =

13 * This file contains the headers for the error handling operations.

14 *

15 ***/

16

17 #ifndef CHECKSTATUS H
18 #define _ CHECKSTATUS H _

20 #include "dds dcps.h"
21 #include <stdio.h>
22 #include <stdlib.h>

24 /* Array to hold the names for all ReturnCodes. */
25 char *RetCodeName[13];

26

27 JF

28 * Returns the name of an error code.

29 #=FY)

30 char *getErrorName (DDS ReturnCode t status);
31

32 /**

33 * Check the return status for errors. If there is an error, then terminate.
34 **/
35 void checkStatus (DDS ReturnCode t status, const char *info);

37 /**

38 * Check whether a valid handle has been returned. If not, then terminate.
39 =y

40 void checkHandle (void *handle, char *info);

42 #endif

CheckStatus.c

1 /**
2 *

3 * Copyright (c) 2007

4 * PrismTech Ltd.

5 * All rights Reserved.

6 *

7 * LOGICAL NAME: CheckStatus.c

8 * FUNCTION: Vortex OpenSplice Tutorial example code.

9 * MODULE: Tutorial for the C programming language.

102

S A ADLINK
C Tutorial Guide

Appendices

10
11
12

A

)

ADLINK

* DATE Jjune 2007.

Ak khkhkhkhkrhkhhkhkhhkhhhkhr kb hkhhkhrhkhrhkhhkhhhhr kb bk bk bk hhbhk kb hkhkrhk bk hkhkhkhkhkhkhkxhkhkkx

*

* This file contains the implementation for the error handling operations.
*

***/

#include "CheckStatus.h"

/* Array to hold the names for all ReturnCodes. */
char *RetCodeName[1l3] = {
"DDS RETCODE OK",
"DDS_RETCODE_ERROR",
"DDS RETCODE UNSUPPORTED",
"DDS_ RETCODE BAD PARAMETER",
"DDS RETCODE PRECONDITION NOT MET",
"DDS_ RETCODE OUT OF RESOURCES",
"DDS RETCODE NOT ENABLED",
"DDS_ RETCODE IMMUTABLE POLICY",
"DDS RETCODE INCONSISTENT POLICY",
"DDS_ RETCODE ALREADY DELETED",
"DDS RETCODE TIMEOUT",
"DDS_ RETCODE NO DATA",
"DDS RETCODE ILLEGAL OPERATION" };

/xx
* Returns the name of an error code.
*x)

char *getErrorName (DDS ReturnCode t status)

{
}
/%

* Check the return status for errors. If there is an error, then terminate.
**)
void checkStatus (
DDS ReturnCode t status,
const char *info) {

return RetCodeName [status];

if (status != DDS RETCODE OK && status I= DDS_RETCODE_NO_DATA) {
fprintf (stderr, "Error in %s: %s\n", info, getErrorName (status)) ;
exit (0);

}
/%

* Check whether a valid handle has been returned. If not, then terminate.
**)
void checkHandle (
void *handle,
char *info) {

if (!'handle) {
fprintf (
stderr,
"Error in %s: Creation failed: invalid handle\n",
info) ;
exit (0);
}

103
C Tutorial Guide

Appendices

71

Chatter.c

OowJo U WwWN -

104

#include
#include
#include
#include
#include
#include
#include

*

Copyright (c) 2007
PrismTech Ltd.

All rights Reserved.
LOGICAL NAME: Chatter.c
FUNCTION:

DATE Jjune 2007.

Vortex OpenSplice Tutorial example code.
Tutorial for the C programming language.

/**

KA KA A A KA A A A A A A A A A A A A AR AR A A AR AR A A A A Ak Ak Ak dhkhhhkhhkhhhhkhhhhhhkhhkhhhhhhhkhk k%%

This file contains the implementation for the

*
*
*
*
*
*
* MODULE:
*
*
*
*
*
*

**/

<stdlib.h>
<stdio.h>
<unistd.h>
<string.h>

"dds dcps.h"
"CheckStatus.h"
"Chat.h"

#define MAX MSG LEN 256
#define NUM MSG 10
#define TERMINATION MESSAGE -1

int
main (

int argc,
char *argvl[])

/* Generic DDS entities */
DDS DomainParticipantFactory
DDS DomainParticipant

DDS Topic

DDS Topic

DDS Publisher

/* QosPolicy holders */
DDS TopicQos

DDS TopicQos

DDS PublisherQos

DDS DataWriterQos

/* DDS Identifiers */
DDS DomainId t

DDS InstanceHandle t
DDS ReturnCode t

/* Type-specific DDS entities */

Chat ChatMessageTypeSupport
Chat NameServiceTypeSupport

C Tutorial Guide

'Chatter’

dpf;

participant;
chatMessageTopic;
nameServiceTopic;
chatPublisher;

*reliable topic gos;
*setting topic gos;
*pub gos;
*dw_qgos;

domain = DDS DOMAIN ID DEFAULT;
userHandle;
status;

chatMessageTS;
nameServiceTS;

executable.

A
= _ADLINK

Appendices

55 Chat ChatMessageDataWriter talker;
56 Chat NameServiceDataWriter nameServer;
57
58 /* Sample definitions */
59 Chat ChatMessage *msqg; /* Example on Heap */
60 Chat NameService ns; /* Example on Stack */
61
62 /* Others */
63 int ownID = 1;
64 int il g
65 char *chatMessageTypeName = NULL;
66 char *nameServiceTypeName = NULL;
67 char *chatterName = NULL;
68 char *partitionName = NULL;
69
70
71 /* Options: Chatter [ownID [name]] */
72 if (argc > 1) {
73 sscanf (argv[1l], "%d", &ownID);
74 if (argc > 2) {
75 chatterName = argv([2];
76 }
77 }
78
79 /* Create a DomainParticipantFactory and a DomainParticipant
80 (using Default QoS settings). */
81 dpf = DDS DomainParticipantFactory get instance ();
82 checkHandle (dpf, "DDS DomainParticipantFactory get instance");
83 participant = DDS DomainParticipantFactory create participant (
84 dpf,
85 domain,
86 DDS PARTICIPANT QOS DEFAULT,
87 NULL, -
88 DDS_STATUS MASK NONE) ;
89 checkHandle (
90 participant, "DDS DomainParticipantFactory create participant");
91
92 /* Register the required datatype for ChatMessage. */
93 chatMessageTS = Chat ChatMessageTypeSupport alloc();
94 checkHandle (chatMessageTS, "Chat ChatMessageTypeSupport alloc");
95 chatMessageTypeName =
96 Chat ChatMessageTypeSupport get type name (chatMessageTS) ;
97 status = Chat ChatMessageTypeSupport register type (
98 chatMessageTs,
99 participant,
100 chatMessageTypeName) ;
101 checkStatus (status, "Chat ChatMessageTypeSupport register type");
102
103 /* Register the required datatype for NameService. */
104 nameServiceTS = Chat NameServiceTypeSupport alloc();
105 checkHandle (nameServiceTS, "Chat NameServiceTypeSupport alloc");
106 nameServiceTypeName =
107 Chat NameServiceTypeSupport get type name (nameServiceTS) ;
108 status = Chat NameServiceTypeSupport register type (
109 nameServiceTS,
110 participant,
111 nameServiceTypeNamne) ;
112 checkStatus (status, "Chat NameServiceTypeSupport register type");
113
114 /* Set the ReliabilityQosPolicy to RELIABLE. */
115 reliable topic gos = DDS TopicQos alloc();
105
A ADLINK

C Tutorial Guide

Appendices

116 checkHandle (reliable topic gos, "DDS TopicQos alloc");

117 status = DDS DomainParticipant get default topic gos(

118 participant, reliable topic gos);

119 checkStatus (status, "DDS DomainParticipant get default topic gos");
120 reliable topic gos->reliability.kind = DDS RELIABLE RELIABILITY QOS;
121

122 /* Make the tailored QoS the new default. */

123 status = DDS DomainParticipant set default topic gos(

124 participant, reliable topic gos);

125 checkStatus (status, "DDS DomainParticipant set default topic gos");
126

127 /* Use the changed policy when defining the ChatMessage topic */

128 chatMessageTopic = DDS DomainParticipant create topic/(

129 participant,

130 "Chat ChatMessage",

131 chatMessageTypeName,

132 reliable topic gos,

133 NULL,

134 DDS_STATUS MASK NONE) ;

135 checkHandle (

136 chatMessageTopic, "DDS DomainParticipant create topic (ChatMessage)");
137

138 /* Set the DurabilityQosPolicy to TRANSIENT. */

139 setting topic gos = DDS TopicQos alloc();

140 checkHandle (setting topic gos, "DDS TopicQos alloc");

141 status = DDS DomainParticipant get default topic gos(

142 participant, setting topic gos);

143 checkStatus (status, "DDS DomainParticipant get default topic qgos");
144 setting topic gos->durability.kind = DDS TRANSIENT DURABILITY QOS;
145

146 /* Create the NameService Topic. */

147 nameServiceTopic = DDS DomainParticipant create topic(

148 participant,

149 "Chat NameService",

150 nameServiceTypeNanme,

151 setting topic gos,

152 NULL, n

153 DDS_STATUS_MASK NONE) ;

154 checkHandle (nameServiceTopic, "DDS DomainParticipant create topic");
155

156 /* Adapt the default PublisherQos to write into the

157 "ChatRoom" Partition. */

158 partitionName = "ChatRoom";

159 pub gos = DDS PublisherQos alloc();

160 checkHandle (pub_gos, "DDS PublisherQos alloc");

16l status = DDS DomainParticipant get default publisher gos(

162 participant, pub gos);

163 checkStatus (status, "DDS DomainParticipant get default publisher gos");
164 pub gos->partition.name. length = 1;

165 pub gos->partition.name. maximum = 1;

166 pub gos->partition.name. buffer = DDS StringSeq allocbuf (1);

167 checkHandle (pub gos->partition.name. buffer, "DDS StringSeq allocbuf");
168 pub gos->partition.name. buffer([0] =

169 DDS string alloc(strlen(partitionName));

170 checkHandle (pub_ gos->partition.name. buffer[0], "DDS string alloc");
171 strcpy (pub gos->partition.name. buffer[0], partitionName);

172

173 /* Create a Publisher for the chatter application. */

174 chatPublisher = DDS DomainParticipant create publisher (

175 participant, pub gos, NULL, DDS STATUS MASK NONE) ;

176 checkHandle (chatPublisher, "DDS DomainParticipant create publisher");
106

S A ADLINK
C Tutorial Guide

Appendices

177
178 /* Create a DataWriter for the ChatMessage Topic
179 (using the appropriate QoS). */
180 talker = DDS Publisher create datawriter(
181 chatPublisher,
182 chatMessageTopic,
183 DDS DATAWRITER QOS USE TOPIC QOS,
184 NULL,
185 DDS_STATUS MASK NONE) ;
186 checkHandle (talker, "DDS Publisher create datawriter (chatMessage)");
187
188 /* Create a DataWriter for the NameService Topic
189 (using the appropriate QoS). */
190 dw gos = DDS DataWriterQos alloc();
191 checkHandle (dw_gos, "DDS DataWriterQos alloc");
192 status = DDS Publisher get default datawriter gos (chatPublisher, dw gos);
193 checkStatus (status, "DDS Publisher get default datawriter gos");
194 status = DDS Publisher copy from topic gos (
195 chatPublisher, dw gos, setting topic gos);
196 checkStatus (status, "DDS Publisher copy from topic gos");
197 dw gos->writer data lifecycle.autodispose unregistered instances = FALSE;
198 nameServer = DDS Publisher create datawriter (
199 chatPublisher,
200 nameServiceTopic,
201 dw_ gos,
202 NULL,
203 DDS_STATUS MASK NONE) ;
204 checkHandle (nameServer, "DDS Publisher create datawriter (NameService)");
205
206 /* Initialize the NameServer attributes located on stack. */
207 ns.userID = ownID;
208 ns.name = DDS string alloc(Chat MAX NAME+1) ;
209 checkHandle (ns.name, "DDS string alloc");
210 if (chatterName) {
211 strncpy (ns.name, chatterName, Chat MAX NAME + 1);
212 } else {
213 snprintf (ns.name, Chat MAX NAME+1l, "Chatter %d", ownID);
214 }
215
216 /* Write the user-information into the system
217 (registering the instance implicitly). */
218 status = Chat NameServiceDataWriter write (nameServer, &ns, DDS HANDLE NIL);
219 checkStatus (status, "Chat ChatMessageDataWriter write");
220
221 /* Initialize the chat messages on Heap. */
222 msg = Chat ChatMessage alloc();
223 checkHandle (msg, "Chat ChatMessage alloc");
224 msg->userID = ownID;
225 msg->index = 0;
226 msg->content = DDS string alloc (MAX MSG LEN) ;
227 checkHandle (msg->content, "DDS string alloc");
228 if (ownID == TERMINATION MESSAGE) {
229 snprintf (msg->content, MAX MSG LEN, "Termination message.");
230 } else {
231 snprintf (msg->content, MAX MSG LEN,
232 "Hi there, I will send you %d more messages.", NUM MSG) ;
233 }
234 printf ("Writing message: %$s\n", msg->content) ;
235
236 /* Register a chat message for this user
237 (pre-allocating resources for it!!) */
107
A ADLINK

C Tutorial Guide

Appendices

238 userHandle = Chat ChatMessageDataWriter register instance (talker, msg);
239

240 /* Write a message using the pre-generated instance handle. */

241 status = Chat ChatMessageDataWriter write(talker, msg, userHandle);
242 checkStatus (status, "Chat ChatMessageDataWriter write");

243

244 sleep (1); /* do not run so fast! */

245

246 /* Write any number of messages, re-using the existing

247 string-buffer: no leak!!. */

248 for (i = 1; i <= NUM MSG && ownID != TERMINATION MESSAGE; i++) {

249 msg->index = i;

250 snprintf (msg->content, MAX MSG LEN, "Message no. %d", msg->index);
251 printf ("Writing message: %s\n", msg->content) ;

252 status = Chat ChatMessageDataWriter write (talker, msg, userHandle);
253 checkStatus (status, "Chat ChatMessageDataWriter write");

254 sleep (1); /* do not run so fast! */

255 }

256

257 /* Leave the room by disposing and unregistering the message instance. */
258 status = Chat ChatMessageDataWriter dispose(talker, msg, userHandle);
259 checkStatus (status, "Chat ChatMessageDataWriter dispose");

260 status = Chat ChatMessageDataWriter unregister instance (

261 talker, msg, userHandle);

262 checkStatus (status, "Chat ChatMessageDataWriter unregister instance");
263

264 /* Also unregister our name. */

265 status = Chat NameServiceDataWriter unregister instance (

266 nameServer, &ns, DDS HANDLE NIL); B

267 checkStatus (status, "Chat NameServiceDataWriter unregister instance");
268

269 /* Release the data-samples. */

270 DDS free(ns.name); // ns allocated on stack:

271 // explicit de-allocation of indirections!!

272 DDS free (msg) ; // msg allocated on heap:

273 // implicit de-allocation of indirections!!

274

275 /* Remove the DataWriters */

276 status = DDS Publisher delete datawriter (chatPublisher, talker);

277 checkStatus (status, "DDS Publisher delete datawriter (talker)");

278

279 status = DDS Publisher delete datawriter (chatPublisher, nameServer);
280 checkStatus (status, "DDS Publisher delete datawriter (nameServer)");
281

282 /* Remove the Publisher. */

283 status = DDS DomainParticipant delete publisher (

284 participant, chatPublisher);

285 checkStatus (status, "DDS DomainParticipant delete publisher");

286

287 /* Remove the Topics. */

288 status = DDS DomainParticipant delete topic(

289 participant, nameServiceTopic) ;

290 checkStatus (

291 status, "DDS DomainParticipant delete topic (nameServiceTopic)");
292

293 status = DDS DomainParticipant delete topic(

294 participant, chatMessageTopic) ;

295 checkStatus (

296 status, "DDS DomainParticipant delete topic (chatMessageTopic)");
297

298 /* De-allocate the QoS policies. */

108

S A ADLINK
C Tutorial Guide

Appendices

299 DDS free(reliable topic gos);

300 DDS free(setting topic qos);

301 DDS free (pub gos); // Note that DDS free recursively de-allocates
302 // all indirections as well!!

303

304 /* De-allocate the type-names and TypeSupport objects. */

305 DDS free (nameServiceTypeName) ;

306 DDS free (chatMessageTypeName) ;

307 DDS free (nameServiceTS) ;

308 DDS free (chatMessageTS) ;

309

310 /* Remove the DomainParticipant. */

311 status = DDS DomainParticipantFactory delete participant (

312 dpf, participant);

313 checkStatus (status, "DDS DomainParticipantFactory delete participant");
314

315 return O;

316}

MessageBoard.c

1 /**
2 *

3 * Copyright (c) 2007

4 * PrismTech Ltd.

5 * All rights Reserved.

6 *

7 * LOGICAL NAME: MessageBoard.c

8 * FUNCTION: Vortex OpenSplice Tutorial example code.

9 * MODULE: Tutorial for the C programming language.

10 * DATE june 2007.

11 R b I I e S b I b 2 I S S I I S b S b eI b I b b I b S S S b S I b e S S b b S S e S b S b I Sh b b S S b 2 b I I b i i
12 =

13 * This file contains the implementation for the 'MessageBoard' executable.
14 =+

15 **‘k/

16

17 #include <stdio.h>
18 #include <unistd.h>
19 #include <string.h>

21 #include "dds_ dcps.h"

22 #include "CheckStatus.h"
23 #include "Chat.h"

24 #include "multitopic.h"

28 #define TERMINATION MESSAGE -1

32 int

33 main (

34 int argc,

35 char *argv[])

37 /* Generic DDS entities */

4 ADLINK 109
‘ C Tutorial Guide

1!

Appendices

38 DDS DomainParticipantFactory dpf;

39 DDS DomainParticipant participant;

40 DDS Topic chatMessageTopic;

41 DDS Topic nameServiceTopic;

42 DDS MultiTopic namedMessageTopic;

43 DDS Subscriber chatSubscriber;

44

45 /* Type-specific DDS entities */

46 Chat ChatMessageTypeSupport chatMessageTsS;

47 Chat NameServiceTypeSupport nameServiceTS;

48 Chat NamedMessageTypeSupport namedMessageTsS;

49 Chat NamedMessageDataReader chatAdmin;

50 DDS sequence Chat NamedMessage *msgSeq;

51 DDS SampleInfoSeq *infoSeq;

52

53 /* QosPolicy holders */

54 DDS TopicQos *reliable topic gos;

55 DDS TopicQos *setting topic gos;

56 DDS SubscriberQos *sub_qgos;

57 DDS StringSeq *parameterList;

58

59 /* DDS Identifiers */

60 DDS_ DomainId t domain = DDS DOMAIN ID DEFAULT;
61 DDS ReturnCode t status;

62

63 /* Others */

64 DDS unsigned long ig

65 DDS boolean terminated = FALSE;

66 char * partitionName;

67 char * chatMessageTypeName = NULL;

68 char * nameServiceTypeName = NULL;

69 char * namedMessageTypeName = NULL;
70

71 /* Options: MessageBoard [ownID] */

72 /* Messages having owner ownID will be ignored */

73 parameterList = DDS StringSeq alloc();

74 checkHandle (parameterList, "DDS StringSeq alloc");

75 parameterList-> length = 1;

76 parameterList-> maximum = 1;

77 parameterList-> buffer = DDS StringSeq allocbuf (1);

78 checkHandle (parameterList-> buffer, "DDS StringSeq allocbuf");
79

80 if (argc > 1) {

81 parameterList-> buffer[0] = DDS string alloc (strlen(argv[1l]));
82 checkHandle (parameterList-> buffer[0], "DDS string alloc");
83 strcpy (parameterList-> buffer[0], argv[1l]);

84 }

85 else

86 {

87 parameterList-> buffer[0] = DDS string alloc(1l);

88 checkHandle (parameterList-> buffer[0], "DDS string alloc");
89 strcpy (parameterList-> buffer[0], "0");

90 }

91

92 /* Create a DomainParticipantFactory and a DomainParticipant
93 (using Default QoS settings. */

94 dpf = DDS DomainParticipantFactory get instance ();

95 checkHandle (dpf, "DDS DomainParticipantFactory get instance");
96 participant = DDS DomainParticipantFactory create participant (
97 dpf,

98 domain,

110

S A ADLINK
C Tutorial Guide

Appendices

99 DDS PARTICIPANT QOS DEFAULT,
100 NULL,
101 DDS_STATUS MASK NONE) ;
102 checkHandle (
103 participant, "DDS DomainParticipantFactory create participant");
104
105 /* Register the required datatype for ChatMessage. */
106 chatMessageTS = Chat ChatMessageTypeSupport alloc();
107 checkHandle (chatMessageTS, "Chat ChatMessageTypeSupport alloc");
108 chatMessageTypeName =
109 Chat ChatMessageTypeSupport get type name (chatMessageTS) ;
110 status = Chat ChatMessageTypeSupport register type (
111 chatMessageTs,
112 participant,
113 chatMessageTypeName) ;
114 checkStatus (status, "Chat ChatMessageTypeSupport register type");
115
116 /* Register the required datatype for NameService. */
117 nameServiceTS = Chat NameServiceTypeSupport alloc();
118 checkHandle (nameServiceTS, "Chat NameServiceTypeSupport alloc");
119 nameServiceTypeName =
120 Chat NameServiceTypeSupport get type name (nameServiceTS) ;
121 status = Chat NameServiceTypeSupport register type (
122 nameServiceTS,
123 participant,
124 nameServiceTypeName) ;
125 checkStatus (status, "Chat NameServiceTypeSupport register type");
126
127 /* Register the required datatype for NamedMessage. */
128 namedMessageTS = Chat NamedMessageTypeSupport alloc();
129 checkHandle (namedMessageTS, "Chat NamedMessageTypeSupport alloc");
130 namedMessageTypeName =
131 Chat NamedMessageTypeSupport get type name (namedMessageTS) ;
132 status = Chat NamedMessageTypeSupport register type (
133 namedMessageTsS,
134 participant,
135 namedMessageTypeName) ;
136 checkStatus (status, "Chat NamedMessageTypeSupport register type");
137
138 /* Set the ReliabilityQosPolicy to RELIABLE. */
139 reliable topic gos = DDS TopicQos alloc();
140 checkHandle (reliable topic gos, "DDS TopicQos alloc");
141 status = DDS DomainParticipant get default topic gos(
142 participant, reliable topic gos);
143 checkStatus (status, "DDS DomainParticipant get default topic gos");
1144 reliable topic gos->reliability.kind = DDS RELIABLE RELIABILITY QOS;
145
146 /* Make the tailored QoS the new default. */
147 status = DDS DomainParticipant set default topic gos(
148 participant, reliable topic gos);
149 checkStatus (status, "DDS DomainParticipant set default topic gos");
150
151 /* Use the changed policy when defining the ChatMessage topic */
152 chatMessageTopic = DDS DomainParticipant create topic(
153 participant,
154 "Chat ChatMessage",
155 chatMessageTypeName,
156 reliable topic gos,
157 NULL, - -
158 DDS_STATUS MASK NONE) ;
159 checkHandle (
111
A ADLINK

C Tutorial Guide

Appendices

160 chatMessageTopic, "DDS DomainParticipant create topic (ChatMessage)");
16l

162 /* Set the DurabilityQosPolicy to TRANSIENT. */

163 setting topic gos = DDS TopicQos alloc();

164 checkHandle (setting topic gos, "DDS TopicQos alloc");

165 status = DDS DomainParticipant get default topic gos(participant,
setting topic gos);

166 ‘checkStatus (status, "DDS DomainParticipant get default topic gos");
167 setting topic gos->durability.kind = DDS TRANSTENT DURABILITY QOS;
168

169 /* Create the NameService Topic. */

170 nameServiceTopic = DDS DomainParticipant create topic(

171 participant,

172 "Chat NameService",

173 nameServiceTypeName,

174 setting topic gos,

175 NULL, -

176 DDS_STATUS_MASK NONE) ;

177 checkHandle (nameServiceTopic, "DDS DomainParticipant create topic");
178

179 /* Create a multitopic that substitutes the userID with

180 its corresponding userName. */

181 namedMessageTopic = DDS DomainParticipant create simulated multitopic (
182 participant, - - - -

183 "Chat NamedMessage",

184 namedMessageTypeName,

185 "SELECT userID, name AS userName, index, content "

186 "FROM Chat NameService NATURAL JOIN Chat ChatMessage "

187 "WHERE userID <> $0", a

188 parameterlList) ;

189 checkHandle (

190 namedMessageTopic, "DDS DomainParticipant simulate multitopic");
191

192 /* Adapt the default SubscriberQos to read from the

193 "ChatRoom" Partition. */

194 partitionName = "ChatRoom";

195 sub gos = DDS SubscriberQos alloc();

196 checkHandle (sub_gos, "DDS SubscriberQos alloc");

197 status = DDS DomainParticipant get default subscriber gos (

198 participant, sub gos); - - -

199 checkStatus (status, "DDS DomainParticipant get default subscriber gos");
200 sub_gos->partition.name. length = 1; - - B
201 sub gos->partition.name. maximum = 1;

202 sub_gos->partition.name. buffer = DDS StringSeq allocbuf (1);

203 checkHandle (sub gos->partition.name. buffer, "DDS StringSeq allocbuf");
204 sub_gos->partition.name. buffer[0] = - B

205 DDS string alloc(strlen(partitionName));

206 checkHandle (sub_gos->partition.name. buffer[0], "DDS string alloc");
207 strcpy (sub qgos->partition.name. buffer[0], partitionName);

208

209 /* Create a Subscriber for the MessageBoard application. */

210 chatSubscriber = DDS DomainParticipant create subscriber (

211 participant, sub gos, NULL, DDS STATUS MASK NONE) ;

212 checkHandle (chatSubscriber, "DDS DomainParticipant create subscriber");
213

214 /* Create a DataReader for the NamedMessage Topic

215 (using the appropriate QoS). */

216 chatAdmin = DDS Subscriber create datareader (

217 chatSubscriber,

218 namedMessageTopic,

112

S A ADLINK
C Tutorial Guide

Appendices

219 DDS DATAREADER QOS USE TOPIC QOS,

220 NULL,

221 DDS_STATUS MASK NONE) ;

222 checkHandle (chatAdmin, "DDS Subscriber create datareader");

223

224 /* Print a message that the MessageBoard has opened. */

225 printf ("MessageBoard has opened: send a ChatMessage with "

226 "uyserID = -1 to close it....\n\n");

227

228 /* Allocate the sequence holders for the DataReader */

229 msgSeq = DDS sequence Chat NamedMessage alloc();

230 checkHandle (msgSeq, "DDS sequence Chat NamedMessage alloc");

231 infoSeq = DDS SampleInfoSeq alloc();

232 checkHandle (infoSeq, "DDS SampleInfoSeq alloc");

233

234 while (!terminated) {

235 /* Note: using read does not remove the samples from

236 unregistered instances from the DataReader. This means

237 that the DataRase would use more and more resources.

238 That's why we use take here instead. */

239

240 status = Chat NamedMessageDataReader take (

241 chatAdmin, -

242 msgSeq,

243 infoSeq,

244 DDS LENGTH UNLIMITED,

245 DDS_ANY SAMPLE STATE,

246 DDS ANY VIEW STATE,

247 DDS_ALIVE INSTANCE STATE);

248 checkStatus (status, "Chat NamedMessageDataReader take");

249

250 for (i = 0; i < msgSeg-> length; i++) {

251 Chat NamedMessage *msg = & (msgSeqg-> buffer([i]);

252 if (msg->userID == TERMINATION MESSAGE) {

253 printf ("Termination message received: exiting...\n");

254 terminated = TRUE;

255 } else {

256 printf ("%s: %s\n", msg->userName, msg->content) ;

257 }

258 }

259

260 status = Chat NamedMessageDataReader return loan(

2601 chatAdmin, msgSeq, infoSeq);

262 checkStatus (status, "Chat ChatMessageDataReader return loan");

263

264 /* Sleep for some amount of time, as not to consume

265 too much CPU cycles. */

266 usleep (100000) ;

267 }

268

269 /* Remove the DataReader */

270 status = DDS Subscriber delete datareader (chatSubscriber, chatAdmin);

271 checkStatus (status, "DDS Subscriber delete datareader");

272

273 /* Remove the Subscriber. */

2874 status = DDS DomainParticipant delete subscriber (

275 participant, chatSubscriber) ;

276 checkStatus (status, "DDS DomainParticipant delete subscriber");

277

278 /* Remove the Topics. */

279 status = DDS DomainParticipant delete simulated multitopic(
113

A ADLINK

C Tutorial Guide

Appendices

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313

participant, namedMessageTopic) ;
checkStatus (status, "DDS DomainParticipant delete simulated multitopic");

status = DDS DomainParticipant delete topic(
participant, nameServiceTopic) ;
checkStatus (
status, "DDS DomainParticipant delete topic (nameServiceTopic)");

status = DDS DomainParticipant delete topic(
participant, chatMessageTopic) ;
checkStatus (
status, "DDS DomainParticipant delete topic (chatMessageTopic)");

/* De-allocate the QoS policies. */

DDS free(reliable topic gos);

DDS free (setting topic qos);

DDS free(sub gos); // Note that DDS free recursively de-allocates
// all indirections as well!!

/* De-allocate the type-names and TypeSupport objects. */
DDS free (namedMessageTypeName) ;

DDS free (nameServiceTypeName) ;

DDS free (chatMessageTypeName) ;

DDS free (namedMessageTs) ;
DDS free (nameServiceTS) ;
DDS free (chatMessageTS) ;

/* Remove the DomainParticipant. */
status = DDS DomainParticipantFactory delete participant (
dpf, participant);
checkStatus (status, "DDS DomainParticipantFactory delete participant");

return 0;

}

multitopic.h

OO JoUl b WN

114

/**
*

* Copyright (c) 2007

* PrismTech Ltd.

* All rights Reserved.

*

* LOGICAL NAME: multitopic.h

* FUNCTION: Vortex OpenSplice Tutorial example code.
* MODULE: Tutorial for the C programming language.
* DATE june 2007.

R R I I b e S b I b I S SR b S I b b b I b S b e b b I b R S S S S e b 2R I b R b IR S b b b b I b S b Sb b I b b b b 2 b i a3
*

* This file contains the headers for all operations required to simulate
* the MultiTopic behavior.

*
***/

#include "dds_dcps.h"

DDS TopicDescription
DDS DomainParticipant create simulated multitopic(

A
= _ADLINK

C Tutorial Guide

Appendices

DDS DomainParticipant participant,

const DDS char *name,

const DDS char *type name,

const DDS char *subscription expression,

const DDS StringSeq *expression parameters
)7

DDS ReturnCode t

DDS DomainParticipant delete simulated multitopic(
DDS DomainParticipant participant,
DDS TopicDescription smt

)7

void on message available (

36 void *listener data,

37 DDS DataReader reader

38);

multitopic.c

l /**
2 *

3 * Copyright (c) 2007

4 * PrismTech Ltd.

5 * All rights Reserved.

6 *

7 * LOGICAL NAME: multitopic.c

8 * FUNCTION: Vortex OpenSplice Tutorial example code.
9 * MODULE: Tutorial for the C programming language.
10 * DATE Jjune 2007.

ll Ak khkhkhkhkhkhkhhkhkhhkkhhhkhhrkhkhhkhkhhkhrkhkhrhkhhkhhhhr kb kb hkhhhkhhbhk kb hkhkrhkhkhkhkhkkhkhkhkhkrhkhkxkx
12 =

13 * This file contains the implementation for all operations required to
14 * simulate the MultiTopic behavior.

15 =

16 **‘k/

17

18

19 #include <string.h>

20

21 #include "multitopic.h"

22 #include "Chat.h"

23 #include "dds_dcps.h"

24 #include "CheckStatus.h"

25

26 /* DataReaderListener */

27 static struct DDS DataReaderListener *msglListener = NULL;

28

29 struct MsgListenerState

30 {

31 /* Type-specific DDS entities */

32 Chat ChatMessageDataReader chatMessageDR;

33 Chat NameServiceDataReader nameServiceDR;

34 Chat NamedMessageDataWriter namedMessageDW;

35

36 /* Query related stuff */

37 DDS QueryCondition nameFinder;

38 DDS StringSeq *nameFinderParams;

A
A _ADLINK

115
C Tutorial Guide

Appendices

39 };

40

41 /* Generic DDS entities */

42 static DDS Topic chatMessageTopic;
43 static DDS Topic nameServiceTopic;
44 static DDS ContentFilteredTopic filteredMessageTopic;
45 static DDS Topic namedMessageTopic;
46 static DDS Subscriber multiSub;

47 static DDS Publisher multiPub;

48

49

50 DDS MultiTopic
51 DDS DomainParticipant create simulated multitopic (

52 DDS DomainParticipant participant,

53 const DDS char *name,

54 const DDS char *type name,

55 const DDS char *subscription expression,

56 const DDS StringSeq *expression parameters)

57 {

58 /* Type-specific DDS entities */

59 static Chat ChatMessageDataReader chatMessageDR;

60 static Chat NameServiceDataReader nameServiceDR;

61 static Chat NamedMessageDataWriter namedMessageDW;

62

63 /* Query related stuff */

64 static DDS QueryCondition nameFinder;

65 static DDS StringSeq *nameFinderParams;
66

67 /* QosPolicy holders */

68 DDS TopicQos *namedMessageQos;

69 DDS SubscriberQos *sub_ qgos;

70 DDS PublisherQos *pub qgos;

71

72 /* Others */

73 const char *partitionName = "ChatRoom";
74 const char *nameFinderExpr;

75 DDS Duration t infiniteTimeOut = DDS DURATION INFINITE;
76 DDS ReturnCode t status;

77

78 /* Lookup both components that constitute the multi-topic. */
79 chatMessageTopic = DDS DomainParticipant find topic(

80 participant,

81 "Chat ChatMessage",

82 &infiniteTimeOut) ;

83 checkHandle (

84 chatMessageTopic,

85 "DDS DomainParticipant find topic (Chat ChatMessage)");
86

87 nameServiceTopic = DDS DomainParticipant find topic(

88 participant,

89 "Chat NameService",

90 &infiniteTimeOut) ;

91 checkHandle (

92 nameServiceTopic,

93 "DDS DomainParticipant find topic (Chat NameService)");
94

95 /* Create a ContentFilteredTopic to filter out our own ChatMessages. */
96 filteredMessageTopic = DDS DomainParticipant create contentfilteredtopic(
97 participant,

98 "Chat FilteredMessage",

99 chatMessageTopic,

116

o A _ADLINK
C Tutorial Guide

Appendices

100 "userID <> %0",
101 expression parameters);
102 checkHandle (
103 filteredMessageTopic,
104 "DDS DomainParticipant create contentfilteredtopic");
105
106
107 /* Adapt the default SubscriberQos to read from the "ChatRoom" Partition. */
108 sub _gos = DDS SubscriberQos alloc();
109 checkHandle (sub _gos, "DDS SubscriberQos alloc");
110 status = DDS DomainParticipant get default subscriber gos(
111 participant, sub qgos);
112 checkStatus (status, "DDS DomainParticipant get default subscriber gos");
113 sub gos->partition.name. length = 1;
114 sub_gos->partition.name. maximum = 1;
115 sub gos->partition.name. buffer = DDS StringSeq allocbuf (1);
116 checkHandle (sub_gos->partition.name. buffer, "DDS StringSeq allocbuf");
117 sub gos->partition.name. buffer[0] =
118 DDS string alloc (strlen(partitionName));
119 checkHandle (sub gos->partition.name. buffer[0], "DDS string alloc");
120 strcpy (sub_gos->partition.name. buffer[0], partitionName) ;
121
122 /* Create a private Subscriber for the multitopic simulator. */
123 multiSub = DDS DomainParticipant create subscriber (
124 participant, sub gos, NULL, DDS STATUS MASK NONE) ;
125 checkHandle (
126 multiSub, "DDS DomainParticipant create subscriber (for multitopic)");
127
128 /* Create a DataReader for the FilteredMessage Topic
129 (using the appropriate QoS). */
130 chatMessageDR = DDS Subscriber create datareader (
131 multiSub,
132 filteredMessageTopic,
133 DDS DATAREADER QOS USE TOPIC QOS,
134 NULL, - -
135 DDS_STATUS MASK NONE) ;
136 checkHandle (
137 chatMessageDR, "DDS Subscriber create datareader (ChatMessage)");
138
139 /* Create a DataReader for the nameService Topic
140 (using the appropriate QoS). */
141 nameServiceDR = DDS Subscriber create datareader (
142 multiSub, B B B
143 nameServiceTopic,
144 DDS_DATAREADER QOS USE_TOPIC QOS,
145 NULL,
146 DDS_STATUS MASK NONE) ;
147 checkHandle (
148 nameServiceDR, "DDS Subscriber create datareader (NameService)");
149
150 /* Define the SQL expression (using a parameterized value). */
151 nameFinderExpr = "userID = %0";
152
153 /* Allocate and assign the query parameters. */
154 nameFinderParams = DDS StringSeq alloc();
155 checkHandle (nameFinderParams, "DDS StringSeqg alloc");
156 nameFinderParams-> length = 1; - T
157 nameFinderParams-> maximum = 1;
158 nameFinderParams-> buffer = DDS StringSeq allocbuf (1);
159 checkHandle (nameFinderParams-> buffer, "DDS StringSeq allocbuf");
160 nameFinderParams-> buffer[0] =
117
A ADLINK

C Tutorial Guide

Appendices

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

118

DDS string alloc(strlen(expression parameters-> buffer([0])
checkHandle (nameFinderParams-> buffer[0], "DDS string alloc");

)i

strcpy (nameFinderParams—-> buffer[0], expression parameters-> buffer[0]);

DDS sequence set release (nameFinderParams, TRUE);

/* Create a QueryCondition to only read corresponding nameService

information by key-value. */
nameFinder = DDS DataReader create querycondition (
nameServiceDR, - -
DDS ANY SAMPLE STATE,
DDS_ANY VIEW STATE,
DDS ANY INSTANCE STATE,
nameFinderExpr,
nameFinderParams) ;
checkHandle (

nameFinder, "DDS DataReader create querycondition (nameFinder)");

/* Create the Topic that simulates the multi-topic
(use Qos from chatMessage) .*/

namedMessageQos = DDS TopicQos alloc();
checkHandle (namedMessageQos, "DDS TopicQos alloc");
status = DDS Topic get gos(chatMessageTopic, namedMessageQos) ;

checkStatus (status, "DDS Topic get gos");

/* Create the NamedMessage Topic whose samples simulate the MultiTopic */

namedMessageTopic = DDS DomainParticipant create topic(
participant,
"Chat NamedMessage",
type name,
namedMessageQos,
NULL,
DDS_STATUS MASK NONE) ;
checkHandle (
namedMessageTopic,
"DDS DomainParticipant create topic (NamedMessage)");

/* Adapt the default PublisherQos to write into the
"ChatRoom" Partition. */

pub gos = DDS PublisherQos alloc();

checkHandle (pub _gos, "DDS PublisherQos alloc");

status = DDS DomainParticipant get default publisher gos (
participant, pub qgos);

checkStatus (status, "DDS DomainParticipant get default publisher gos");

pub_qos—>partition.name.:length = 1;
pub gos->partition.name. maximum = 1;
pub gos->partition.name. buffer = DDS StringSeq allocbuf (1);

checkHandle (pub_gos->partition.name. buffer, "DDS StringSeq allocbuf");

pub gos->partition.name. buffer([0] =
DDS string alloc(strlen(partitionName));

checkHaﬁdle(pub_qos—>partition.name._buffer[OJ, "DDS string alloc");

strcpy (pub gos->partition.name. buffer[0], partitionName);

/* Create a private Publisher for the multitopic simulator. */
multiPub = DDS DomainParticipant create publisher (

participant, pub gos, NULL, DDS STATUS MASK NONE) ;
checkHandle (

multiPub,

"DDS DomainParticipant create publisher (for multitopic)");

/* Create a DataWriter for the multitopic. */
namedMessageDW = DDS Publisher create datawriter (

C Tutorial Guide

A
= _ADLINK

Appendices

222 multiPub,

223 namedMessageTopic,

224 DDS DATAWRITER QOS USE TOPIC QOS,

225 NULL,

226 DDS_STATUS MASK NONE) ;

227 checkHandle (

228 namedMessageDW,

229 "DDS Publisher create datawriter (NamedMessage)");
230

231 /* Allocate the DataReaderListener interface. */

232 msgListener = DDS DataReaderListener alloc();

233 checkHandle (msgListener, "DDS DataReaderListener alloc");
234

235 /* Fill the listener data with pointers to all entities needed
236 by the Listener implementation. */

237 struct MsgListenerState *listener state =

238 malloc (sizeof (struct MsglListenerState));

239 checkHandle (listener state, "malloc");

240 listener state->chatMessageDR = chatMessageDR;

241 listener state->nameServiceDR = nameServiceDR;

242 listener state->namedMessageDW = namedMessageDW;

243 listener state->nameFinder = nameFinder;

244 listener state->nameFinderParams = nameFinderParams;
2145 msgListener->listener data = listener state;

246

247 /* Assign the function pointer attributes to their

248 implementation functions. */

2149 msgListener->on data available =

250 (void (*) (void *, DDS DataReader)) on message available;
251 msgListener->on requested deadline missed = NULL;

252 msgListener->on requested incompatible gos = NULL;

253 msglListener->on sample rejected = NULL;

254 msgListener->on liveliness changed = NULL;

235 msgListener->on subscription match = NULL;

256 msgListener->on sample lost = NULL;

257

258 /* Attach the DataReaderListener to the DataReader, only enabling
259 the data available event. */

260 status = DDS DataReader set listener(

261 chatMessageDR, msgListener, DDS DATA AVAILABLE STATUS) ;
262 checkStatus (status, "DDS DataReader set listener");
263

264 /* Free up all resources that are no longer needed. */
265 DDS free (namedMessageQos) ;

266 DDS free(sub_gos);

267 DDS free (pub gos) ;

268

269 /* Return the simulated Multitopic. */

270 return namedMessageTopic;

271 };

272

273 DDS ReturnCode t
274 DDS DomainParticipant delete simulated multitopic(

275 "~ DDS_DomainParticipant participant,

276 DDS TopicDescription smt

277)

278 {

279 DDS ReturnCode t status;

280 struct MsgListenerState *listener state;

281

282 /* Obtain all entities mentioned in the listener state. */

A
=~ _ADLINK

C Tutorial Guide

Appendices

283 listener state = (struct MsgListenerState *) msglListener->listener data;
284

285 /* Remove the DataWriter */

286 status = DDS Publisher delete datawriter (

287 multiPub, listener state->namedMessageDW) ;

288 checkStatus (status, "DDS Publisher delete datawriter");

289

290 /* Remove the Publisher. */

291 status = DDS DomainParticipant delete publisher (participant, multiPub) ;
292 checkStatus (status, "DDS DomainParticipant delete publisher");
293

294 /* Remove the QueryCondition and its parameters. */

295 DDS free(listener state->nameFinderParams) ;

296 status = DDS DataReader delete readcondition (

297 listener state->nameServiceDR,

298 listener state->nameFinder) ;

299 checkStatus (status, "DDS DataReader delete readcondition");
300

301 /* Remove the DataReaders. */

302 status = DDS Subscriber delete datareader (

303 multiSub, listener state->nameServiceDR) ;

304 checkStatus (status, "DDS Subscriber delete datareader");

305 status = DDS Subscriber delete datareader (

306 multiSub, listener state->chatMessageDR) ;

307 checkStatus (status, "DDS Subscriber delete datareader");

308

309 /* Remove the DataReaderListener and its state. */

310 free (listener state);

311 DDS free (msgListener) ;

312

313 /* Remove the Subscriber. */

3il4 status = DDS DomainParticipant delete subscriber (participant, multiSub) ;
315 checkStatus (status, "DDS DomainParticipant delete subscriber");
316

317 /* Remove the ContentFilteredTopic. */

318 status = DDS DomainParticipant delete contentfilteredtopic(
319 participant, filteredMessageTopic) ;

320 checkStatus (status, "DDS DomainParticipant delete contentfilteredtopic");
321

322 /* Remove all other topics. */

323 status = DDS DomainParticipant delete topic(

324 participant, namedMessageTopic) ;

325 checkStatus (

326 status,

327 "DDS DomainParticipant delete topic (namedMessageTopic)");
328 status = DDS DomainParticipant delete topic(

329 participant, nameServiceTopic) ;

330 checkStatus (

331 status,

332 "DDS DomainParticipant delete topic (nameServiceTopic)");
333 status = DDS DomainParticipant delete topic(

334 participant,

335 chatMessageTopic) ;

336 checkStatus (

337 status,

338 "DDS DomainParticipant delete topic (chatMessageTopic)");
339

340 return status;

341 };

342

343

120

S A ADLINK
C Tutorial Guide

Appendices

344 /* Implementation for the callback function "on data available". */
345void on message available (
346 void *listener data,
347 DDS DataReader reader)
348 {
3149 struct MsgListenerState *listener state;
350 DDS_sequence Chat ChatMessage msgSeq = { 0, 0, DDS OBJECT NIL, FALSE };
351 DDS sequence Chat NameService nameSeq = { 0, 0, DDS OBJECT NIL, FALSE };
352 DDS SampleInfoSeq infoSeql = { 0, 0, DDS OBJECT NIL, FALSE };
353 DDS SampleInfoSeq infoSegq2 = { 0, 0, DDS OBJECT NIL, FALSE };
354 DDS ReturnCode t status;
355 DDS unsigned long ig
356 DDS long previous = 0x80000000;
357 DDS string userName = DDS_string alloc(1);
358
359
360 /* Obtain all entities mentioned in the listener state. */
3601 listener state = (struct MsglistenerState *) listener data;
362
363 /* Take all messages. */
364 status = Chat ChatMessageDataReader take (
365 listener state->chatMessageDR,
366 &msgSeq,
367 &infoSeql,
368 DDS LENGTH UNLIMITED,
369 DDS ANY SAMPLE STATE,
370 DDS ANY VIEW STATE,
371 DDS ANY INSTANCE STATE) ;
372 checkStatus (status, "Chat ChatMessageDataReader take");
373
374 /* For each message, extract the key-field and find
375 the corresponding name. */
376 for (i = 0; i < msgSeq. length; i++)
377 {
378 if (infoSeqgl. buffer[i].valid data)
379 {
380 Chat NamedMessage joinedSample;
381
382 /* Find the corresponding named message. */
383 if (msgSeq. buffer[i].userID != previous)
384 {
385 previous = msgSeq. buffer[i].userID;
386 snprintf (
387 listener state->nameFinderParams-> buffer([0],
388 15,
389 "sd",
390 previous) ;
391 status = DDS QueryCondition set query parameters (
392 listener state->nameFinder,
393 listener state->nameFinderParams) ;
394 checkStatus (status, "DDS QueryCondition set query parameters");
395 status = Chat NameServiceDataReader read w condition (
396 listener state->nameServiceDR,
397 &nameSeq,
398 &infoSeq2,
399 DDS LENGTH UNLIMITED,
400 listener state->nameFinder) ;
401 checkStatus (
402 status, "Chat NameServiceDataReader read w condition");
403
404 /* Extract Name (there should only be one result). */
121
A ADLINK

C Tutorial Guide

Appendices

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

DDS free (userName) ;
if (status == DDS_RETCODE NO DATA)
{
userName = DDS string alloc (40);
checkHandle (userName, "DDS string alloc");
snprintf (userName, 40, "Name not found!! id = %d", previous);
}
else
{
userName = DDS string alloc(strlen(nameSeq. buffer[0].name)) ;
checkHandle (userName, "DDS string alloc");
strcpy (userName, nameSeq. buffer[0].name) ;

}

/* Release the name sample again. */
status = Chat NameServiceDataReader return loan (

listener state->nameServiceDR, &nameSeq, &infoSeg2);
checkStatus (status, "Chat NameServiceDataReader return loan");

/* Write merged Topic with both userName and userID. */
/* StringCopy not required since sample runs out of
scope before string is released. */
joinedSample.userName = userName;
joinedSample.userID = msgSeq. buffer[i].userID;
joinedSample.index = msgSeq. buffer[i].index;
joinedSample.content = msgSeq. buffer[i].content;
status = Chat NamedMessageDataWriter write (
listener state->namedMessageDW,
&joinedSample,
DDS_HANDLE NIL);
checkStatus (status, "Chat NamedMessageDataWriter write");
}
}
status = Chat ChatMessageDataReader return loan (
listener state->chatMessageDR, &msgSeq, &infoSeql);
checkStatus (status, "Chat ChatMessageDataReader return loan");

}

UserLoad.c

OWowJo U d WwWN -

122

/**
*

* Copyright (c) 2007

* PrismTech Ltd.

* All rights Reserved.

*

* LOGICAL NAME: UserLoad.c

* FUNCTION: Vortex OpenSplice Tutorial example code.

* MODULE: Tutorial for the C programming language.

* DATE Jjune 2007.

KAk kA Ak hk kA hkhk kA Ak kA Ak ko hkhk Ak hk kA khhk kA h ko kA Ak hkhkhkhkhk kA Ak kA ko hk kA rhkhkhkhkhhkkhkkhhkkxk*
*

* This file contains the implementation for the 'UserLoad' executable.
*

*

**/

#include <stdio.h>
#include <unistd.h>

A
= _ADLINK

C Tutorial Guide

Appendices

19 #include <pthread.h>
20 #include <string.h>
21 #include <assert.h>

23 #include "dds dcps.h"
24 #include "CheckStatus.h"
25 #include "Chat.h"

26

27 /* entities required by all threads. */

28 static DDS GuardCondition escape;
29

30 /* Sleeper thread: sleeps 60 seconds and then triggers the WaitSet. */
31 wvoid *
32 delayedEscape (

33 void *arg)

34 |

35 DDS ReturnCode t status;

36

37 sleep (60) ; /* wait for 60 sec. */

38 status = DDS GuardCondition set trigger value (escape, TRUE) ;

39 checkStatus (status, "DDS GuardCondition set trigger value");

40

41 return NULL;

42}

43

44 int

45 main (

46 int argc,

47 char *argvl([])

48 |

49 /* Generic DDS entities */

50 DDS DomainParticipant participant;

51 DDS Topic chatMessageTopic;

52 DDS Topic nameServiceTopic;

53 DDS Subscriber chatSubscriber;

54 DDS QueryCondition singleUser;

55 DDS ReadCondition newUser;

56 DDS StatusCondition leftUser;

57 DDS GuardCondition guard;

58 DDS WaitSet userLoadWs;

59 DDS LivelinessChangedStatus livChangStatus;

60

61 /* QosPolicy holders */

62 DDS TopicQos *setting topic gos;

63 DDS TopicQos *reliable topic gos;

64 DDS SubscriberQos *sub qgos;

65 DDS DataReaderQos *message_ Jos;

66

67 /* DDS Identifiers */

68 DDS DomainId t domain = DDS DOMAIN ID DEFAULT;

69 DDS ReturnCode t status;

70 DDS ConditionSeq *guardList = NULL;

71 DDSiDurationit timeout = DDS DURATION INFINITE;

72

73 /* Type-specific DDS entities */

74 Chat ChatMessageTypeSupport chatMessageTS;

75 Chat NameServiceTypeSupport nameServiceTS;

76 Chat NameServiceDataReader nameServer;

77 Chat ChatMessageDataReader loadAdmin;

78 DDS sequence Chat ChatMessage msgList = { 0, 0, DDS OBJECT NIL, FALSE };

79 DDS sequence Chat NameService nsList ={ 0, 0, DDS OBJECT NIL, FALSE };
123

A ADLINK

C Tutorial Guide

Appendices

80 DDS SampleInfoSeq infoSeq = { 0, 0, DDS OBJECT NIL, FALSE };
81 DDS SampleInfoSeq infoSeq2 = { 0, 0, DDS OBJECT NIL, FALSE };
82

83 /* Others */

84 DDS StringSeg args;

85 int closed = 0;

86 DDS unsigned long i, 9%

87 DDS long prevCount = 0;

88 char *partitionName;

89 char *chatMessageTypeName = NULL;

90 char *nameServiceTypeName = NULL;

91 pthread t tid;

92 -

93 /* Create a DomainParticipant (using the

94 'TheParticipantFactory' convenience macro) . */

95 participant = DDS DomainParticipantFactory create participant (
96 DDS TheParticipantFactory,

97 domain,

98 DDS PARTICIPANT QOS DEFAULT,

99 NULL,

100 DDS_STATUS MASK NONE) ;

101 checkHandle (

102 participant, "DDS DomainParticipantFactory create participant");
103

104 /* Register the required datatype for ChatMessage. */

105 chatMessageTS = Chat ChatMessageTypeSupport alloc();

106 checkHandle (chatMessageTS, "Chat ChatMessageTypeSupport alloc");
107 chatMessageTypeName =

108 Chat ChatMessageTypeSupport get type name (chatMessageTsS) ;

109 status = Chat ChatMessageTypeSupport register type (

110 chatMessageTs,

111 participant,

112 chatMessageTypeName) ;

113 checkStatus (status, "Chat ChatMessageTypeSupport register type");
114

115 /* Register the required datatype for NameService. */

116 nameServiceTS = Chat NameServiceTypeSupport alloc();

117 checkHandle (nameServiceTS, "Chat NameServiceTypeSupport alloc");
118 nameServiceTypeName =

119 Chat NameServiceTypeSupport get type name (nameServiceTS) ;

120 status = Chat NameServiceTypeSupport register type (

121 nameServiceTS,

122 participant,

123 nameServiceTypeName) ;

124 checkStatus (status, "Chat NameServiceTypeSupport register type");
125

126 /* Set the ReliabilityQosPolicy to RELIABLE. */

127 reliable topic gos = DDS TopicQos alloc();

128 checkHandle (reliable topic gos, "DDS TopicQos alloc");

129 status = DDS DomainParticipant get default topic gos(

130 participant, reliable topic gos);

131 checkStatus (status, "DDS DomainParticipant get default topic gos");
132 reliable topic gos->reliability.kind = DDS RELIABLE RELIABILITY QOS;
133

134 /* Make the tailored QoS the new default. */

135 status = DDS DomainParticipant set default topic gos(

136 participant, reliable topic gos);

137 checkStatus (status, "DDS DomainParticipant set default topic gos");
138

139 /* Use the changed policy when defining the ChatMessage topic */
140 chatMessageTopic = DDS DomainParticipant create topic/(

124

S A ADLINK
C Tutorial Guide

Appendices

141 participant,
142 "Chat ChatMessage",
143 chatMessageTypeName,
144 reliable topic gos,
145 NULL, - -
146 DDS STATUS MASK NONE) ;
147 checkHandle (B
148 chatMessageTopic,
149 "DDS DomainParticipant create topic (ChatMessage)");
150
151 /* Set the DurabilityQosPolicy to TRANSIENT. */
152 setting topic gos = DDS TopicQos alloc();
153 checkHandle (setting topic gos, "DDS TopicQos alloc");
154 status = DDS DomainParticipant get default topic gos(
155 participant, setting topic gos);
156 checkStatus (status, "DDS DomainParticipant get default topic gos");
157 setting topic gos->durability.kind = DDS TRANSIENT DURABILITY QOS;
158
159 /* Create the NameService Topic. */
160 nameServiceTopic = DDS DomainParticipant create topic(
1ol participant,
162 "Chat NameService",
163 nameServiceTypeNamne,
164 setting topic qos,
165 NULL, -
166 DDS_STATUS MASK NONE) ;
167 checkHandle (nameServiceTopic, "DDS DomainParticipant create topic");
168
169 /* Adapt the default SubscriberQos to read from the
170 "ChatRoom" Partition. */
171 partitionName = "ChatRoom";
172 sub gos = DDS SubscriberQos alloc();
173 checkHandle (sub_gos, "DDS SubscriberQos alloc");
174 status = DDS DomainParticipant get default subscriber qgos(
175 participant, sub gos);
176 checkStatus (status, "DDS DomainParticipant get default subscriber gos");
177 sub gos->partition.name. length = 1;
178 sub gos->partition.name. maximum = 1;
179 sub gos->partition.name. buffer = DDS StringSeq allocbuf (1);
180 checkHandle (sub gos->partition.name. buffer, "DDS StringSeq allocbuf");
181 sub gos->partition.name. buffer[0] =
182 DDS string alloc(strlen(partitionName) + 1);
183 checkHandle (sub_gos->partition.name. buffer[0], "DDS string alloc");
184 strcpy (sub gos->partition.name. buffer[0], partitionName) ;
185
186 /* Create a Subscriber for the UserLoad application. */
187 chatSubscriber = DDS DomainParticipant create subscriber (
188 participant, sub gos, NULL, DDS STATUS MASK NONE) ;
189 checkHandle (chatSubscriber, "DDS DomainParticipant create subscriber");
190
191 /* Create a DataReader for the NameService Topic
192 (using the appropriate QoS). */
193 nameServer = DDS Subscriber create datareader (
194 chatSubscriber,
195 nameServiceTopic,
196 DDS DATAREADER QOS USE TOPIC QOS,
197 NULL, - -
198 DDS_STATUS MASK NONE) ;
199 checkHandle (nameServer, "DDS Subscriber create datareader (NameService)");
200
201 /* Adapt the DataReaderQos for the ChatMessageDataReader
125
A ADLINK

C Tutorial Guide

Appendices

202 to keep track of all messages. */

203 message qos = DDS DataReaderQos alloc();

204 checkHandle (message ~_gos, "DDS DataReaderQos alloc");

205 status = DDS Subscriber _get default datareader —gos (

206 chatSubscriber, messageiqos),

207 checkStatus (status, "DDS Subscriber get default datareader qos");
208 status = DDS Subscriber copy from topic gos(

209 chatSubscriber, message qgos, reliable topic gos);

210 checkStatus (status, "DDS Subscriber __copy__ from . topic qos");

211 message gos->history. kind = DDS _KEEP ALL HISTORY QOS;

212

213 /* Create a DataReader for the ChatMessage Topic

214 (using the appropriate QoS). */

215 loadAdmin = DDS Subscriber create datareader (

216 chatSubscriber,

217 chatMessageTopic,

218 message_ Jos,

219 NULL,

220 DDS STATUS MASK NONE) ;

221 checkHandle (loadAdmin, "DDS Subscriber create datareader (ChatMessage)");
222

223 /* Initialize the Query Arguments. */

224 args. length = 1;

225 args. maximum = 1;

226 args. buffer = DDS StringSeq allocbuf (1);

227 checkHandle (args. buffer, "DDS StringSeq allocbuf");

228 args. buffer[0] = DDS string alloc (12); // Enough for max size numbers.
229 checkHandle (args. buffer[O], "DDS string alloc");

230 sprintf(args.ibuffer[O], "sd", 0);

231

232 /* Create a QueryCondition that will contain all messages

233 with userID = ownID */

234 singleUser = DDS DataReader create querycondition (

235 loadAdmin,

236 DDS ANY SAMPLE STATE,

237 DDS ANY VIEW STATE,

238 DDS ANY INSTANCE STATE,

239 "userID=%0",

240 &args) ;

241 checkHandle (

242 singleUser,

243 "DDS DataReader create querycondition (singleUser Query)");
244

245 /* Create a ReadCondition that will contain new users only */
246 newUser = DDS DataReader create readcondition (

247 nameServer,

248 DDS NOT READ SAMPLE STATE,

249 DDS NEW VIEW STATE,

250 DDS ALIVE INSTANCE STATE) ;

251 checkHandle (newUser, "DDS DataReader create readcondition (newUser)");
252

253 /* Obtain a StatusCondition that triggers only when

254 a Writer changes Liveliness */

255 leftUser = DDS DataReader get statuscondition (loadAdmin);

256 checkHandle (leftUser, "DDS DataReader _get statuscondition");
257 status = DDS StatusCondition set enabled statuses (

258 leftUser, DDS LIVELINESS CHANGED STATUS)

259 checkStatus (status, "DDS StatusCondition set enabled statuses");
260

261 /* Create a bare guard which will be used to close the room */
262 escape = DDS GuardCondition alloc();

126

S A ADLINK
C Tutorial Guide

Appendices

263 checkHandle (escape, "DDS GuardCondition alloc");
264
265 /* Create a waitset and add the ReadConditions */
266 userLoadWS = DDS WaitSet alloc():;
267 checkHandle (userLoadWS, "DDS WaitSet alloc");
268 status = DDS WaitSet attach condition (userLoadWS, newUser) ;
269 checkStatus (status, "DDS WaitSet attach condition (newUser)");
270 status = DDS WaitSet attach condition (userLoadWS, leftUser);
271 checkStatus (status, "DDS WaitSet attach condition (leftUser)");
272 status = DDS WaitSet attach condition (userLoadWS, escape);
273 checkStatus (status, "DDS WaitSet attach condition (escape)"):;
274
275 /* Initialize and pre-allocate the GuardList used to obtain
276 the triggered Conditions. */
277 guardList = DDS ConditionSeq alloc();
278 checkHandle (guardList, "DDS ConditionSeq alloc");
279 guardList-> maximum = 3; - T
280 guardList-> length = 0;
281 guardList-> buffer = DDS ConditionSeq allocbuf (3);
282 checkHandle (guardList-> buffer, "DDS ConditionSeq allocbuf");
283
284 /* Remove all known Users that are not currently active. */
285 status = Chat NameServiceDataReader take (
286 nameServer,
287 &nslList,
288 &infoSeq,
289 DDS LENGTH UNLIMITED,
290 DDS ANY SAMPLE STATE,
291 DDS ANY VIEW STATE,
292 DDS_NOT_ALIVE INSTANCE STATE) ;
293 checkStatus (status, "Chat NameServiceDataReader take");
2194 status = Chat NameServiceDataReader return loan (
295 nameServer, &nsList, &infoSeq);
296 checkStatus (status, "Chat NameServiceDataReader return loan");
297
298 /* Start the sleeper thread. */
299 pthread create (&tid, NULL, delayedEscape, NULL);
300
301 while (!closed) {
302 /* Wait until at least one of the Conditions in the
303 waitset triggers. */
304 status = DDS WaitSet wait (userLoadWS, guardList, &timeout):;
305 checkStatus (status, "DDS WaitSet wait");
306
307 /* Walk over all guards to display information */
308 for (i = 0; i < guardList-> length; i++) {
309 guard = guardList-> buffer[i];
310 if (guard == newUser) {
311 /* The newUser ReadCondition contains data */
312 status = Chat NameServiceDataReader read w condition(
313 nameServer,
314 &nsList,
315 &infoSeq,
316 DDS LENGTH UNLIMITED,
317 newUser) ;
318 checkStatus (
319 status, "Chat NameServiceDataReader read w condition");
320
321 for (jJ = 0; j < nsList. length; j++) {
322 printf ("New user: %$s\n", nsList. buffer([j].name);
323 }
127
A ADLINK

C Tutorial Guide

Appendices

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

128
C Tutorial Guide

status = Chat NameServiceDataReader return loan (
nameServer, &nsList, &infoSeq);
checkStatus (status, "Chat NameServiceDataReader return loan");

} else if (guard == leftUser) {

/* Some liveliness has changed (either a DataWriter joined
or a DataWriter left) */
status = DDS DataReader get liveliness changed status(
loadAdmin, &livChangStatus);
checkStatus (

status, "DDS DataReader get liveliness changed status");

if (livChangStatus.alive count < prevCount) ({

/* A user has left the ChatRoom, since a DataWriter lost
its liveliness. Take the effected users so they will
not appear in the list later on. */

status = Chat NameServiceDataReader take (

nameServer,

&nsList,

&infoSeq,

DDS LENGTH UNLIMITED,

DDS_ANY SAMPLE STATE,

DDS ANY VIEW STATE,

DDS NOT ALIVE NO WRITERS INSTANCE STATE) ;
checkStatus (status, "Chat NameServiceDataReader take");

for (j = 0; j < nsList. length; j++) {
/* re-—-apply query arguments */

sprintf (
args. buffer[0],
ll%dll,
nsList. buffer[j].userID);
status = DDS QueryCondition set query parameters (
singleUser, &args);
checkStatus (
status, "DDS QueryCondition set query parameters");

/* Read this users history */
status = Chat ChatMessageDataReader take w condition (
loadAdmin,
&msglist,
&infoSeqgz,
DDS LENGTH UNLIMITED,
singleUser) ;
checkStatus (
status,
"Chat ChatMessageDataReader take w condition");

/* Display the user and his history */

printf (
"Departed user %s has sent %d messages\n",
nsList. buffer[j].name,
msgList. length);

status = Chat ChatMessageDataReader return loan (
loadAdmin, &msglList, &infoSeqg2);
checkStatus (
status, "Chat ChatMessageDataReader return loan");
}
status = Chat NameServiceDataReader return loan (
nameServer, &nsList, &infoSeq);
checkStatus (
status, "Chat NameServiceDataReader return loan");

A
= _ADLINK

Appendices

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426}

A
A _ADLINK

}

prevCount = livChangStatus.alive count;

} else if (guard == escape) {
printf ("UserLoad has terminated.\n");
closed = 1;

}

else

{

}i
} /* for */
} /* while (!closed) */

assert (0);

/* Remove all Conditions from the WaitSet. */

status = DDS WaitSet detach condition (userLoadWS, escape);
checkStatus (status, "DDS WaitSet detach condition (escape)"):;
status = DDS WaitSet detach condition (userLoadWS, leftUser);
checkStatus (status, "DDS WaitSet detach condition (leftUser)");
status = DDS WaitSet detach condition (userLoadWS, newUser) ;
checkStatus (status, "DDS WaitSet detach condition (newUser)");

/* Free all resources */

DDS free (guardList);

DDS free(args. buffer);

DDS free (userLoadWs) ;

DDS free (escape) ;

DDS free (setting topic qgos);
DDS free(reliable topic gos);
DDS free (nameServiceTypeName) ;
DDS free (chatMessageTypeName) ;
DDS free (nameServiceTS) ;

DDS free (chatMessageTs) ;
status = DDS DomainParticipant delete contained entities(participant);

checkStatus (status, "DDS DomainParticipant delete contained entities");

status = DDS_DomainParticipantFactory_delete_partfcipant(
DDS TheParticipantFactory,
participant) ;

checkStatus (status, "DDS DomainParticipantFactory delete participant");

return 0;

129

C Tutorial Guide

Appendices

130

S A _ADLINK
C Tutorial Guide

Appendix

C++ Language Examples’ Code

This appendix lists the complete C++ source code for the examples provided in the
C++ version of the Vortex OpenSplice tutorial.

Chat.idl

427 /**

428 *

429 * Copyright (c) 2006

430 * PrismTech Ltd.

431 * All rights Reserved.

432 *

433 * LOGICAL NAME: Chat.idl

434 * FUNCTION: Vortex OpenSplice Tutorial example code.
435 * MODULE: Tutorial for the C++ programming language.
436 * DATE june 2006.

437 KA A AR AR A A A AR AR AR AR AR A A A A A A A A A A A A Ak Ak Ak hhkhkhkhkhkhkhkhkkkk K, k%
438 *

439 * This file contains the data definitions for the tutorial examples.
440 *

441 ***/

442

443 module Chat {

444

445 const long MAX NAME = 32;

446 typedef stringzMAX_NAME> nameType;

447

448 struct ChatMessage {

449 long userID; // owner of message

450 long index; // message number

451 string content; // message body

452 g

453 #pragma keylist ChatMessage userID

454

455 struct NameService {

456 long userID; // unique user identification
457 nameType name; // name of the user

458 g

459 #pragma keylist NameService userID

460

4601 struct NamedMessage {

462 long userID; // unique user identification
463 nameType userName; // user name

464 long index; // message number

465 string content; // message body

466 g

467 #pragma keylist NamedMessage userID

468

469 };

A
A _ADLINK

131
C Tutorial Guide

Appendices

CheckStatus.h

1 /**
2 *

3 * Copyright (c) 2007

4 * PrismTech Ltd.

5 * All rights Reserved.

6 *

7 * LOGICAL NAME: CheckStatus.h

8 * FUNCTION: Vortex OpenSplice Tutorial example code.

9 * MODULE: Tutorial for the C++ programming language.

10 * DATE Jjune 2007.

11 Ak hkhkkhkhkhkhkhkhhhkhkhhhhhkhhkdh kb hkhhkhhhk kb dhkhkhh bk bk bk bk hkhkhkhr kb h kb hkrhkhkrhkhkhkhhkhkhkrkhxkhx
12 =

13 * This file contains the headers for the error handling operations.

14 *

15 ***/

16

17 #ifndef CHECKSTATUS H
18 #define _ CHECKSTATUS H _

20 #include "ccpp_dds dcps.h"
21 #include <iostream>

22

23 using namespace std;

24

25 [J#

26 * Returns the name of an error code.

27 **/

28 char *getErrorName (DDS::ReturnCode t status);
29

30 /**

31 * Check the return status for errors. If there is an error, then terminate.
32 **/
33 void checkStatus (DDS::ReturnCode t status, const char *info);

35 [

36 * Check whether a valid handle has been returned. If not, then terminate.
37 **x/

38 wvoid checkHandle (void *handle, char *info);

40 #endif

CheckStatus.cpp

1 /**
2 *

3 * Copyright (c) 2007

4 * PrismTech Ltd.

5 * All rights Reserved.

6 *

7 * LOGICAL NAME: CheckStatus.cpp

8 * FUNCTION: Vortex OpenSplice Tutorial example code.

9 * MODULE: Tutorial for the C++ programming language.

10 * DATE Jjune 2007.

ll *khkhkhkkhkhhkhkhkhkhhkhkhhkhkhhkhhhhhhkhhkhhhkhhkhhhkhkh bk bk bk bk hkhhkhkhr kb kb bk rhkhkrhk kb hkhkhkhkrkhxkhx
12 %

132

S A ADLINK
C Tutorial Guide

Appendices

)w

* This file contains the implementation for the error handling operations.
*
**‘k/
#include "CheckStatus.h"
/* Array to hold the names for all ReturnCodes. */
char *RetCodeName[13] = {
"DDS_RETCODE_OK",
"DDS_RETCODE_ERROR",
"DDS_RETCODE_UNSUPPORTED",
"DDS_RETCODE_BAD_ PARAMETER",
"DDS_RETCODE_PRECONDITION_NOT_MET",
"DDS_RETCODE_OUT OF RESOURCES",
"DDS_RETCODE_NOT_ENABLED",
"DDS_RETCODE_IMMUTABLE_ POLICY",
"DDS_RETCODE_INCONSISTENT POLICY",
"DDS_RETCODE_ALREADY DELETED",
"DDS_RETCODE_TIMEOUT",
"DDS_RETCODE_NO_DATA",
"DDS_RETCODE_ILLEGAL OPERATION" };
Jxx
* Returns the name of an error code.
**/
char *getErrorName (DDS::ReturnCode t status)
{
return RetCodeName[status];
}
Jxx
* Check the return status for errors. If there is an error, then terminate.
**/
void checkStatus (
DDS: :ReturnCode t status,
const char *info) {
if (status != DDS::RETCODE OK && status != DDS::RETCODE NO DATA) {
cerr << "Error in " << info << ": " << getErrorName (status) << endl;
exit (0);
}
}
Jxx
* Check whether a valid handle has been returned. If not, then terminate.
**/
volid checkHandle (
void *handle,
char *info) {
if ('handle) {
cerr << "Error in " << info <<
": Creation failed: invalid handle" << endl;
exit (0);
}
}
'ADLINK 133

C Tutorial Guide

Appendices

Chatter.cpp

1 /*******‘k*‘k**********‘k*‘k*‘k**********‘k*‘k*‘k*‘k******************************
2 *

3 * Copyright (c) 2007

4 * PrismTech Ltd.

5 * All rights Reserved.

6 *

7 * LOGICAL NAME: Chatter.cpp

8 * FUNCTION: Vortex OpenSplice Tutorial example code.

9 * MODULE: Tutorial for the C++ programming language.

10 * DATE Jjune 2007.

11 Ak hkhkkhkhkhkhkhkhhhkhkhhhhhkhhkdh kb hkhhkhhhk kb dhkhkhh bk bk bk bk hkhkhkhr kb h kb hkrhkhkrhkhkhkhhkhkhkrkhxkhx
1z =

13 * This file contains the implementation for the 'Chatter' executable.

14 =

15 ***/

16 #include <string>

17 #include <sstream>

18 #include <iostream>

19 #include <unistd.h>

20 #include "ccpp_ dds dcps.h"
21 #include "CheckStatus.h"
22 #include "ccpp Chat.h"

24 #define MAX MSG_LEN 256
25 #define NUM MSG 10
26 #define TERMINATION MESSAGE -1

28 using namespace DDS;
29 using namespace Chat;

30

31 int

32 main (

33 int argc,

34 char *argv([])

35 {

36 /* Generic DDS entities */

37 DomainParticipantFactory var dpf;

38 DomainParticipant var - participant;

39 Topic var chatMessageTopic;
40 Topic var nameServiceTopic;
41 Publisher var chatPublisher;

42 DataWritef_ptr parentWriter;

43

44 /* QosPolicy holders */

45 TopicQos reliable topic gos;
46 TopicQos setting topic gos;
47 PublisherQos pub gos;

48 DataWriterQos dw_gos;

49

50 /* DDS Identifiers */

51 DomainId t domain = DOMAIN ID DEFAULT;
52 InstanceHandle t userHandle; -
53 ReturnCode t status;

54

55 /* Type-specific DDS entities */

56 ChatMessageTypeSupport var chatMessageTsS;

57 NameServiceTypeSupport var nameServiceTS;

58 ChatMessageDataWriter var talker;

134

C Tutorial Guide

A
= _ADLINK

Appendices

59 NameServiceDataWriter var nameServer;

60

61 /* Sample definitions */

62 ChatMessage *msqg; /* Example on Heap */

63 NameService ns; /* Example on Stack */

64

65 /* Others */

66 int ownID = 1;

67 int i;

68 char *chatterName = NULL;

69 const char *partitionName = "ChatRoom";

70 char *chatMessageTypeName = NULL;

71 char *nameServiceTypeName = NULL;

72 ostringstream buf;

73

74

75

76 /* Options: Chatter [ownID [name]] */

77 if (argc > 1) {

78 istringstream args(argv[l]);

79 args >> ownlID;

80 if (argc > 2) {

81 chatterName = argv([2];

82 }

83 }

84

85 /* Create a DomainParticipantFactory and a DomainParticipant

86 (using Default QoS settings. */

87 dpf = DomainParticipantFactory::get instance ();

88 checkHandle (dpf.in(), "DDS::DomainParticipantFactory::get instance");

89 participant = dpf->create participant (

90 domain, PARTICIPANT QOS DEFAULT, NULL, STATUS MASK NONE) ;

91 checkHandle (

92 participant.in(),

93 "DDS: :DomainParticipantFactory::create participant");

94

95 /* Register the required datatype for ChatMessage. */

96 chatMessageTS = new ChatMessageTypeSupport () ;

97 checkHandle (chatMessageTS.in (), "new ChatMessageTypeSupport");

98 chatMessageTypeName = chatMessageTS->get type name () ;

99 status = chatMessageTS->register type (

100 participant.in(),

101 chatMessageTypeName) ;

102 checkStatus (status, "Chat::ChatMessageTypeSupport::register type");

103

104 /* Register the required datatype for NameService. */

105 nameServiceTS = new NameServiceTypeSupport () ;

106 checkHandle (nameServiceTS.in (), "new NameServiceTypeSupport");

107 nameServiceTypeName = nameServiceTS->get type name();

108 status = nameServiceTS->register type (

109 participant.in (),

110 nameServiceTypeName) ;

111 checkStatus (status, "Chat::NameServiceTypeSupport::register type");

112

113 /* Set the ReliabilityQosPolicy to RELIABLE. */

114 status = participant->get default topic gos(reliable topic qos);

115 checkStatus (status, "DDS::DomainParticipant::get default topic gos");

116 reliable topic gos.reliability.kind = RELIABLE RELIABILITY QOS;

117

118 /* Make the tailored QoS the new default. */

119 status = participant->set default topic gos(reliable topic gos);
135

A ADLINK

C Tutorial Guide

Appendices

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

checkStatus (status, "DDS::DomainParticipant::set default topic gos");

/* Use the changed policy when defining the ChatMessage topic */
chatMessageTopic = participant->create topic(

"Chat ChatMessage",

chatMessageTypeName,

reliable topic gos,

NULL,

STATUS MASK NONE) ;
checkHandle (

chatMessageTopic.in (),

"DDS::DomainParticipant::create topic (ChatMessage)");

/* Set the DurabilityQosPolicy to TRANSIENT. */

status = participant->get default topic gos(setting topic gos);
checkStatus (status, "DDS::DomainParticipant::get default topic gos");
setting topic gos.durability.kind = TRANSIENT DURABILITY QOS;

/* Create the NameService Topic. */
nameServiceTopic = participant->create topic(
"Chat NameService",
nameServiceTypeName,
setting topic gos,
NULL,
STATUS MASK NONE) ;
checkHandle (
nameServiceTopic.in (),
"DDS::DomainParticipant::create topic (NameService)");

/* Adapt the default PublisherQos to write into the
"ChatRoom" Partition. */
status = participant->get default publisher gos (pub_ gos);
checkStatus (status, "DDS::DomainParticipant::get default publisher gos");
pub gos.partition.name.length (1)
pub gos.partition.name[0] = partitionName;

/* Create a Publisher for the chatter application. */
chatPublisher = participant->create publisher (pub gos, NULL,

STATUS MASK NONE) ;

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

136

checkHandle (
chatPublisher.in(), "DDS::DomainParticipant::create publisher");

/* Create a DataWriter for the ChatMessage Topic
(using the appropriate QoS). */
parentWriter = chatPublisher->create datawriter (
chatMessageTopic.in (), -
DATAWRITER QOS USE TOPIC QOS,
NULL, - T -
STATUS MASK NONE) ;
checkHandle (-
parentWriter, "DDS::Publisher::create datawriter (chatMessage)");

/* Narrow the abstract parent into its typed representative. */
talker = ChatMessageDataWriter::_narrow(parentWriter);
checkHandle (talker.in (), "Chat::ChatMessageDataWriter:: narrow");

/* Create a DataWriter for the NameService Topic

(using the appropriate QoS). */
status = chatPublisher->get default datawriter gos(dw gos);
checkStatus (status, "DDS::Publisher::get default datawriter gos");

A
= _ADLINK

C Tutorial Guide

Appendices

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

2 ADLI

)

status = chatPublisher->copy from topic gos(dw_gos, setting topic gos);
checkStatus (status, "DDS::Publisher::copy from topic gos");

dw gos.writer data lifecycle.autodispose unregistered instances = FALSE;
parentWriter = chatPublisher->create datawriter (

nameServiceTopic.in (),

dw gos,

NULL,

STATUS MASK NONE) ;
checkHandle (

parentWriter, "DDS::Publisher::create datawriter (NameService)");

/* Narrow the abstract parent into its typed representative. */
nameServer = NameServiceDataWriter:: narrow(parentWriter);
checkHandle (nameServer.in (), "Chat::NameServiceDataWriter:: narrow");

/* Initialize the NameServer attributes located on stack. */
ns.userID = ownlD;
if (chatterName) {
ns.name = CORBA::string dup (chatterName) ;
} else {
buf << "Chatter " << ownlID;
ns.name = CORBA::string dup(buf.str().c str());
}

/* Write the user-information into the system
(registering the instance implicitly). */
status = nameServer->write(ns, HANDLE NIL);
checkStatus (status, "Chat::ChatMessageDataWriter::write");

/* Initialize the chat messages on Heap. */
msg = new ChatMessage () ;

checkHandle (msg, "new ChatMessage") ;
msg->userID = ownlD;

msg->index = 0;

buf.str(string(""));

if (ownID == TERMINATION MESSAGE) {
buf << "Termination message.";

} else {

buf << "Hi there, I will send you " << NUM MSG << " more messages.";
}
msg->content = CORBA::string dup(buf.str().c str());
cout << "Writing message: \"" << msg->content << "\"" << endl;

/* Register a chat message for this user
(pre-allocating resources for it!!) */
userHandle = talker->register instance (*msqg);
/* Write a message using the pre-generated instance handle. */
status = talker->write (*msg, userHandle) ;
checkStatus (status, "Chat::ChatMessageDataWriter::write");

sleep (1); /* do not run so fast! */

/* Write any number of messages, re-using the existing

string-buffer: no leak!!. */
for (i = 1; i <= NUM MSG && ownID != TERMINATION MESSAGE; i++) {
buf.str(string(""));
msg->index = i;
buf << "Message no. " << i;

msg->content = CORBA::string dup(buf.str().c str());
cout << "Writing message: \"" << msg->content << "\"" << endl;

137
C Tutorial Guide

NK

Appendices

240 status = talker->write (*msg, userHandle) ;

241 checkStatus (status, "Chat::ChatMessageDataWriter::write");

242 sleep (1); /* do not run so fast! */

243 }

244

245 /* Leave the room by disposing and unregistering the message instance. */
246 status = talker->dispose (*msg, userHandle) ;

247 checkStatus (status, "Chat::ChatMessageDataWriter::dispose") ;

248 status = talker->unregister instance(*msg, userHandle);

249 checkStatus (status, "Chat::ChatMessageDataWriter::unregister instance");
250

251 /* Also unregister our name. */

252 status = nameServer->unregister instance(ns, HANDLE NIL);

253 checkStatus (status, "Chat::NameServiceDataWriter::unregister instance");
254

255 /* Release the data-samples. */

256 delete msg; // msg allocated on heap: explicit de-allocation required!!
257

258 /* Remove the DataWriters */

259 status = chatPublisher->delete datawriter(talker.in());

260 checkStatus (status, "DDS::Publisher::delete datawriter (talker)");

261

262 status = chatPublisher->delete datawriter(nameServer.in());

263 checkStatus (status, "DDS::Publisher::delete datawriter (nameServer)");
264

265 /* Remove the Publisher. */

266 status = participant->delete publisher (chatPublisher.in());

267 checkStatus (status, "DDS::DomainParticipant::delete publisher");

268

269 /* Remove the Topics. */

270 status = participant->delete topic(nameServiceTopic.in());

271 checkStatus (

272 status, "DDS::DomainParticipant::delete topic (nameServiceTopic)");
273

274 status = participant->delete topic(chatMessageTopic.in());

275 checkStatus (

276 status, "DDS::DomainParticipant::delete topic (chatMessageTopic)");
277

278 /* Remove the type-names. */

279 CORBA: :string free (chatMessageTypeName) ;

280 CORBA: :string free (nameServiceTypeName) ;

281

282 /* Remove the DomainParticipant. */

283 status = dpf->delete participant(participant.in());

284 checkStatus (status, "DDS::DomainParticipantFactory::delete participant");
285

286 return 0;

287}

MessageBoard.cpp

l /*****‘k***********************‘k*‘k*‘k**************************************
2 *

3 * Copyright (c) 2007

4 * PrismTech Ltd.

5 * All rights Reserved.

6 *

7 * LOGICAL NAME: MessageBoard. cpp

138

S A ADLINK
C Tutorial Guide

Appendices

8

* FUNCTION:
* MODULE:

* DATE Jjune 2007.

Vortex OpenSplice Tutorial example code.
Tutorial for the C++ programming language.

AA AR AR A A AR AR AR A A A A Ak Ak dkhdkhdkhhkhhkhkhkhhkhhhhhhhhhhhkhkk*

*

* This file contains the implementation for the

*
***/

#include <iostream>
#include <string.h>
#include <unistd.h>

#include "ccpp dds_dcps.h"
#include "CheckStatus.h"
#include "ccpp Chat.h"
#include "multitopic.h"

using namespace DDS;
using namespace Chat;

#define TERMINATION MESSAGE -1

int

main (
int argc,
char *argvl([])

/* Generic DDS entities */
DomainParticipantFactory var
DomainParticipant ptr
ExtDomainParticipant var
Topic var N

Topic var
TopicDescription var
Subscriber var
DataReader ptr

/* Type-specific DDS entities */

ChatMessageTypeSupport var
NameServiceTypeSupport var
NamedMessageTypeSupport var
NamedMessageDataReader var
NamedMessageSeq var
SampleInfoSeq var

/* QosPolicy holders */
TopicQos

TopicQos

SubscriberQos

DDS: :StringSeq

/* DDS Identifiers */
DomainId t
ReturnCode t

/* Others */

A
A _ADLINK

'MessageBoard' executable.

dpf;

parentDP;
participant;
chatMessageTopic;
nameServiceTopic;
namedMessageTopic;
chatSubscriber;
parentReader;

chatMessageTS;

nameServiceTS;

namedMessageTS;

chatAdmin;

msgSeq = new NamedMessageSeq() ;
infoSeq = new SampleInfoSeq();

reliable topic gos;
setting topic gos;
sub_ qos;
parameterList;

domain = DOMAIN ID DEFAULT;
status;

139
C Tutorial Guide

Appendices

69 bool terminated = FALSE;

70 const char * partitionName = "ChatRoom";

71 char * chatMessageTypeName = NULL;

72 char * nameServiceTypeName = NULL;

73 char * namedMessageTypeName = NULL;

74

75 /* Options: MessageBoard [ownID] */

76 /* Messages having owner ownID will be ignored */

77 parameterList.length (1) ;

78

79 if (argc > 1) {

80 parameterList [0] = CORBA::string dup(argv([1l]);

81 }

82 else

83 {

84 parameterList[0] = "0";

85 }

86

87 /* Create a DomainParticipantFactory and a DomainParticipant

88 (using Default QoS settings. */

89 dpf = DomainParticipantFactory::get instance();

90 checkHandle (dpf.in(), "DDS::DomainParticipantFactory::get instance");
91 parentDP = dpf->create participant (

92 domain,

93 PARTICIPANT QOS DEFAULT,

94 NULL,

95 STATUS MASK_NONE) ;

96 checkHandle (

97 parentDP, "DDS::DomainParticipantFactory::create participant");
98

99 /* Narrow the normal participant to its extended representative */
100 participant = ExtDomainParticipantImpl:: narrow (parentDP) ;

101 checkHandle (participant.in(), "DDS::ExtDEmainParticipant::7narrow");
102

103 /* Register the required datatype for ChatMessage. */

104 chatMessageTS = new ChatMessageTypeSupport () ;

105 checkHandle (chatMessageTS.in (), "new ChatMessageTypeSupport") ;

106 chatMessageTypeName = chatMessageTS->get type name () ;

107 status = chatMessageTS->register type (

108 participant.in (),

109 chatMessageTypeName) ;

110 checkStatus (status, "Chat::ChatMessageTypeSupport::register type");
111

112 /* Register the required datatype for NameService. */

113 nameServiceTS = new NameServiceTypeSupport () ;

114 checkHandle (nameServiceTS.in (), "new NameServiceTypeSupport") ;

115 nameServiceTypeName = nameServiceTS->get type name();

116 status = nameServiceTS->register type (

117 participant.in (),

118 nameServiceTypeName) ;

119 checkStatus (status, "Chat::NameServiceTypeSupport::register type");
120

121 /* Register the required datatype for NamedMessage. */

122 namedMessageTS = new NamedMessageTypeSupport () ;

123 checkHandle (namedMessageTS.in (), "new NamedMessageTypeSupport") ;
124 namedMessageTypeName = namedMessageTS->get type name () ;

125 status = namedMessageTS->register type (

126 participant.in (),

127 namedMessageTypeName) ;

128 checkStatus (status, "Chat::NamedMessageTypeSupport::register type");
129

140

S A ADLINK
C Tutorial Guide

Appendices

130 /* Set the ReliabilityQosPolicy to RELIABLE. */

131 status = participant->get default topic gos(reliable topic qos);

132 checkStatus (status, "DDS::DomainParticipant::get default topic gos");

133 reliable topic gos.reliability.kind = DDS::RELIABLE RELIABILITY QOS;

134

135 /* Make the tailored QoS the new default. */

136 status = participant->set default topic gos(reliable topic gos);

137 checkStatus (status, "DDS::DomainParticipant::set default topic gos");

138

139 /* Use the changed policy when defining the ChatMessage topic */

140 chatMessageTopic = participant->create topic(

141 "Chat ChatMessage",

142 chatMessageTypeName,

143 reliable topic gos,

144 NULL, - -

145 STATUS MASK NONE) ;

146 checkHandle (

147 chatMessageTopic.in (),

148 "DDS: :DomainParticipant::create topic (ChatMessage)");

149

150 /* Set the DurabilityQosPolicy to TRANSIENT. */

151 status = participant->get default topic qgos(setting topic gos);

152 checkStatus (status, "DDS::DomainParticipant::get default topic gos");

153 setting topic gos.durability.kind = DDS::TRANSIENT DURABILITY QOS;

154

155 /* Create the NameService Topic. */

156 nameServiceTopic = participant->create topic(

157 "Chat NameService",

158 nameServiceTypeNamne,

159 setting topic qos,

160 NULL, -

161 STATUS MASK NONE) ;

162 checkHandle (

163 nameServiceTopic.in(), "DDS::DomainParticipant::create topic");

lo4

165 /* Create a multitopic that substitutes the userID with its

166 corresponding userName. */

167 namedMessageTopic = participant->create simulated multitopic(

168 "Chat NamedMessage",

169 namedMessageTypeName,

170 "SELECT userID, name AS userName, index, content "

171 "FROM Chat NameService NATURAL JOIN Chat ChatMessage "

172 "WHERE userID <> %0", -

173 parameterList) ;

174 checkHandle (

175 namedMessageTopic.in (),

176 "DDS::ExtDomainParticipant::create simulated multitopic");

177

178 /* Adapt the default SubscriberQos to read from the

179 "ChatRoom" Partition. */

180 status = participant->get default subscriber gos (sub gos) ;

181 checkStatus (

182 status, "DDS::DomainParticipant::get default subscriber gos");

183 sub gos.partition.name.length(1);

184 sub gos.partition.name[0] = partitionName;

185

186 /* Create a Subscriber for the MessageBoard application. */

187 chatSubscriber = participant->create subscriber (

188 sub _gos, NULL, STATUS MASK NONE) ;

189 checkHandle (

190 chatSubscriber.in(), "DDS::DomainParticipant::create subscriber");
141

A ADLINK

C Tutorial Guide

Appendices

191

192 /* Create a DataReader for the NamedMessage Topic

193 (using the appropriate QoS). */

194 parentReader = chatSubscriber->create datareader (

195 namedMessageTopic.in (),

196 DATAREADER QOS USE TOPIC QOS,

197 NULL, - -

198 STATUS MASK NONE) ;

199 checkHandle (parentReader, "DDS::Subscriber::create datareader");
200

201 /* Narrow the abstract parent into its typed representative. */
202 chatAdmin = Chat::NamedMessageDataReader:: narrow (parentReader) ;
203 checkHandle (chatAdmin.in (), "Chat::NamedMessageDataReader:: narrow");
204

205 /* Print a message that the MessageBoard has opened. */

206 cout << "MessageBoard has opened: send a ChatMessage with "

207 "userID = -1 to close it...." << endl << endl;

208

209 while (!terminated) {

210 /* Note: using read does not remove the samples from

211 unregistered instances from the DataReader. This means
212 that the DataRase would use more and more resources.

213 That's why we use take here instead. */

214

215 status = chatAdmin->take (

216 msgSeq,

217 infoSeq,

218 LENGTH UNLIMITED,

219 ANY SAMPLE STATE,

220 ANY VIEW STATE,

221 ALIVE INSTANCE STATE);

222 checkStatus (status, "Chat::NamedMessageDataReader::take");
223

224 for (CORBA::ULong i = 0; i < msgSeg->length(); i++) {

225 NamedMessage *msg = & (msgSeql[i]);

226 if (msg->userID == TERMINATION MESSAGE) ({

227 cout << "Termination message received: exiting..." << endl;
228 terminated = TRUE;

229 } else {

230 cout << msg->userName << ": " << msg->content << endl;
231 }

232 }

233

234 status = chatAdmin->return loan (msgSeq, infoSeq);

235 checkStatus (status, "Chat::ChatMessageDataReader::return loan");
236

237 /* Sleep for some amount of time, as not to consume

238 too much CPU cycles. */

239 usleep (100000) ;

240 }

241

242 /* Remove the DataReader */

243 status = chatSubscriber->delete datareader (chatAdmin.in());

244 checkStatus (status, "DDS::Subscriber::delete datareader");

245

246 /* Remove the Subscriber. */

247 status = participant->delete subscriber (chatSubscriber.in())
248 checkStatus (status, "DDS::DomainParticipant::delete subscriber");
249

250 /* Remove the Topics. */

251 status = participant->delete simulated multitopic (

142

S A ADLINK
C Tutorial Guide

Appendices

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

namedMessageTopic.in()) ;
checkStatus (
status, "DDS::ExtDomainParticipant::delete simulated multitopic");

status = participant->delete topic(nameServiceTopic.in());
checkStatus (
status, "DDS::DomainParticipant::delete topic (nameServiceTopic)");
status = participant->delete topic(chatMessageTopic.in());
checkStatus (
status, "DDS::DomainParticipant::delete topic (chatMessageTopic)");

/* De-allocate the type-names. */

CORBA: :string free (namedMessageTypeName) ;
CORBA: :string free (nameServiceTypeName) ;
CORBA: :string free (chatMessageTypeName) ;

/* Remove the DomainParticipant. */
status = dpf->delete participant (participant.in());
checkStatus (status, "DDS::DomainParticipantFactory::delete participant");

exit (0);
}

multitopic.h

l /**
2 *

3 * Copyright (c) 2007

4 * PrismTech Ltd.

5 * All rights Reserved.

6 *

7 * LOGICAL NAME: multitopic.h

8 * FUNCTION: Vortex OpenSplice Tutorial example code.

9 * MODULE: Tutorial for the C++ programming language.

10 * DATE Jjune 2007.

ll Ak khkhkhkhkrkhkhhkhkhhkhhhkhhrkhkhhkhkhhkhrhkhrhkhhkhhhhrhk bk bbbk bk hk kb bk kb hkhkrhk bk hkhkhkhkhkhkhkhhkhkkx
12 =

13 * This file contains the headers for all operations required to simulate
14 * the MultiTopic behavior.

15 =

16 ***/

17

18 #include <string>

19

20 #include "ccpp dds dcps.h"

21 #include "ccpp_ Chat.h"

22 #include "orb abstraction.h"

23

24

25 namespace DDS {

26

27 class DataReaderListenerImpl : public virtual DDS::DataReaderListener {
28

29 /* Caching variables */

30 CORBA: : Long previous;

31 std::string userName;

32

A ADLINK 143

C Tutorial Guide

Appendices

33 public:

34 /* Type-specific DDS entities */

35 Chat: :ChatMessageDataReader var chatMessageDR;
36 Chat: :NameServiceDataReader var nameServiceDR;
37 Chat: :NamedMessageDataWriter var namedMessageDW;
38

39 /* Query related stuff */

40 DDS: :QueryCondition var nameFinder;

41 DDS: :StringSeq N nameFinderParams;
42

43

44 /* Constructor */

45 DataReaderListenerImpl () ;

46

47 /* Callback method implementation. */

48 virtual void on requested deadline missed (

49 DDS: :DataReader ptr reader,

50 const DDS::RequestedDeadlineMissedStatus & status
51) THROW ORB EXCEPTIONS;

52

53 virtual void on requested incompatible gos (

54 DDS::DataReader ptr reader,

55 const DDS::RequestedIncompatibleQosStatus & status
56) THROW ORB EXCEPTIONS;

57

58 virtual void on sample rejected (

59 DDS: :DataReader ptr reader,

60 const DDS::SampleRejectedStatus & status

61) THROW ORB EXCEPTIONS;

62

63 virtual void on liveliness changed (

64 DDS::DataReader ptr reader,

65 const DDS::LivelinessChangedStatus & status

66) THROW ORB EXCEPTIONS;

67

68 virtual void on data available (

69 DDS::DataReader ptr reader

70) THROW ORB EXCEPTIONS;

71

72 virtual void on subscription matched (

73 DDS: :DataReader ptr reader,

74 const DDS::SubscriptionMatchedStatus & status
75) THROW ORB EXCEPTIONS;

76

77 virtual void on sample lost (

78 DDS::DataReader ptr reader,

79 const DDS::SamplelLostStatus & status

80) THROW ORB EXCEPTIONS;

81 };

82

83 class ExtDomainParticipantImpl;

84

85 typedef ExtDomainParticipantImpl *ExtDomainParticipant ptr;

87 class ExtDomainParticipant var {

88 ExtDomainParticipant ptr ptr ;

89 public:

90 ExtDomainParticipant var() : ptr (NULL)({};
91 ~ExtDomainParticipanEﬁvar(); -

92 ExtDomainParticipant var & operator=(

93 const DDS::ExtDomainParticipant ptr ep);
144

C Tutorial Guide

A
= _ADLINK

Appendices

94 DDS: :ExtDomainParticipant ptr operator->() const;
95 operator const DDS::DomainParticipant ptr() const;
96 DDS::DomainParticipant ptr in() const;
97 };
98
99
100 class ExtDomainParticipantImpl
101 : public virtual DDS::DomainParticipant,
102 public LOCAL REFCOUNTED OBJECT
103 {
104 /‘k*‘k
105 * Attributes
106 ‘k*‘k/
107
108 // Encapsulated DomainParticipant.
109 DDS::DomainParticipant var realParticipant;
110
111 /*Implementation for DataReaderListener */
112 DDS: :DataReaderListenerImpl *msglListener;
113
114 /* Generic DDS entities */
115 DDS: :Topic var chatMessageTopic;
116 DDS: :Topic var nameServiceTopic;
117 DDS::ContentFilteredTopic var filteredMessageTopic;
118 DDS: :Topic var namedMessageTopic;
119 DDS: :Subscriber var multiSub;
120 DDS: :Publisher var multiPub;
121
122 /‘k*‘k
123 * Operations
124 ‘k*‘k/
125public:
126
127 // Simulating a narrow operation.
128 static ExtDomainParticipant ptr narrow (
129 DDS::DomainParticipant ptr obj
130) ;
131
132 // Simulating an in() parameter where a DomainParticipant is expected.
133 DDS::DomainParticipant ptr in();
134
135 // Constructor
136 ExtDomainParticipantImpl (DomainParticipant ptr participant);
137
138 virtual DDS::Topic ptr create simulated multitopic (
139 const char * name,
140 const char * type name,
141 const char * subscription expression,
142 const DDS::StringSeq & expression parameters
143) ;
144
145 virtual DDS::ReturnCode t delete simulated multitopic (
146 DDS::TopicDescription ptr a topic
147)
148
149 virtual DDS::ReturnCode t enable (
150) THROW ORB_EXCEPTIONS;
151
152 virtual DDS::StatusCondition ptr get statuscondition (
153) THROW ORB EXCEPTIONS;
154 T
145
A ADLINK

C Tutorial Guide

Appendices

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

146

virtual DDS::StatusKindMask get status changes
) THROW ORB EXCEPTIONS;

virtual DDS::InstanceHandle t get instance handle

) THROW ORB EXCEPTIONS;

virtual DDS::Publisher ptr create publisher (
const DDS::PublisherQos & qos,
DDS: :PublisherListener ptr a listener,
DDS: :StatusMask mask

) THROW ORB EXCEPTIONS;

virtual DDS::ReturnCode t delete publisher (
DDS::Publisher ptr p
) THROW ORB EXCEPTIONS;

virtual DDS::Subscriber ptr create subscriber
const DDS::SubscriberQos & gos,
DDS: :SubscriberListener ptr a listener,
DDS::StatusMask mask

) THROW ORB EXCEPTIONS;

virtual DDS::ReturnCode t delete subscriber (
DDS::Subscriber ptr s
) THROW ORB EXCEPTIONS;

virtual DDS::Subscriber ptr get builtin subscriber

) THROW ORB EXCEPTIONS;

virtual DDS::Topic ptr create topic (
const char * topic name,
const char * type name,
const DDS::TopicQos & gos,
DDS::TopicListener ptr a listener,
DDS: :StatusMask mask

) THROW ORB EXCEPTIONS;

virtual DDS::ReturnCode t delete topic (
DDS: :Topic ptr a topic
) THROW ORB EXCEPTIONS;

virtual DDS::Topic ptr find topic (
const char * topic name,
const DDS::Duration t & timeout
) THROW ORB EXCEPTIONS;

virtual DDS::TopicDescription ptr lookup topicdescription

const char * name
) THROW ORB_ EXCEPTIONS;

(

(

(

(

virtual DDS::ContentFilteredTopic ptr create contentfilteredtopic (

const char * name,

DDS: :Topic ptr related topic,

const char * filter expression,

const DDS::StringSeq & filter parameters
) THROW ORB EXCEPTIONS;

virtual DDS::ReturnCode t delete contentfilteredtopic
DDS: :ContentFilteredTopic ptr a contentfilteredtopic

) THROW ORB EXCEPTIONS;

C Tutorial Guide

A
= _ADLINK

Appendices

delete multitopic (

delete contained entities

ignore participant (

ignore publication (

ignore subscription (

assert liveliness (

set default publisher gos

get default publisher gos

(

(

(

(
147

216 virtual DDS::MultiTopic ptr create multitopic (
217 const char * name,

218 const char * type name,

219 const char * subscription expression,
220 const DDS::StringSeq & expression parameters
221) THROW ORB EXCEPTIONS;

222

223 virtual DDS::ReturnCode t

224 DDS::MultiTopic ptr a multitopic

225) THROW ORB EXCEPTIONS;

226

227 virtual DDS::ReturnCode t

228) THROW ORB EXCEPTIONS;

229

230 virtual DDS::ReturnCode t set gos (

231 const DDS::DomainParticipantQos & gos
232) THROW ORB EXCEPTIONS;

233

234 virtual DDS::ReturnCode t get gos (

235 DDS: :DomainParticipantQos & gos

236) THROW ORB EXCEPTIONS;

237

238 virtual DDS::ReturnCode t set listener (
239 DDS::DomainParticipantListener ptr a listener,
240 DDS::StatusKindMask mask

241) THROW ORB EXCEPTIONS;

242

243 virtual DDS::DomainParticipantListener ptr get listener (
244) THROW ORB EXCEPTIONS;

245

246 virtual DDS::ReturnCode t

247 DDS::InstanceHandle t handle

248) THROW ORB EXCEPTIONS;

249

250 virtual DDS::ReturnCode t ignore topic (
251 DDS::InstanceHandle t handle

252) THROW ORB EXCEPTIONS;

253

254 virtual DDS::ReturnCode t

235 DDS::InstanceHandle t handle

256) THROW ORB EXCEPTIONS;

257

258 virtual DDS::ReturnCode t

239 DDS::InstanceHandle t handle

260) THROW ORB EXCEPTIONS;

261

262 virtual char * get domain id (

263) THROW ORB EXCEPTIONS;

264

265 virtual DDS::ReturnCode t

266) THROW ORB EXCEPTIONS;

267

268 virtual DDS::ReturnCode t

269 const DDS::PublisherQos & gos

270) THROW ORB EXCEPTIONS;

271

272 virtual DDS::ReturnCode t

273 DDS::PublisherQos & gos

274) THROW ORB EXCEPTIONS;

275

276 virtual DDS::ReturnCode t set default subscriber gos
A

~ ADLINK

C Tutorial Guide

Appendices

277 const DDS::SubscriberQos & gos

278) THROW ORB EXCEPTIONS;

279

280 virtual DDS::ReturnCode t get default subscriber gos (
281 DDS: :SubscriberQos & gos

282) THROW ORB EXCEPTIONS;

283

284 virtual DDS::ReturnCode t set default topic gos (

285 const DDS::TopicQos & gos

286) THROW ORB EXCEPTIONS;

287

288 virtual DDS::ReturnCode t get default topic gos (

289 DDS: :TopicQos & gos

290) THROW ORB EXCEPTIONS;

291

292 virtual DDS::ReturnCode t get discovered participants (
293 DDS::InstanceHandleSeq & participant handles

294) THROW ORB EXCEPTIONS;

295

296 virtual DDS::ReturnCode t get discovered participant data (
297 DDS::InstanceHandle t participant handle,

298 DDS::ParticipantBuiltinTopicData & participant data
299) THROW ORB EXCEPTIONS;

300

301 virtual DDS::ReturnCode t get discovered topics (

302 DDS::InstanceHandleSeq & topic handles

303) THROW ORB_EXCEPTIONS;

304

305 virtual DDS::ReturnCode t get discovered topic data (
306 DDS::InstanceHandle t topic handle,

307 DDS::TopicBuiltinTopicData & topic data

308) THROW ORB EXCEPTIONS;

309

310 virtual CORBA::Boolean contains entity (

311 DDS: :InstanceHandle t a handle

312) THROW ORB EXCEPTIONS;

313

3il4 virtual DDS::ReturnCode t get current time (

315 DDS::Time t & current time

316) THROW ORB EXCEPTIONS;

317 };

318

319 };

multitopic.cpp

l /**
2 *

3 * Copyright (c) 2007

4 * PrismTech Ltd.

5 * All rights Reserved.

6 *

7 * LOGICAL NAME: multitopic.cpp

8 * FUNCTION: Vortex OpenSplice Tutorial example code.
9 * MODULE: Tutorial for the C++ programming language.
10 * DATE June 2007.

ll Ahkhkhkhhhkhhhhhkhhkhhkh Ak kA dA A A AR A A A A A A A A A A A A A A A A A AR AR AR A A AR Ak Ak Ak vk hkhkhkhkhkhkkkk
12 %

148

S A ADLINK
C Tutorial Guide

Appendices

13

A

)

* This file contains the headers for all operations required to simulate
* the MultiTopic behavior.
*
***/
#include "multitopic.h"
#include "CheckStatus.h"
#include <sstream>
DDS: :DataReaderListenerImpl: :DataReaderListenerImpl () : previous (0x80000000)
nameFinderParams.length (1) ;
}
void
DDS::DataReaderListenerImpl::on requested deadline missed (
DDS::DataReader ptr reader,
const DDS::RequestedDeadlineMissedStatus & status
) THROW ORB EXCEPTIONS { };
void
DDS::DataReaderListenerImpl::on requested incompatible gos (
DDS::DataReader ptr reader,
const DDS::RequestedIncompatibleQosStatus & status
) THROW ORB EXCEPTIONS { };
void
DDS::DataReaderListenerImpl::on sample rejected (
DDS::DataReader ptr reader,
const DDS::SampleRejectedStatus & status
) THROW ORB EXCEPTIONS { };
void
DDS::DataReaderListenerImpl::on liveliness changed (
DDS::DataReader ptr reader,
const DDS::LivelinessChangedStatus & status
) THROW ORB EXCEPTIONS { };
void
DDS::DataReaderListenerImpl::on subscription matched (
DDS::DataReader ptr reader,
const DDS::SubscriptionMatchedStatus & status
) THROW ORB EXCEPTIONS { };
void
DDS::DataReaderListenerImpl::on sample lost (
DDS::DataReader ptr reader,
const DDS::SamplelLostStatus & status
) THROW ORB EXCEPTIONS { };
void
DDS: :DataReaderListenerImpl::on data available (
DDS: :DataReader ptr reader
) THROW ORB_EXCEPTIONS ({
Chat::ChatMessageSeq msgSeq;
Chat: :NameServiceSeqg nameSeq;
DDS: :SampleInfoSeq infoSeql;
DDS: :SampleInfoSeq infoSeqg2;
DDS: :ReturnCode t status;
/* Take all messages. */
status = chatMessageDR->take (
'ADLINK

{

149

C Tutorial Guide

Appendices

74 msgSeq,

75 infoSeql,

76 DDS: :LENGTH UNLIMITED,

77 DDS::ANY SAMPLE STATE,

78 DDS: :ANY VIEW STATE,

79 DDS: :ANY INSTANCE STATE) ;

80 checkStatus (status, "Chat::ChatMessageDataReader::take");

81

82 /* For each message, extract the key-field and find

83 the corresponding name. */

84 for (CORBA::ULong i = 0; i < msgSeqg.length(); it++)

85 {

86 if (infoSeql[i].valid data)

87 {

88 Chat: :NamedMessage joinedSample;

89

90 /* Find the corresponding named message. */

91 if (msgSeqg[i].userID != previous)

92

93 ostringstream numberStr;

94 previous = msgSeqg[i] .userID;

95 numberStr << previous;

96 nameFinderParams [OUL] = numberStr.str().c str();

97 status = nameFinder->set query parameters (nameFinderParams) ;
98 checkStatus (status, "DDS::QueryCondition::set query parameters");
99 status = nameServiceDR->read w condition (

100 nameSeq,

101 infoSeqg2,

102 DDS: :LENGTH UNLIMITED,

103 nameFinder.in());

104 checkStatus (

105 status, "Chat::NameServiceDataReader::read w condition");
106

107 /* Extract Name (there should only be one result). */
108 if (status == DDS::RETCODE NO DATA)

109 {

110 ostringstream msg;

111 msg << "Name not found!! id = " << previous;

112 userName = msg.str();

113 }

114 else

115 {

116 userName = nameSeq[0].name;

117 }

118

119 /* Release the name sample again. */

120 status = nameServiceDR->return loan (nameSeq, infoSeg2);
121 checkStatus (status, "Chat::NameServiceDataReader::return loan");
122 }

123 /* Write merged Topic with userName instead of userID. */
124 joinedSample.userName = userName.c str();

125 joinedSample.userID = msgSeq[i] .userID;

126 joinedSample.index = msgSeq[i].index;

127 joinedSample.content = msgSeq[i].content;

128 status = namedMessageDW->write (joinedSample, DDS::HANDLE NIL);
129 checkStatus (status, "Chat::NamedMessageDataWriter::write");
130 }

131 }

132 status chatMessageDR->return loan (msgSeq, infoSeql);

133 checkStatus (status, "Chat::ChatMessageDataReader::return loan");
134 }; B

150

C Tutorial Guide

A
= _ADLINK

Appendices

135

136

137 DDS: :ExtDomainParticipant ptr

138 DDS: :ExtDomainParticipantImpl:: narrow (DDS::DomainParticipant ptr obj) {
139 return new DDS::ExtDomainParticipantImpl (obj); -
140 };

141

142 DDS: :DomainParticipant ptr

143 DDS: :ExtDomainParticipantImpl::in() {

144 return realParticipant.in();

1451},

146

147

148 DDS: :ExtDomainParticipantImpl: :ExtDomainParticipantImpl (

149 DDS::DomainParticipant ptr participant

150) {

151 realParticipant = DDS::DomainParticipant:: duplicate (participant);
152 };

153

154

155

156 DDS: : Topic ptr

157 DDS: :ExtDomainParticipantImpl::create simulated multitopic (
158 const char * name,

159 const char * type name,
160 const char * subscription expression,
1ol const DDS::StringSeq & expression parameters)
162 {
163 /* Type-specific DDS entities */
164 Chat::ChatMessageDataReader ptr chatMessageDR;
165 Chat::NameServiceDataReader ptr nameServiceDR;
166 Chat: :NamedMessageDataWriter ptr namedMessageDW;
167
168 /* Query related stuff */
169 DDS: :QueryCondition ptr nameFinder;
170
171 /* QosPolicy holders */
172 DDS: : TopicQos namedMessageQos;
173 DDS: :SubscriberQos sub qgos;
174 DDS: :PublisherQos pub gos;
175 B
176 /* Others */
177 DDS: :DataReader ptr parentReader;
178 DDS::DataWriter ptr parentWriter;
179 char - *nameFinderExpr;
180 const char *partitionName = "ChatRoom";
181 DDS: :ReturnCode t status;
182
183 /* Lookup both components that constitute the multi-topic. */
184 chatMessageTopic = realParticipant->find topic(
185 "Chat ChatMessage", DDS::DURATIONilNFINITE);
186 checkHandle (
187 chatMessageTopic.in (),
188 "DDS::DomainParticipant::find topic (Chat ChatMessage)");
189
190 nameServiceTopic = realParticipant->find topic(
191 "Chat NameService", DDS::DURATIONileINITE);
192 checkHandle (
193 nameServiceTopic.in (),
194 "DDS::DomainParticipant::find topic (Chat NameService)");
195
151
A ADLINK

C Tutorial Guide

Appendices

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

152

/* Create a ContentFilteredTopic to filter out our own ChatMessages. */
filteredMessageTopic = realParticipant->create contentfilteredtopic(
"Chat FilteredMessage",
chatMessageTopic.in (),
"userID <> %0",
expression parameters) ;
checkHandle (
filteredMessageTopic.in (),
"DDS::DomainParticipant::create contentfilteredtopic");

/* Adapt the default SubscriberQos to read from the
"ChatRoom" Partition. */

status = realParticipant->get default subscriber gos (sub_qgos);
checkStatus (status, "DDS::DomainParticipant::get default subscriber gos");
sub gos.partition.name.length (1) ;

sub gos.partition.name[0] = partitionName;

/* Create a private Subscriber for the multitopic simulator. */

multiSub = realParticipant->create subscriber (
sub _gos, NULL, DDS::STATUS MASK NONE) ;
checkHandle (

multiSub.in (),
"DDS::DomainParticipant::create subscriber (for multitopic)");

/* Create a DataReader for the FilteredMessage Topic
(using the appropriate QoS). */
parentReader = multiSub->create datareader (
filteredMessageTopic.in (),
DATAREADER QOS USE TOPIC QOS,
NULL, - -
DDS: : STATUS MASK NONE) ;
checkHandle (
parentReader,
"DDS::Subscriber::create datareader (ChatMessage)");

/* Narrow the abstract parent into its typed representative. */
chatMessageDR = Chat::ChatMessageDataReader:: narrow (parentReader) ;
checkHandle (chatMessageDR, "Chat::ChatMessageDataReader:: narrow");

/* Allocate the DataReaderListener Implementation. */
msgListener = new DDS::DataReaderListenerImpl () ;
checkHandle (msgListener, "new DDS::DataReaderListenerImpl") ;

/* Attach the DataReaderListener to the DataReader, only enabling
the data available event. */

status = chatMessageDR->set listener (
msgListener, DDS::DATA AVAILABLE STATUS) ;

checkStatus (status, "DDS::DataReader set listener");

/* Create a DataReader for the nameService Topic
(using the appropriate QoS). */
parentReader = multiSub->create datareader (
nameServiceTopic.in (),
DATAREADER QOS USE TOPIC QOS,
NULL,
DDS: : STATUS MASK NONE) ;
checkHandle (
parentReader, "DDS::Subscriber::create datareader (NameService)");

/* Narrow the abstract parent into its typed representative. */

A
= _ADLINK

C Tutorial Guide

Appendices

257 nameServiceDR = Chat::NameServiceDataReader:: narrow (parentReader) ;
258 checkHandle (nameServiceDR, "Chat::NameServiceDataReader:: narrow");
259

260 /* Define the SQL expression (using a parameterized value). */

2601 nameFinderExpr = "userID = $0";

262

263 /* Create a QueryCondition to only read corresponding nameService

264 information by key-value. */

265 nameFinder = nameServiceDR->create querycondition (

266 DDS::ANY SAMPLE STATE,

267 DDS::ANY VIEW STATE,

268 DDS::ANY INSTANCE STATE,

269 nameFinderExpr,

270 expression parameters) ;

271 checkHandle (

272 nameFinder, "DDS::DataReader::create querycondition (nameFinder)");
273

274 /* Create the Topic that simulates the multi-topic

275 (use Qos from chatMessage) .*/

276 status = chatMessageTopic->get gos (namedMessageQos) ;

277 checkStatus (status, "DDS::Topic::get gos");

278

279 /* Create the NamedMessage Topic whose samples simulate the MultiTopic */
280 namedMessageTopic = realParticipant->create topic(

281 "Chat NamedMessage",

282 type name,

283 namedMessageQos,

284 NULL,

285 DDS: : STATUS MASK NONE) ;

286 checkHandle (

287 namedMessageTopic.in (),

288 "DDS::DomainParticipant::create topic (NamedMessage)");

289

290 /* Adapt the default PublisherQos to write into the

291 "ChatRoom" Partition. */

292 status = realParticipant->get default publisher gos(pub qos) ;

293 checkStatus (status, "DDS::DomainParticipant::get default publisher qos");
294 pub gos.partition.name.length (1)

295 pub gos.partition.name[0] = partitionName;

296

297 /* Create a private Publisher for the multitopic simulator. */

298 multiPub = realParticipant->create publisher (

299 pub _gos, NULL, DDS::STATUS MASK NONE) ;

300 checkHandle (

301 multiPub.in (),

302 "DDS::DomainParticipant::create publisher (for multitopic)");

303

304 /* Create a DataWriter for the multitopic. */

305 parentWriter = multiPub->create datawriter (

306 namedMessageTopic.in (),

307 DATAWRITER QOS USE TOPIC QOS,

308 NULL,

309 DDS: : STATUS MASK NONE) ;

310 checkHandle (

311 parentWriter, "DDS::Publisher::create datawriter (NamedMessage)");
312

313 /* Narrow the abstract parent into its typed representative. */

314 namedMessageDW = Chat::NamedMessageDataWriter:: narrow (parentWriter);
315 checkHandle (namedMessageDW, "Chat::NamedMessageDataWriter:: narrow");
316

317 /* Store the relevant Entities in our Listener. */

A ADLINK 153

C Tutorial Guide

Appendices

318 msglListener->chatMessageDR = chatMessageDR;

319 msglListener->nameServiceDR = nameServiceDR;

320 msglListener->namedMessageDW = namedMessageDW;

321 msglistener->nameFinder = nameFinder;

322

323 /* Return the simulated Multitopic. */

324 return DDS::Topic:: duplicate(namedMessageTopic.in());
3251};

326

327 DDS: :ReturnCode t
328 DDS: :ExtDomainParticipantImpl: :delete simulated multitopic (

329 DDS: :TopicDescription ptr smt

330)

331 {

332 DDS: :ReturnCode t status;

333

334 /* Remove the DataWriter */

335 status = multiPub->delete datawriter (msgListener->namedMessageDW.in()) ;
336 checkStatus (status, "DDS::Publisher::delete datawriter");

337

338 /* Remove the Publisher. */

339 status = realParticipant->delete publisher (multiPub.in());

340 checkStatus (status, "DDS::DomainParticipant::delete publisher");

341

342 /* Remove the QueryCondition. */

343 status = msglistener->nameServiceDR->delete readcondition (

344 msglListener->nameFinder.in()) ; -

345 checkStatus (status, "DDS::DataReader::delete readcondition");

346

347 /* Remove the DataReaders. */

348 status = multiSub->delete datareader (msgListener->nameServiceDR.in());
349 checkStatus (status, "DDS::Subscriber::delete datareader");

350 status = multiSub->delete datareader (msgListener->chatMessageDR.in());
351 checkStatus (status, "DDS::Subscriber::delete datareader");

352

353 /* Remove the DataReaderListener. */

354 CORBA: :release (msglListener) ;

355

356 /* Remove the Subscriber. */

357 status = realParticipant->delete subscriber (multiSub.in());

358 checkStatus (status, "DDS::DomainParticipant::delete subscriber");

359

360 /* Remove the ContentFilteredTopic. */

361 status = realParticipant->delete contentfilteredtopic(

362 filteredMessageTopic.in()) ;

363 checkStatus (

364 status, "DDS::DomainParticipant::delete contentfilteredtopic");
365

366 /* Remove all other topics. */

367 status = realParticipant->delete topic(namedMessageTopic.in());

368 checkStatus (

369 status, "DDS::DomainParticipant::delete topic (namedMessageTopic)");
370 status = realParticipant->delete topic(nameServiceTopic.in());

371 checkStatus (

372 status, "DDS::DomainParticipant::delete topic (nameServiceTopic)");
373 status = realParticipant->delete topic(chatMessageTopic.in());

374 checkStatus (

375 status, "DDS::DomainParticipant::delete topic (chatMessageTopic)");
376

377 return status;

378 };

154

S A ADLINK
C Tutorial Guide

Appendices

379

380

381

382 DDS: :ReturnCode t

383 DDS: :ExtDomainParticipantImpl: :enable (

384) THROW ORB EXCEPTIONS {

385 return realParticipant->enable() ;

386 };

387

388 DDS::StatusCondition ptr

389 DDS: :ExtDomainParticipantImpl::get statuscondition (
390) THROW ORB EXCEPTIONS {

391 return realParticipant->get statuscondition();
392 };

393

394 DDS: : StatusKindMask

395DDS: :ExtDomainParticipantImpl::get status changes (
396) THROW ORB EXCEPTIONS {

397 return realParticipant->get status changes();
398 };

399

400 DDS: : InstanceHandle t

401 DDS: :ExtDomainParticipantImpl::get instance handle (
402) THROW ORB EXCEPTIONS {

403 return realParticipant->get instance handle();
404 };

405

406 DDS: : Publisher ptr

407 DDS: :ExtDomainParticipantImpl::create publisher (

408 const DDS::PublisherQos & gos,

409 DDS::PublisherListener ptr a listener,

410 DDS: :StatusMask mask

411) THROW ORB EXCEPTIONS {

412 return realParticipant->create publisher (gos, a listener, mask);
413 };

414

415DDS: :ReturnCode_t
416 DDS: :ExtDomainParticipantImpl::delete publisher (

417 DDS::Publisher ptr p

418) THROW ORB EXCEPTIONS {

419 return realParticipant->delete publisher (p);
420 };

421

422 DDS: : Subscriber ptr
423 DDS: :ExtDomainParticipantImpl::create subscriber (

424 const DDS::SubscriberQos & qgos,

425 DDS: :SubscriberListener ptr a listener,

426 DDS: :StatusMask mask

427) THROW ORB EXCEPTIONS {

428 return realParticipant->create subscriber (qos, a listener, mask);
429 };

430

431 DDS: :ReturnCode t
432 DDS: :ExtDomainParticipantImpl::delete subscriber (

433 DDS::Subscriber ptr s

434) THROW ORB EXCEPTIONS {

435 return realParticipant->delete subscriber(s);
436 };

437

438 DDS: : Subscriber ptr
439 DDS: :ExtDomainParticipantImpl::get builtin subscriber (
155

A ADLINK . A
‘ C Tutorial Guide

Appendices

440) THROW ORB_ EXCEPTIONS {

441 return realParticipant->get builtin subscriber();
442} ; N -

443

444 DDS: :Topic ptr

445DDS: :ExtDomainParticipantImpl::create topic (

446 const char * topic name,

447 const char * type name,

448 const DDS::TopicQos & gos,

4419 DDS: :TopicListener ptr a listener,

450 DDS: :StatusMask mask

451) THROW ORB EXCEPTIONS ({

452 return realParticipant->create topic(topic name, type name, Jos,
a listener, mask);

453 };

454

455DDS: :ReturnCode t
456 DDS: :ExtDomainParticipantImpl: :delete topic (

457 DDS::Topic ptr a topic

458) THROW ORB_EXCEPTIONS {

459 return realParticipant->delete topic(a topic):;
460 };

461

462 DDS: :Topic ptr
463 DDS: :ExtDomainParticipantImpl::find topic (

464 const char * topic name,

465 const DDS::Duration t & timeout

466) THROW ORB EXCEPTIONS {

467 return realParticipant->find topic(topic name, timeout);
468 }; N B

469

470DDS: :TopicDescription ptr
471 DDS: :ExtDomainParticipantImpl::lookup topicdescription (

472 const char * name

473) THROW ORB EXCEPTIONS ({

474 return realParticipant->lookup topicdescription (name);
475 }; B

476

477DDS: :ContentFilteredTopic ptr
478 DDS: :ExtDomainParticipantImpl::create contentfilteredtopic (
479 const char * name,

480 DDS: :Topic ptr related topic,

481 const char * filter expression,

482 const DDS::StringSeq & filter parameters
483) THROW ORB EXCEPTIONS ({ -

484 return EealParticipant—>create_contentfilteredtopic(
485 name,

486 related topic,

487 filter expression,

488 filter parameters);

4891} ;

490

491 DDS: :ReturnCode t
492 DDS: :ExtDomainParticipantImpl: :delete contentfilteredtopic (

493 DDS: :ContentFilteredTopic ptr a contentfilteredtopic
494) THROW ORB_EXCEPTIONS { B B

495 return realParticipant->delete contentfilteredtopic(
496 a_contentfilteredtopic);

497 };

498

156

S A ADLINK
C Tutorial Guide

Appendices

499 DDS: :MultiTopic ptr
500 DDS: :ExtDomainParticipantImpl::create multitopic (

501 const char * name,

502 const char * type name,

503 const char * subscription expression,

504 const DDS::StringSeq & expression parameters
505) THROW ORB EXCEPTIONS ({

506 return realParticipant->create multitopic(
507 name,

508 type name,

509 subscription expression,

510 expression parameters);

511 };

512

513 DDS: :ReturnCode t
514 DDS: :ExtDomainParticipantImpl::delete multitopic (

515 DDS::MultiTopic ptr a multitopic

516) THROW ORB EXCEPTIONS {

517 return realParticipant->delete multitopic(a multitopic);
518 1};

519

520 DDS: :ReturnCode t

521 DDS: :ExtDomainParticipantImpl::delete contained entities (
522) THROW ORB EXCEPTIONS {

523 return realParticipant->delete contained entities();
524 };

525

526 DDS: :ReturnCode t

527 DDS: :ExtDomainParticipantImpl::set gos (

528 const DDS::DomainParticipantQos & gos
529) THROW ORB_EXCEPTIONS {

530 return realParticipant->set qgos(qos):;
531 };

532

533 DDS: :ReturnCode t
534 DDS: :ExtDomainParticipantImpl::get gos (

535 DDS: :DomainParticipantQos & gos

536) THROW ORB EXCEPTIONS {

537 return realParticipant->get gos(gos) ;
538 };

539

540 DDS: :ReturnCode t
541 DDS: :ExtDomainParticipantImpl::set listener (

542 DDS::DomainParticipantListener ptr a listener,

543 DDS::StatusKindMask mask

544) THROW ORB EXCEPTIONS {

545 return realParticipant->set listener(a listener, mask);
546 };

547

548 DDS: :DomainParticipantListener ptr
549DDS::ExtDomainParticipantImpl:Tgetilistener (

550) THROW ORB EXCEPTIONS {

551 return realParticipant->get listener();

552 };

553

554 DDS: :ReturnCode t

555DDS: :ExtDomainParticipantImpl: :ignore participant (

556 DDS::InstanceHandle t handle

557) THROW ORB EXCEPTIONS {

558 return realParticipant->ignore participant (handle) ;
559 };

157

A ADLINK . A
‘ C Tutorial Guide

Appendices

560
561 DDS: :ReturnCode t
562 DDS: :ExtDomainParticipantImpl: :ignore topic (

563 DDS: :InstanceHandle t handle

564) THROW ORB EXCEPTIONS {

565 return realParticipant->ignore topic (handle) ;
566 };

567

568 DDS: :ReturnCode t
569 DDS: :ExtDomainParticipantImpl::ignore publication (

570 DDS::InstanceHandle t handle

571) THROW ORB EXCEPTIONS {

572 return realParticipant->ignore publication (handle) ;
573 };

574

575DDS: :ReturnCode t
576 DDS: :ExtDomainParticipantImpl: :ignore subscription (

577 DDS::InstanceHandle t handle

578) THROW ORB_ EXCEPTIONS {

579 return realParticipant->ignore subscription (handle);
580 };

581

582 char *

583 DDS: :ExtDomainParticipantImpl: :get domain id (
584) THROW ORB EXCEPTIONS { - -

585 return realParticipant->get domain id();

586 };

587

588 DDS: :ReturnCode t

589 DDS: :ExtDomainParticipantImpl: :assert liveliness (
590) THROW ORB EXCEPTIONS { B

591 return realParticipant->assert liveliness();
592 };

593

594 DDS: :ReturnCode t

595DDS: :ExtDomainParticipantImpl::set default publisher gos (

596 const DDS::PublisherQos & gos

597) THROW ORB EXCEPTIONS ({

598 return realParticipant->set default publisher gos(gos);
599 };

600

601 DDS: :ReturnCode t
602 DDS: :ExtDomainParticipantImpl::get default publisher gos (

603 DDS::PublisherQos & gos

604) THROW ORB EXCEPTIONS {

605 return realParticipant->get default publisher gos(qgos);
606 };

607

608 DDS: :ReturnCode t
609 DDS: :ExtDomainParticipantImpl::set default subscriber qgos (

610 const DDS::SubscriberQos & gos

611) THROW ORB EXCEPTIONS ({

612 return realParticipant->set default subscriber gos(gos) ;
613 1};

614

615DDS: :ReturnCode t
616 DDS: :ExtDomainParticipantImpl::get default subscriber gos (

617 DDS: :SubscriberQos & gos

618) THROW ORB EXCEPTIONS {

619 return realParticipant->get default subscriber gos(qos):;
620 };

158

S A ADLINK
C Tutorial Guide

Appendices

621
622 DDS: :ReturnCode t
623 DDS: :ExtDomainParticipantImpl::set default topic gos (

624 const DDS::TopicQos & gos

625) THROW ORB EXCEPTIONS ({

626 return realParticipant->set default topic qgos(gos);
627 };

628

629 DDS: :ReturnCode t
630 DDS: :ExtDomainParticipantImpl::get default topic gos (

631 DDS: :TopicQos & gos

632) THROW ORB EXCEPTIONS ({

633 return realParticipant->get default topic gos (gos) ;
634 };

635

636 DDS: :ReturnCode t
637 DDS: :ExtDomainParticipantImpl::get discovered participants (

638 DDS::InstanceHandleSeq & participant handles

639) THROW ORB EXCEPTIONS ({

640 return realParticipant->get discovered participants(participant handles) ;
641 };

642

643 DDS: :ReturnCode t
644 DDS: :ExtDomainParticipantImpl::get discovered participant data (

645 DDS::InstanceHandle t participant handle,

646 DDS::ParticipantBuiltinTopicData & participant data

647) THROW ORB EXCEPTIONS ({ -

648 return realParticipant->get discovered participant data (
649 participant handle, participant data);

650 };

651

652 DDS: :ReturnCode t
653 DDS: :ExtDomainParticipantImpl::get discovered topics (

654 DDS::InstanceHandleSeq & topic handles

655) THROW ORB EXCEPTIONS ({

656 return realParticipant->get discovered topics (topic handles) ;
657 };

658

659 DDS: :ReturnCode t
660 DDS: :ExtDomainParticipantImpl::get discovered topic data (

661 DDS::InstanceHandle t topic handle,

662 DDS: :TopicBuiltinTopicData & topic data

663) THROW ORB EXCEPTIONS ({ B

664 return realParticipant->get discovered topic data(
665 topic_handle, topic data);

666 };

667

668 CORBA: :Boolean
669 DDS: :ExtDomainParticipantImpl::contains entity (

670 DDS: :InstanceHandle t a handle

671) THROW ORB EXCEPTIONS {

672 return realParticipant->contains entity(a handle);
673 1};

674

675DDS: :ReturnCode t
676 DDS: :ExtDomainParticipantImpl::get current time (

677 DDS::Time t & current time

678) THROW ORB EXCEPTIONS ({

679 return realParticipant->get current time(current time);
680 };

681

159

A ADLINK . A
‘ C Tutorial Guide

Appendic

682 DDS
683
684 };
685

686 DDS:

687 DDS
688
689) {
690
691
692 };
693

694 DDS :

695 DDS
696
697 };
698

699 DDS:
700 DDS:

701
702 };
703

704 DDS:

705
706 };

€S

::ExtDomainParticipant var::~ExtDomainParticipant var () {
CORBA: :release (ptr);

:ExtDomainParticipant var &
: :ExtDomainParticipant var::operator=(
const DDS::ExtDomainParticipant ptr ep

ptr_ = ep;
return *this;

:ExtDomainParticipant ptr
::ExtDomainParticipant var::operator->() const ({
return ptr ;

:ExtDomainParticipant var::operator const
:DomainParticipant ptr() const ({
return ptr ->in();

:DomainParticipant ptr DDS::ExtDomainParticipant var::in ()
return ptr ->in();

UserLoad.cpp

const {

l /**
2 *

3 * Copyright (c) 2007

4 * PrismTech Ltd.

5 * All rights Reserved.

6 *

7 * LOGICAL NAME: UserLoad.cpp

8 * FUNCTION: Vortex OpenSplice Tutorial example code.

9 * MODULE: Tutorial for the C++ programming language.
10 * DATE June 2007.

ll khkhkhkkhkhkhkhkhkhkhhkkhkhhhkhhkhhhhhhkhhkhkhhkhhkhhhhk bk bbbk bk hkh bk h kb kb bk hkrhkhkrhkhkhkhkhkhkhkrkhkhxkxx
12 =

13 * This file contains the implementation for the 'UserLoad' executable.
14 &

15 ***/

16

17 #include <iostream>

18 #include <sstream>

19 #include <unistd.h>

20 #include <string.h>

21 #include <pthread.h>

22 #include <assert.h>

23

24 #include "ccpp dds dcps.h"

25 #include "CheckStatus.h"

26 #include "ccpp Chat.h"

27

28 using namespace DDS;

29 using namespace Chat;

30

160

C Tutorial

Guide

A
= _ADLINK

Appendices

A

)

/* entities required by all threads. */

static DDS::GuardCondition var escape;

/* Sleeper thread: sleeps 60 seconds and then triggers the WaitSet.

void *

delayedEscape (
void *arg)

{
DDS: :ReturnCode t status;
sleep (60) ; /* wait for 60 sec. */
status = escape->set trigger value (TRUE) ;
checkStatus (status, "DDS::GuardCondition::set trigger value");
return NULL;

}

int

main (
int argc,
char *argvl([])

{
/* Generic DDS entities */
DomainParticipant var participant;
Topic var chatMessageTopic;
Topic var nameServiceTopic;
Subscriber var chatSubscriber;
DataReader ptr parentReader;
QueryCondition var singleUser;
ReadCondition var newUser;
StatusCondition var leftUser;
WaitSet var userLoadWs;
LivelinessChangedStatus livChangStatus;
/* QosPolicy holders */
TopicQos setting topic gos;
TopicQos reliable topic gos;
SubscriberQos sub_ qos;
DataReaderQos message Jos;
/* DDS Identifiers */
DomainId t domain = DOMAIN ID DEFAULT;
ReturnCode t status;
ConditionSeq guardList;
/* Type-specific DDS entities */
ChatMessageTypeSupport var chatMessageTS;
NameServiceTypeSupport var nameServiceTS;
NameServiceDataReader var nameServer;
ChatMessageDataReader var loadAdmin;
ChatMessageSeq msgList;
NameServiceSeq nsList;
SampleInfoSeq infoSeq;
SampleInfoSeq infoSeqg2;
/* Others */
StringSeq args;
char * chatMessageTypeName = NULL;
char * nameServiceTypeName = NULL;
bool closed = false;

'ADLINK

*/

C Tutorial Guide

Appendices

92 CORBA: :Long prevCount = 0;

93 pthread t tid;

94 B

95 /* Create a DomainParticipant (using the 'TheParticipantFactory'
96 convenience macro) . */

97 participant = TheParticipantFactory->create participant (

98 domain,

99 PARTICIPANT QOS DEFAULT,

100 NULL, -

101 STATUS MASK NONE) ;

102 checkHandle (

103 participant.in(), "DDS::DomainParticipantFactory::create participant");
104

105 /* Register the required datatype for ChatMessage. */

106 chatMessageTS = new ChatMessageTypeSupport () ;

107 checkHandle (chatMessageTS.in (), "new ChatMessageTypeSupport") ;
108 chatMessageTypeName = chatMessageTS->get type name () ;

109 status = chatMessageTS->register type (

110 participant.in (), chatMessageTypeNamnme) ;

111 checkStatus (status, "Chat::ChatMessageTypeSupport::register type");
112

113 /* Register the required datatype for NameService. */

114 nameServiceTS = new NameServiceTypeSupport () ;

115 checkHandle (nameServiceTS.in (), "new NameServiceTypeSupport") ;
116 nameServiceTypeName = nameServiceTS->get type name();

117 status = nameServiceTS->register type (

118 participant.in(), nameServiceTypeName) ;

119 checkStatus (status, "Chat::NameServiceTypeSupport::register type");
120

121 /* Set the ReliabilityQosPolicy to RELIABLE. */

122 status = participant->get default topic gos(reliable topic gos) ;
123 checkStatus (status, "DDS::DomainParticipant::get default topic qos");
124 reliable topic gos.reliability.kind = RELIABLE RELIABILITY QOS;
125

126 /* Make the tailored QoS the new default. */

127 status = participant->set default topic gos(reliable topic gos);
128 checkStatus (status, "DDS::DomainParticipant::set default topic gos");
129

130 /* Use the changed policy when defining the ChatMessage topic */
131 chatMessageTopic = participant->create topic(

132 "Chat ChatMessage",

133 chatMessageTypeName,

134 reliable topic gos,

135 NULL,

136 STATUS MASK NONE) ;

137 checkHandle (

138 chatMessageTopic.in (),

139 "DDS::DomainParticipant::create topic (ChatMessage)");

140

141 /* Set the DurabilityQosPolicy to TRANSIENT. */

142 status = participant->get default topic gos(setting topic gos);
143 checkStatus (status, "DDS::DomainParticipant::get default topic qos");
144 setting topic gos.durability.kind = TRANSIENT DURABILITY QOS;
145

146 /* Create the NameService Topic. */

147 nameServiceTopic = participant->create topic(

148 "Chat NameService", B

149 nameServiceTypeName,

150 setting topic gos,

151 NULL,

152 STATUS MASK NONE) ;

162

S A ADLINK
C Tutorial Guide

Appendices

153 checkHandle (
154 nameServiceTopic.in(), "DDS::DomainParticipant::create topic");
155
156 /* Adapt the default SubscriberQos to read from the "ChatRoom" Partition. */
157 status = participant->get default subscriber gos (sub gos);
158 checkStatus (
159 status, "DDS::DomainParticipant::get default subscriber gos");
160 sub gos.partition.name.length(1);
1ol sub gos.partition.name[0UL] = "ChatRoom";
162
163 /* Create a Subscriber for the UserLoad application. */
164 chatSubscriber = participant->create subscriber (
165 sub_gos, NULL, STATUS MASK NONE) ;
166 checkHandle (
167 chatSubscriber.in (), "DDS::DomainParticipant::create subscriber");
168
169 /* Create a DataReader for the NameService Topic
170 (using the appropriate QoS). */
171 parentReader = chatSubscriber->create datareader (
172 nameServiceTopic.in (),
173 DATAREADER QOS USE TOPIC QOS,
174 NULL,
175 STATUS MASK NONE) ;
176 checkHandle (
177 parentReader, "DDS::Subscriber::create datareader (NameService)");
178
179 /* Narrow the abstract parent into its typed representative. */
180 nameServer = NameServiceDataReader:: narrow (parentReader) ;
181 checkHandle (nameServer.in (), "Chat::NameServiceDataReader:: narrow");
182
183 /* Adapt the DataReaderQos for the ChatMessageDataReader to
184 keep track of all messages. */
185 status = chatSubscriber->get default datareader gos(message gos);
186 checkStatus (status, "DDS::Subscriber::get default datareader gos");
187 status = chatSubscriber->copy from topic gos (
188 message qos, reliable topic gos);
189 checkStatus (status, "DDS::Subscriber::copy from topic gos");
190 message gos.history.kind = KEEP ALL HISTORY QOS;
191
192 /* Create a DataReader for the ChatMessage Topic (using the appropriate
QoS) . */
193 parentReader = chatSubscriber->create datareader (
194 chatMessageTopic.in (),
195 message Jos,
196 NULL,
197 STATUS MASK NONE) ;
198 checkHandle (
199 parentReader, "DDS::Subscriber::create datareader (ChatMessage)");
200
201 /* Narrow the abstract parent into its typed representative. */
202 loadAdmin = ChatMessageDataReader:: narrow (parentReader) ;
203 checkHandle (loadAdmin.in (), "Chat::ChatMessageDataReader::_narrow");
204
205 /* Initialize the Query Arguments. */
206 args.length(1l);
207 args[0UL] = "O0";
208
209 /* Create a QueryCondition that will contain all messages
210 with userID=ownID */
211 singleUser = loadAdmin->create querycondition (
163
A ADLINK

C Tutorial Guide

Appendices

212 ANY SAMPLE STATE,

213 ANY VIEW STATE,

214 ANY INSTANCE STATE,

215 "userID=%0",

216 args) ;

217 checkHandle (singleUser.in(), "DDS::DataReader::create querycondition");
218

219 /* Create a ReadCondition that will contain new users only */
220 newUser = nameServer->create readcondition (

221 NOT READ SAMPLE STATE,

222 NEW VIEW STATE,

223 ALIVE INSTANCE STATE) ;

224 checkHandle (newUser.in (), "DDS::DataReader::create readcondition");
225

226 /* Obtain a StatusCondition that triggers only when a

227 Writer changes Liveliness */

228 leftUser = loadAdmin->get statuscondition();

229 checkHandle (leftUser.in(), "DDS::DataReader::get statuscondition");
230 status = leftUser->set enabled statuses (LIVELINESS CHANGED STATUS) ;
231 checkStatus (status, "DDS::StatusCondition::set enabled statuses");
232

233 /* Create a bare guard which will be used to close the room */
234 escape = new GuardCondition () ;

235

236 /* Create a waitset and add the ReadConditions */

237 userLoadWS = new WaitSet () ;

238 status = userLoadWS->attach condition (newUser.in())

239 checkStatus (status, "DDS::WaitSet::attach condition (newUser)");
240 status = userLoadWS->attach condition (leftUser.in());

241 checkStatus (status, "DDS::WaitSet::attach condition (leftUser)");
242 status = userLoadWS->attach condition(escape.in());

243 checkStatus (status, "DDS::WaitSet::attach condition (escape)");
244

245 /* Initialize and pre-allocate the GuardList used to

246 obtain the triggered Conditions. */

247 guardList.length(3) ;

248

249

250 /* Remove all known Users that are not currently active. */

251 status = nameServer->take (

252 nsList,

253 infoSeq,

254 LENGTH UNLIMITED,

255 ANY SAMPLE STATE,

256 ANY VIEW STATE,

257 NOT_ALIVE_INSTANCE_STATE);

258 checkStatus (status, "Chat::NameServiceDataReader::take");

259 status = nameServer->return loan(nsList, infoSeq):;

260 checkStatus (status, "Chat::NameServiceDataReader::return loan");
261

262 /* Start the sleeper thread. */

263 pthread create (&tid, NULL, delayedEscape, NULL);

264

265 while (!closed) {

266 /* Wait until at least one of the Conditions in the

267 waitset triggers. */

268 status = userLoadWS->wait (guardList, DURATION INFINITE) ;

269 checkStatus (status, "DDS::WaitSet::wait"):;

270

271 /* Walk over all guards to display information */

272 for (CORBA::ULong i = 0; i < guardList.length(); i++) {

164

S A ADLINK
C Tutorial Guide

Appendices

273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

2 ADLINK

)

if (guardList([i] == newUser.in()) {
/* The newUser ReadCondition contains data */
status = nameServer->read w condition (
nsList,
infoSeq,

LENGTH UNLIMITED,
newUser.in ());
checkStatus (
status, "Chat::NameServiceDataReader::read w condition");

for (CORBA::ULong j = 0; j < nsList.length(); j++) {

cout << "New user: " << nsList[j].name << endl;
}
status = nameServer->return loan(nsList, infoSeq);
checkStatus (

status, "Chat::NameServiceDataReader::return loan");

} else if (guardList[i] == leftUser.in()) {
/* Some liveliness has changed (either a DataWriter joined
or a DataWriter left) */

status = loadAdmin->get liveliness changed status (
livChangStatus) ;

checkStatus (
status,
"DDS::DataReader::get liveliness changed status");

if (livChangStatus.alive count < prevCount) ({

/* A user has left the ChatRoom, since a DataWriter lost
its liveliness. Take the effected users so they will
not appear in the list later on. */

status = nameServer->take (

nsList,
infoSeq,
LENGTH UNLIMITED,
ANY SAMPLE STATE,
ANY VIEW STATE,
NOT ALIVE NO WRITERS INSTANCE STATE) ;
checkStatus (status, "Chat::NameServiceDataReader::take");

for (CORBA::ULong j = 0; j < nsList.length(); j++) {
/* re-apply query arguments */
ostringstream numberString;
numberString << nsList[j].userID;

args [0UL] = numberString.str().c str();
status = singleUser->set query parameters(args);
checkStatus (

status,

"DDS: :QueryCondition::set query parameters");

/* Read this users history */
status = loadAdmin->take w condition (
msglList,
infoSeqg2,
LENGTH UNLIMITED,
singleUser.in());
checkStatus (
status,
"Chat::ChatMessageDataReader::take w condition");

/* Display the user and his history */
cout << "Departed user " << nsList[]j].name <<
" has sent " << msglist.length() <<

165
C Tutorial Guide

Appendices

334 " messages." << endl;

335 status = loadAdmin->return loan (msgList, infoSeqg2);
336 checkStatus (

337 status,

338 "Chat::ChatMessageDataReader::return loan");
339 }

340 status = nameServer->return loan(nsList, infoSeq);

341 checkStatus (

342 status, "Chat::NameServiceDataReader::return loan");
343 }

344 prevCount = livChangStatus.alive count;

345

346 } else if (guardList[i] == escape.in()) {

347 cout << "UserLoad has terminated." << endl;

348 closed = true;

349 }

350 else

351 {

352 assert (0) ;

353 i g

354 } /* for */

355 } /* while (!closed) */

356

357 /* Remove all Conditions from the WaitSet. */

358 status = userLoadWS->detach condition(escape.in());

359 checkStatus (status, "DDS::WaitSet::detach condition (escape)");

360 status = userLoadWS->detach condition(leftUser.in());

3601 checkStatus (status, "DDS::WaitSet::detach condition (leftUser)");

362 status = userLoadWS->detach condition(newUser.in());

363 checkStatus (status, "DDS::WaitSet::detach condition (newUser)");

364

365 /* Remove the type-names. */

366 CORBA: :string free (chatMessageTypeName) ;

367 CORBA: :string free (nameServiceTypeName) ;

368

369 /* Free all resources */

370 status = participant->delete contained entities();

371 checkStatus (status, "DDS::DomainParticipant::delete contained entities");
372 status = TheParticipantFactory->delete participant (participant.in());
373 checkStatus (status, "DDS::DomainParticipantFactory::delete participant");
374

375 return 0;

376}

166

S A ADLINK
C Tutorial Guide

Appendix

Java Language Examples’ Code

This appendix lists the complete Java source code for the examples provided in the
Java version of the Vortex OpenSplice tutorial.

Chat.idl

OO JO Ul WwWN

)w

/*

*

*
*
*
*
*
*
*
*
*
*
*
*
*

A AR AR A A A A AR A AR A KA A KA KA A A A AR AR AR AR KA AR K XK
Copyright (c) 2006

PrismTech Ltd.

All rights Reserved.

LOGICAL NAME: Chat.idl

FUNCTION: Vortex OpenSplice Tutorial example code.

MODULE : Tutorial for the Java programming language.

DATE june 2006.

R b b e I B S I e e R S R b b b b b b b b b b b i
This file contains the data definitions for the tutorial examples.

**/

module Chat {

const long MAX NAME = 323
typedef string<MAX NAME> nameType;

struct ChatMessage {

long userID; // owner of message
long index; // message number
string content; // message body

}i

#pragma keylist ChatMessage userID

struct NameService {
long userID; // unique user identification
nameType name; // name of the user

}i

#pragma keylist NameService userID

struct NamedMessage {

long userID; // unique user identification
nameType userName; // user name

long index; // message number

string content; // message body

#pragma keylist NamedMessage userID

ADLINK

167
C Tutorial Guide

Appendices

ErrorHandler.java

1 /***‘k******************************

2 *

3 * Copyright (c) 2007

4 * PrismTech Ltd.

5 * All rights Reserved.

6 *

7 * LOGICAL NAME: ErrorHandler.java

8 * FUNCTION: Vortex OpenSplice Tutorial example code.

9 * MODULE: Tutorial for the Java programming language.

10 * DATE Jjune 2007.

11 Ak hkhkkhkhkhkhkhkhhhkhkhhhhhkhhkdh kb hkhhkhhhk kb dhkhkhh bk bk bk bk hkhkhkhr kb h kb hkrhkhkrhkhkhkhhkhkhkrkhxkhx

12 =

13 * This file contains the implementation for the error handling operations.
*

13 ***/

16

17 package chatroom;

18

19 import DDS.*;

20

21 public class ErrorHandler ({

22

23 public static final int NR ERROR CODES = 13;

24

25 /* Array to hold the names for all ReturnCodes. */

26 public static String[] RetCodeName = new String[NR ERROR CODES] ;

27

28 static {

29 RetCodeName [0] = new String("DDS RETCODE OK") ;

30 RetCodeName[1l] = new String("DDS RETCODE ERROR") ;

31 RetCodeName[2] = new String ("DDS RETCODE UNSUPPORTED") ;

32 RetCodeName [3] = new String ("DDS RETCODE BAD PARAMETER") ;

33 RetCodeName[4] = new String("DDS RETCODE PRECONDITION NOT MET") ;

34 RetCodeName [5] = new String ("DDS RETCODE OUT OF RESOURCES"™) ;

35 RetCodeName[6] = new String("DDS RETCODE NOT ENABLED") ;

36 RetCodeName[7] = new String("DDS RETCODE IMMUTABLE POLICY");

37 RetCodeName[8] = new String ("DDS RETCODE INCONSISTENT POLICY");

38 RetCodeName[9] = new String("DDS RETCODE ALREADY DELETED");

39 RetCodeName [10] = new String("DDS RETCODE TIMEOUT") ;

40 RetCodeName[11l] = new String("DDS RETCODE NO DATA");

41 RetCodeName[12] = new String ("DDS RETCODE ILLEGAL OPERATION");

42 }

43

44 /**

45 * Returns the name of an error code.

46 **/

47 public static String getErrorName (int status) {

48 return RetCodeName[status];

49 }

50

51 /**

52 * Check the return status for errors. If there is an error,

53 * then terminate.

54 **/

55 public static void checkStatus (int status, String info) {

56 if (status != RETCODE OK.value &&

57 status != RETCODE NO DATA.value) {

58 System.out.println (

168

S A ADLINK
C Tutorial Guide

Appendices

}

"Error in " + info + ": " + getErrorName (status));
System.exit (-1) ;

}
/%

* Check whether a valid handle has been returned. If not, then terminate.
* %
/
public static void checkHandle (Object handle, String info) {
if (handle == null) {
System.out.println (
"Error in " + info + ": Creation failed: invalid handle");
System.exit (-1) ;

Chatter.java

OO Jo Ul WwWN -

A
A _ADLINK

/*

*

*
*
*
*
*
*
*
*
*
*
*
*
*

Ahhkhhkhhhhhhhkhhh Ak Ak A A A A A A A AR A A A A A A A A A A A A A A A AR AR AR AR AR A A A A A A A A A A A A kAo ko ko kK

Copyright (c) 2007

PrismTech Ltd.

All rights Reserved.

LOGICAL NAME: Chatter.java

FUNCTION: Vortex OpenSplice Tutorial example code.
MODULE : Tutorial for the Java programming language.
DATE Jjune 2007.

KAk hkhkhhhhhhhkh Ak kA bk Ak A A A A A A A A A A AR A A A A A A A A A A A A A A AR A A AR AR A A A A A A A AR A kA kA ko ko kK

This file contains the implementation for the 'Chatter' executable.

**/

package chatroom;

import DDS.*;
import Chat.*;

public class Chatter {

public static final int NUM MSG = 10;
public static final int TERMINATION MESSAGE = -1;

public static void main (String[] args) {
/* Generic DDS entities */
DomainParticipantFactory dpf;

DomainParticipant participant;
Topic chatMessageTopic;
Topic nameServiceTopic;
Publisher chatPublisher;
DataWriter parentWriter;

/* EntityQos holders */
TopicQosHolder reliableTopicQos = new TopicQosHolder () ;
TopicQosHolder settingTopicQos = new TopicQosHolder () ;

169
C Tutorial Guide

Appendices

39 PublisherQosHolder pubQos = new PublisherQosHolder () ;
40 DataWriterQosHolder dwQos = new DataWriterQosHolder () ;
41

42 /* QosPolicy fields. */

43 WriterDatalifecycleQosPolicy writerDatalifecycle;

44

45 /* DDS Identifiers */

46 String domain = DOMAIN ID DEFAULT.value;

47 long userHandle; -

48 int status;

49

50 /* Type-specific DDS entities */

51 ChatMessageTypeSupport chatMessageTS;

52 NameServiceTypeSupport nameServiceTS;

53 ChatMessageDataWriter talker;

54 NameServiceDataWriter nameServer;

55

56 /* Sample definitions */

57 ChatMessage msg = new ChatMessage () ;
58 NameService ns = new NameService();
59

60 /* Others */

61 int ownID = 1;

62 int ig

63 String chatterName = null;

64 String partitionName = new String("ChatRoom") ;
65 String chatMessageTypeName;

66 String nameServiceTypeName;

67

68

69 /* Options: Chatter [ownID [name]] */

70 if (args.length > 0) {

71 ownID = Integer.parselnt (args([0]);

72 if (args.length > 1) {

73 chatterName = args[1l];

74 }

75 }

76

77 /* Create a DomainParticipantFactory and a DomainParticipant
78 (using Default QoS settings. */

79 dpf = DomainParticipantFactory.get instance ();

80 ErrorHandler.checkHandle (

81 dpf, "DDS.DomainParticipantFactory.get instance");

82 participant = dpf.create participant (

83 domain, PARTICIPANT:QOSiDEFAULT.value, null,

STATUS MASK NONE.value) ;

84 - ErrorHandler.checkHandle (

85 participant, "DDS.DomainParticipantFactory.create participant");
86

87 /* Register the required datatype for ChatMessage. */

88 chatMessageTS = new ChatMessageTypeSupport () ;

89 ErrorHandler.checkHandle (

90 chatMessageTS, "new ChatMessageTypeSupport");

91 chatMessageTypeName = chatMessageTS.get type name () ;

92 status = chatMessageTS.register type (

93 participant, chatMessageTypeName) ;

94 ErrorHandler.checkStatus (

95 status, "Chat.ChatMessageTypeSupport.register type");
96

97 /* Register the required datatype for NameService. */

170

S A ADLINK
C Tutorial Guide

Appendices

98 nameServiceTS = new NameServiceTypeSupport () ;
99 ErrorHandler.checkHandle (
100 nameServiceTS, "new NameServiceTypeSupport");
101 nameServiceTypeName = nameServiceTS.get type name();
102 status = nameServiceTS.register type (
103 participant, nameServiceTypeName) ;
104 ErrorHandler.checkStatus (
105 status, "Chat.NameServiceTypeSupport.register type");
106
107 /* Set the ReliabilityQosPolicy to RELIABLE. */
108 status = participant.get default topic gos(reliableTopicQos) ;
109 ErrorHandler.checkStatus (
110 status, "DDS.DomainParticipant.get default topic gos");
111 reliableTopicQos.value.reliability.kind =
112 ReliabilityQosPolicyKind.RELIABLE RELIABILITY QOS;
113
114 /* Make the tailored QoS the new default. */
115 status = participant.set default topic gos(reliableTopicQos.value);
116 ErrorHandler.checkStatus (
117 status, "DDS.DomainParticipant.set default topic gos");
118
119 /* Use the changed policy when defining the ChatMessage topic */
120 chatMessageTopic = participant.create topic(
121 "Chat ChatMessage",
122 chatMessageTypeName,
123 reliableTopicQos.value,
124 null,
125 STATUS MASK NONE.value) ;
126 ErrorHandler.checkHandle (
127 chatMessageTopic,
128 "DDS.DomainParticipant.create topic (ChatMessage)");
129
130 /* Set the DurabilityQosPolicy to TRANSIENT. */
131 status = participant.get default topic gos(settingTopicQos) ;
132 ErrorHandler.checkStatus (
133 status, "DDS.DomainParticipant.get default topic gos");
134 settingTopicQos.value.durability.kind =
135 DurabilityQosPolicyKind.TRANSIENT DURABILITY QOS;
136
137 /* Create the NameService Topic. */
138 nameServiceTopic = participant.create topic/(
139 "Chat NameService",
140 nameServiceTypeNamne,
141 settingTopicQos.value,
142 null,
143 STATUS MASK NONE.value) ;
144 ErrorHandler.checkHandle (
145 nameServiceTopic,
146 "DDS.DomainParticipant.create topic (NameService)");
147
148 /* Adapt the default PublisherQos to write into the
149 "ChatRoom" Partition. */
150 status = participant.get default publisher gos (pubQos):;
151 ErrorHandler.checkStatus (
152 status, "DDS.DomainParticipant.get default publisher gos");
153 pubQos.value.partition.name = new String[l];
154 pubQos.value.partition.name[0] = partitionName;
155
156 /* Create a Publisher for the chatter application. */
157 chatPublisher = participant.create publisher (
158 pubQos.value, null, STATUS MASK NONE.value);
171
A ADLINK

C Tutorial Guide

Appendices

159 ErrorHandler.checkHandle (

160 chatPublisher, "DDS.DomainParticipant.create publisher");
161

162 /* Create a DataWriter for the ChatMessage Topic

163 (using the appropriate QoS). */

164 parentWriter = chatPublisher.create datawriter (

165 chatMessageTopic,

166 DATAWRITER QOS USE TOPIC QOS.value,

167 null, - -

168 STATUS MASK NONE.value) ;

169 ErrorHandler.checkHandle (

170 parentWriter, "DDS.Publisher.create datawriter (chatMessage)");
171

172 /* Narrow the abstract parent into its typed representative. */
173 talker = ChatMessageDataWriterHelper.narrow (parentWriter) ;

174 ErrorHandler.checkHandle (

175 talker, "Chat.ChatMessageDataWriterHelper.narrow");

176

177 /* Create a DataWriter for the NameService Topic

178 (using the appropriate QoS). */

179 status = chatPublisher.get default datawriter gos(dwQos) ;

180 ErrorHandler.checkStatus (

181 status, "DDS.Publisher.get default datawriter gos");

182 status = chatPublisher.copy from topic gos(

183 dwQos, settingTopicQos.value) ;

184 ErrorHandler.checkStatus (status, "DDS.Publisher.copy from topic gos");
185 writerDatalLifecycle = dwQos.value.writer data lifecycle;

186 writerDatalifecycle.autodispose unregistered instances = false;
187 parentWriter = chatPublisher.create datawriter(

188 nameServiceTopic,

189 dwQos.value,

190 null,

191 STATUS MASK NONE.value) ;

192 ErrorHandler.checkHandle (

193 parentWriter, "DDS.Publisher.create datawriter (NameService)");
194

195 /* Narrow the abstract parent into its typed representative. */
196 nameServer = NameServiceDataWriterHelper.narrow (parentWriter);
197 ErrorHandler.checkHandle (

198 nameServer, "Chat.NameServiceDataWriterHelper.narrow");
199

200 /* Initialize the NameServer attributes. */

201 ns.userID = ownID;

202 if (chatterName != null) {

203 ns.name = chatterName;

204 } else {

205 ns.name = "Chatter " + ownID;

206 }

207

208 /* Write the user-information into the system

209 (registering the instance implicitly). */

210 status = nameServer.write(ns, HANDLE NIL.value);

211 ErrorHandler.checkStatus (status, "Chat.ChatMessageDataWriter.write");
212

213 /* Initialize the chat messages. */

214 msg.userID = ownID;

215 msg.index = 0;

216 if (ownID == TERMINATION MESSAGE) {

217 msg.content = "Termination message.";

218 } else {

219 msg.content = "Hi there, I will send you " +

172

S A ADLINK
C Tutorial Guide

Appendices

220 NUM MSG + " more messages.";
221 }
222 System.out.println ("Writing message: \"" + msg.content + "\"");
223
224 /* Register a chat message for this user
225 (pre-allocating resources for it!!) */
226 userHandle = talker.register instance (msg);
227
228 /* Write a message using the pre-generated instance handle. */
229 status = talker.write (msg, userHandle);
230 ErrorHandler.checkStatus (status, "Chat.ChatMessageDataWriter.write");
231
232 try {
233 Thread.sleep (1000); /* do not run so fast! */
234 } catch (InterruptedException e) {
235 e.printStackTrace() ;
236 }
237
238 /* Write any number of messages . */
239 for (i = 1; i <= NUM MSG && ownID != TERMINATION MESSAGE; i++) {
240 msg.index = 1i; - -
241 msg.content = "Message no. " + 1i;
242 System.out.println ("Writing message: \"" + msg.content + "\"");
243 status = talker.write (msg, userHandle);
244 ErrorHandler.checkStatus (
245 status, "Chat.ChatMessageDataWriter.write"):;
246 try {
247 Thread.sleep (1000); /* do not run so fast! */
248 } catch (InterruptedException e) {
249 e.printStackTrace () ;
250 }
251 }
252
253 /* Leave the room by disposing and unregistering the message instance */
254 status = talker.dispose (msg, userHandle) ;
255 ErrorHandler.checkStatus (
256 status, "Chat.ChatMessageDataWriter.dispose") ;
257 status = talker.unregister instance (msg, userHandle);
258 ErrorHandler.checkStatus (
259 status, "Chat.ChatMessageDataWriter.unregister instance");
260
261 /* Also unregister our name. */
262 status = nameServer.unregister instance(ns, HANDLE NIL.value);
263 ErrorHandler.checkStatus (
264 status, "Chat.NameServiceDataWriter.unregister instance");
265
266 /* Remove the DataWriters */
267 status = chatPublisher.delete datawriter (talker);
268 ErrorHandler.checkStatus (
269 status, "DDS.Publisher.delete datawriter (talker)");
270
271 status = chatPublisher.delete datawriter (nameServer);
272 ErrorHandler.checkStatus (status,
273 "DDS.Publisher.delete datawriter (nameServer)");
274
275 /* Remove the Publisher. */
276 status = participant.delete publisher (chatPublisher);
277 ErrorHandler.checkStatus (
278 status, "DDS.DomainParticipant.delete publisher");
279
280 /* Remove the Topics. */
173
A ADLINK

C Tutorial Guide

Appendices

281 status = participant.delete topic (nameServiceTopic) ;

282 ErrorHandler.checkStatus (

283 status, "DDS.DomainParticipant.delete topic (nameServiceTopic)");
284

285 status = participant.delete topic (chatMessageTopic)

286 ErrorHandler.checkStatus (

287 status, "DDS.DomainParticipant.delete topic (chatMessageTopic)");
288

289 /* Remove the DomainParticipant. */

290 status = dpf.delete participant (participant);

291 ErrorHandler.checkStatus (

292 status, "DDS.DomainParticipantFactory.delete participant");
293

294}

MessageBoard.java

l /***‘k*‘k*‘k********‘k*‘k**‘k*****‘k*‘k**
2 *

3 * Copyright (c) 2007

4 * PrismTech Ltd.

S * All rights Reserved.

6 *

7 * LOGICAL NAME: MessageBoard. java

8 * FUNCTION: Vortex OpenSplice Tutorial example code.

9 * MODULE: Tutorial for the Java programming language.

10 * DATE june 2007.

11 R R I I I I b e S b I S I S SR e S b S b I b S b b b b I b I S S S e b 2R I b S b IR S b b b b I b b b Sb b I b b b b 2 b S 24
12 *

13 * This file contains the implementation for the 'MessageBoard' executable.
14 =

15 ***/

16

17 package chatroom;

18

19 import DDS.*;
20 import Chat.*;

21

22 public class MessageBoard {

23

24

25 public static final int TERMINATION MESSAGE = -1;
26

27

28 public static void main(String[] args) {

29 /* Generic DDS entities */

30 DomainParticipantFactory dpf;

31 DomainParticipant parentDP;

32 ExtDomainParticipant participant;

33 Topic chatMessageTopic;
34 Topic nameServiceTopic;
35 TopicDescription namedMessageTopic;
36 Subscriber chatSubscriber;
37 DataReader parentReader;

38

39 /* Type-specific DDS entities */

40 ChatMessageTypeSupport chatMessageTS;

41 NameServiceTypeSupport nameServiceTS;

174

S A ADLINK
C Tutorial Guide

Appendices

42 NamedMessageTypeSupport namedMessageTS;
43 NamedMessageDataReader chatAdmin;
44 NamedMessageSegHolder msgSeq = new NamedMessageSeqgHolder () ;
45 SampleInfoSegHolder infoSeq = new SampleInfoSeqgHolder () ;
46
47 /* QosPolicy holders */
48 TopicQosHolder reliableTopicQos = new TopicQosHolder () ;
49 TopicQosHolder settingTopicQos = new TopicQosHolder () ;
50 SubscriberQosHolder subQos = new SubscriberQosHolder () ;
51 Stringl[] parameterList;
52
53 /* DDS Identifiers */
54 String domain = DOMAIN ID DEFAULT.value;
55 int status;
56
57 /* Others */
58 boolean terminated = false;
59 String partitionName = new String("ChatRoom") ;
60 String chatMessageTypeName;
61 String nameServiceTypeName;
62 String namedMessageTypeName;
63
64 /* Options: MessageBoard [ownID] */
65 /* Messages having owner ownID will be ignored */
66 parameterList = new String[l];
67
68 if (args.length >0) {
69 parameterList[0] = args[0];
70 }
71 else
72 {
73 parameterList[0] = new String("0");
74 }
75
76 /* Create a DomainParticipantFactory and a DomainParticipant
77 (using Default QoS settings. */
78 dpf = DomainParticipantFactory.get instance ();
79 ErrorHandler.checkHandle (
80 dpf, "DDS.DomainParticipantFactory.get instance");
81 parentDP = dpf.create participant (
82 domain, PARTICIPANTiQosiDEFAULT.value, null,
STATUS MASK NONE.value) ;
83 - ‘ErrorHandler.checkHandle (
84 parentDP, "DDS.DomainParticipantFactory.create participant");
85
86 /* Register the required datatype for ChatMessage. */
87 chatMessageTS = new ChatMessageTypeSupport () ;
88 ErrorHandler.checkHandle (
89 chatMessageTS, "new ChatMessageTypeSupport");
90 chatMessageTypeName = chatMessageTS.get type name () ;
91 status = chatMessageTS.register type (parentDP, chatMessageTypeName) ;
92 ErrorHandler.checkStatus (-
93 status, "Chat.ChatMessageTypeSupport.register type");
94
95 /* Register the required datatype for NameService. */
96 nameServiceTS = new NameServiceTypeSupport () ;
97 ErrorHandler.checkHandle (
98 nameServiceTS, "new NameServiceTypeSupport");
99 nameServiceTypeName = nameServiceTS.get type name();
100 nameServiceTS.register type (parentDP, nameServiceTypeName) ;
175
A ADLINK

C Tutorial Guide

Appendices

101 ErrorHandler.checkStatus (

102 status, "Chat.NameServiceTypeSupport.register type");
103

104 /* Register the required datatype for NamedMessage. */

105 namedMessageTS = new NamedMessageTypeSupport () ;

106 ErrorHandler.checkHandle (

107 namedMessageTS, "new NamedMessageTypeSupport") ;

108 namedMessageTypeName = namedMessageTS.get type name();

109 status = namedMessageTS.register type (parentDP, namedMessageTypeName) ;
110 ErrorHandler.checkStatus (

111 status, "Chat.NamedMessageTypeSupport.register type");
112

113 /* Narrow the normal participant to its extended representative */
114 participant = ExtDomainParticipantHelper.narrow (parentDP) ;
115 ErrorHandler.checkHandle (

116 participant, "ExtDomainParticipantHelper.narrow");

117

118 /* Set the ReliabilityQosPolicy to RELIABLE. */

119 status = participant.get default topic gos(reliableTopicQos) ;
120 ErrorHandler.checkStatus (

121 status, "DDS.DomainParticipant.get default topic gos");
122 reliableTopicQos.value.reliability.kind =

123 ReliabilityQosPolicyKind.RELIABLE RELIABILITY QOS;

124

125 /* Make the tailored QoS the new default. */

126 status = participant.set default topic gos(reliableTopicQos.value);
127 ErrorHandler.checkStatus (

128 status, "DDS.DomainParticipant.set default topic gos");
129

130 /* Use the changed policy when defining the ChatMessage topic */
131 chatMessageTopic = participant.create topic(

132 "Chat ChatMessage",

133 chatMessageTypeName,

134 reliableTopicQos.value,

135 null,

136 STATUS MASK NONE.value) ;

137 ErrorHandler.checkHandle (

138 chatMessageTopic,

139 "DDS.DomainParticipant.create topic (ChatMessage)");

140

141 /* Set the DurabilityQosPolicy to TRANSIENT. */

142 status = participant.get default topic gos(settingTopicQos) ;
143 ErrorHandler.checkStatus (

144 status, "DDS.DomainParticipant.get default topic gos");
145 settingTopicQos.value.durability.kind =

146 DurabilityQosPolicyKind.TRANSIENT DURABILITY QOS;

147

148 /* Create the NameService Topic. */

149 nameServiceTopic = participant.create topic(

150 "Chat NameService",

151 nameServiceTypeNamne,

152 settingTopicQos.value,

153 null,

154 STATUS MASK NONE.value) ;

155 ErrorHandler.checkHandle (

156 nameServiceTopic,

157 "DDS.DomainParticipant.create topic (NameService)");

158

159 /* Create a multitopic that substitutes the userID

160 with its corresponding userName. */

161 namedMessageTopic = participant.create simulated multitopic(
176

S A ADLINK
C Tutorial Guide

Appendices

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

A

)

ADLINK

"Chat NamedMessage",

namedMessageTypeName,

"SELECT userID, name AS userName, index, content " +
"FROM Chat NameService NATURAL JOIN Chat ChatMessage " +
"WHERE userID <> %0", N

parameterlList) ;

ErrorHandler.checkHandle (
namedMessageTopic,
"ExtDomainParticipant.create simulated multitopic");

/* Adapt the default SubscriberQos to read from the

"ChatRoom" Partition. */
status = participant.get default subscriber gos (subQos) ;
ErrorHandler.checkStatus (

status, "DDS.DomainParticipant.get default subscriber gos");
subQos.value.partition.name = new String[l];
subQos.value.partition.name[0] = partitionName;

/* Create a Subscriber for the MessageBoard application. */
chatSubscriber = participant.create subscriber (

subQos.value, null, STATUS MASK NONE.value);
ErrorHandler.checkHandle (

chatSubscriber, "DDS.DomainParticipant.create subscriber");

/* Create a DataReader for the NamedMessage Topic
(using the appropriate QoS). */

parentReader = chatSubscriber.create datareader (
namedMessageTopic,
DATAREADER QOS USE TOPIC QOS.value,
null,
STATUS MASK NONE.value) ;

ErrorHandler.checkHandle (
parentReader, "DDS.Subscriber.create datareader");

/* Narrow the abstract parent into its typed representative. */
chatAdmin = NamedMessageDataReaderHelper.narrow (parentReader) ;
ErrorHandler.checkHandle (

chatAdmin, "Chat.NamedMessageDataReaderHelper.narrow");

/* Print a message that the MessageBoard has opened. */
System.out.println (

"MessageBoard has opened: send a ChatMessage " +
"with userID = -1 to close it....\n");
while (!terminated) ({

/* Note: using read does not remove the samples from
unregistered instances from the DataReader. This means
that the DataRase would use more and more resources.
That's why we use take here instead. */

status = chatAdmin.take (

msgSeq,

infoSeq,

LENGTH UNLIMITED.value,

ANY SAMPLE STATE.value,

ANY VIEW STATE.value,

ALIVE INSTANCE STATE.value);
ErrorHandler.checkStatus (

status, "Chat.NamedMessageDataReader.take");

for (int i = 0; i < msgSeqg.value.length; i++) {
177
C Tutorial Guide

Appendices

223 if (msgSeqg.value[i].userID == TERMINATION MESSAGE) {
224 System.out.println (

225 "Termination message received: exiting...");
226 terminated = true;

227 } else {

228 System.out.println (

229 msgSeqg.value[i] .userName + ": " +

230 msgSeqg.value[i] .content) ;

231 }

232 }

233

234 status = chatAdmin.return loan(msgSeq, infoSeq);

235 ErrorHandler.checkStatus (

236 status, "Chat.ChatMessageDataReader.return loan");
237

238 msgSeqg.value = null;

239 infoSeqg.value = null;

240

241 /* Sleep for some amount of time, as not to consume

242 too much CPU cycles. */

243 try {

244 Thread.sleep(100) ;

245 } catch (InterruptedException e) {

246 e.printStackTrace() ;

247 }

248 }

249

250 /* Remove the DataReader */

251 status = chatSubscriber.delete datareader (chatAdmin) ;

252 ErrorHandler.checkStatus (

253 status, "DDS.Subscriber.delete datareader");

254

255 /* Remove the Subscriber. */

256 status = participant.delete subscriber (chatSubscriber) ;

257 ErrorHandler.checkStatus (

258 status, "DDS.DomainParticipant.delete subscriber");

259

260 /* Remove the Topics. */

261 status = participant.delete simulated multitopic (namedMessageTopic) ;
262 ErrorHandler.checkStatus (

263 status, "DDS.ExtDomainParticipant.delete simulated multitopic");
264

265 status = participant.delete topic (nameServiceTopic) ;

266 ErrorHandler.checkStatus (

267 status, "DDS.DomainParticipant.delete topic (nameServiceTopic)");
268

269 status = participant.delete topic (chatMessageTopic) ;

270 ErrorHandler.checkStatus (

271 status, "DDS.DomainParticipant.delete topic (chatMessageTopic)");
272

273 /* Remove the DomainParticipant. */

274 status = dpf.delete participant (parentDP) ;

275 ErrorHandler.checkStatus (

276 status, "DDS.DomainParticipantFactory.delete participant");
277 }

278

279}

178

S A ADLINK
C Tutorial Guide

Appendices

DataReaderListenerImpl.java

OO Jo Ul WwWN -

A

Y

/*

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Ak hkhhkhk kA hhkh kA hhkhhhkh kA hhhkhhkhhhkhhkhAhhkhhhkhhkhkhhkrhkhkhhhkhhkdAhhkrhkhkrhkhkhhkrhkkhkhkkkxk

Copyright (c) 2007

PrismTech Ltd.

All rights Reserved.

LOGICAL NAME: DataReaderListenerImpl.java

FUNCTION: Vortex OpenSplice Tutorial example code.
MODULE : Tutorial for the Java programming language.
DATE june 2007.

kA hkhhkhk kA hhkh kA hhkhhhkhhkhkhh bk hhkhhhkhhkhhhkhhhkhhkhkhhrhkhkhhhkhkhkrhkhkrhhkrhkhkhhkrkkhkhkkkxk

This file contains the implementation for a DataReader listener, that
simulates MultiTopic behavior by writing a NamedMessage sample (which
contains the merged information from both the ChatMessage and NameService
topics) for each incoming ChatMessage.

k/

package chatroom;

import DDS.*;
import Chat.*;

ADLINK

public class DataReaderListenerImpl implements DataReaderListener ({

/***

* Attributes

***/

/* Caching variables */
private int previous = 0x80000000;
private String userName;
private ChatMessageSegHolder msgSeq = new ChatMessageSeqgHolder () ;
private NameServiceSegHolder nameSeq = new NameServiceSeqgHolder () ;
private SampleInfoSegHolder infoSeql = new SampleInfoSeqgHolder () ;
private SampleInfoSegHolder infoSeqg2 = new SampleInfoSeqgHolder () ;
private NamedMessage joinedSample = new NamedMessage () ;

/* Type-specific DDS entities */

public ChatMessageDataReader chatMessageDR;
public NameServiceDataReader nameServiceDR;
public NamedMessageDataWriter namedMessageDW;

/* Query related stuff */

public QueryCondition nameFinder;
public Stringl] nameFinderParams;
/***

* Operations

***/

public void on requested deadline missed(
DataReader the reader,
RequestedDeadlineMissedStatus status) { }

public void on requested incompatible gos (
DataReader the reader,
RequestedIncompatibleQosStatus status) { }

179
C Tutorial Guide

Appendices

59

119
180

public void on sample rejected(

DataReader the reader, SampleRejectedStatus status)

public void on liveliness changed (

DataReaderfthe_reader, LivelinessChangedStatus status)

public void on data available (DataReader the reader)

/* Take all messages. */
int status = chatMessageDR.take (

msgSeq,

infoSeql,

LENGTH UNLIMITED.value,

ANY SAMPLE STATE.value,

ANY VIEW STATE.value,

ANY INSTANCE STATE.value);
ErrorHandler.checkStatus (

status, "Chat.ChatMessageDataReader.take");

/* For each message, extract the key-field and find

the corresponding name. */
for (int 1 = 0; i < msgSeg.value.length; i++)
{
if (infoSegl.value[i].valid data)
{

{

{

}

{

}

/* Find the corresponding named message. */

if (msgSeg.value[i].userID != previous)
previous = msgSeqg.value[i] .userID;
nameFinderParams[0] = Integer.toString(previous) ;

status = nameFinder.set query parameters (nameFinderParams) ;

ErrorHandler.checkStatus (

status, "DDS.QueryCondition.set query parameters");

status = nameServiceDR.read w condition (

nameSedq,

infoSeq2,

LENGTH UNLIMITED.value,

nameFinder) ;
ErrorHandler.checkStatus (

status, "Chat.NameServiceDataReader.read w condition");

/* Extract Name (there should only be one result). */

if (status == RETCODE NO DATA.value)
{

userName = new String(

"Name not found!! id = " + previous);

}

else

{
}

userName = nameSeq.value[0].name;

/* Release the name sample again. */

status = nameServiceDR.return loan (nameSeq, infoSeq2);
ErrorHandler.checkStatus (
status, "Chat.NameServiceDataReader.return loan");

}

/* Write merged Topic with userName instead of userID. */

joinedSample.userName = userName;

joinedSample.userID = msgSeqg.value[i] .userID;

C Tutorial Guide

A
= _ADLINK

Appendices

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

joinedSample.index = msgSeqg.value[i].index;
joinedSample.content = msgSeg.value[i].content;
status = namedMessageDW.write (joinedSample, HANDLE NIL.value);
ErrorHandler.checkStatus (
status, "Chat.NamedMessageDataWriter.write") ;
}
}
status = chatMessageDR.return loan (msgSeq, infoSeql);
ErrorHandler.checkStatus (
status, "Chat.ChatMessageDataReader.return loan");

}

public void on subscription matched(
DataReader the reader, SubscriptionMatchedStatus status) { }

public void on sample lost (
DataReader the reader, SampleLostStatus status) { }

}

ExtDomainParticipant.java

1 /**‘k*‘k***‘k*‘k****‘k*‘k****‘k*****‘k*‘k*‘k*‘k*************************************
2 *

3 * Copyright (c) 2007

4 * PrismTech Ltd.

5 * All rights Reserved.

6 *

7 * LOGICAL NAME: ExtDomainParticipant.java

8 * FUNCTION: Vortex OpenSplice Tutorial example code.

9 * MODULE: Tutorial for the Java programming language.

10 * DATE june 2007.

11 R b I b e S I b b I S S 2R I S b S b eI b b b I b S R I S b S S b e S S b b I S e I b e S R I Sh I S S S b b 2 b I I b i S S
12 =

13 * This file contains the implementation for an extended DomainParticipant
14 * class, that adds a new operations named 'simulate multitopic', which
15 * simulates the behavior of a multitopic by combining a ContentFilteredTopic
16 * with a QueryCondition and a DataReaderListener.

17 =

18 ***/

19

20 package chatroom;

21

22 import DDS.*;

23 import Chat.*;

24

25 public class ExtDomainParticipant implements DomainParticipant {

26

27 /‘k*‘k

28 * Attributes

29 ‘k*‘k/

30

31 // Encapsulated DomainParticipant.

32 private DomainParticipant realParticipant;

33

34 /*Implementation for DataReaderListener */

35 private DataReaderListenerImpl msglistener;

A ADLINK 181

C Tutorial Guide

Appendices

36

37 /* Generic DDS entities */

38 private Topic chatMessageTopic;

39 private Topic nameServiceTopic;

40 private ContentFilteredTopic filteredMessageTopic;
41 private Topic namedMessageTopic;

42 private Subscriber multiSub;

43 private Publisher multiPub;

44

45

46 /***

47 * Constructor

48 ***/

49 ExtDomainParticipant (DomainParticipant aParticipant) {

50 this.realParticipant = aParticipant;

51 }

52

53

54 /***

55 * Operations

56 ***/

57 public Topic create simulated multitopic (

58 String name,

59 String type name,

60 String subscription expression,

6l String[] expression parameters)

62 {

63

64 /* Type-specific DDS entities */

65 ChatMessageDataReader chatMessageDR;

66 NameServiceDataReader nameServiceDR;

67 NamedMessageDataWriter namedMessageDW;

68

69 /* Query related stuff */

70 QueryCondition nameFinder;

71 String[] nameFinderParams;

72

73 /* QosPolicy holders */

74 TopicQosHolder namedMessageQos = new TopicQosHolder () ;
75 SubscriberQosHolder subQos = new SubscriberQosHolder () ;
76 PublisherQosHolder pubQos = new PublisherQosHolder () ;
77

78 /* Others */

79 DataReader parentReader;

80 DataWriter parentWriter;

81 String partitionName = new String("ChatRoom") ;
82 String nameFinderExpr;

83 int status;

84

85 /* Lookup both components that constitute the multi-topic. */
86 chatMessageTopic = realParticipant.find topic(

87 "Chat ChatMessage", DURATION INFINITE.value);

88 ErrorHandler.checkHandle (N

89 chatMessageTopic,

90 "DDS.DomainParticipant.find topic (Chat ChatMessage)");
91

92 nameServiceTopic = realParticipant.find topic(

93 "Chat NameService", DURATION INFINITE.value);

94 ErrorHandler.checkHandle (N

95 nameServiceTopic,

96 "DDS.DomainParticipant.find topic (Chat NameService)");
182

S A ADLINK
C Tutorial Guide

Appendices

97
98 /* Create a ContentFilteredTopic to filter out
99 our own ChatMessages. */
100 filteredMessageTopic = realParticipant.create contentfilteredtopic(
101 "Chat FilteredMessage",
102 chatMessageTopic,
103 "userID <> %0",
104 expression parameters) ;
105 ErrorHandler.checkHandle (
106 filteredMessageTopic,
107 "DDS.DomainParticipant.create contentfilteredtopic");
108
109
110 /* Adapt the default SubscriberQos to read from the
111 "ChatRoom" Partition. */
112 status = realParticipant.get default subscriber gos (subQos):;
113 ErrorHandler.checkStatus (
114 status, "DDS.DomainParticipant.get default subscriber gos");
115 subQos.value.partition.name = new String[l];
116 subQos.value.partition.name[0] = partitionName;
117
118 /* Create a private Subscriber for the multitopic simulator. */
119 multiSub = realParticipant.create subscriber (
120 subQos.value, null, STATUS MASK NONE.value);
121 ErrorHandler.checkHandle (N N
122 multiSub,
123 "DDS.DomainParticipant.create subscriber (for multitopic)");
124
125 /* Create a DataReader for the FilteredMessage Topic
126 (using the appropriate QoS). */
127 parentReader = multiSub.create datareader (
128 filteredMessageTopic,
129 DATAREADER QOS USE TOPIC QOS.value,
130 null,
131 STATUS MASK NONE.value) ;
132 ErrorHandler.checkHandle (
133 parentReader, "DDS.Subscriber.create datareader (ChatMessage)"):;
134
135 /* Narrow the abstract parent into its typed representative. */
136 chatMessageDR = ChatMessageDataReaderHelper.narrow (parentReader) ;
137 ErrorHandler.checkHandle (
138 chatMessageDR, "Chat.ChatMessageDataReaderHelper.narrow") ;
139
140 /* Allocate the DataReaderListener Implementation. */
141 msglListener = new DataReaderListenerImpl () ;
142 ErrorHandler.checkHandle (msglListener, "new DataReaderListenerImpl") ;
143
144 /* Attach the DataReaderlListener to the DataReader,
145 only enabling the data available event. */
146 status = chatMessageDR.set listener (
147 msgListener, DDS.DATAﬁXVAILABLEisTATUS.value);
148 ErrorHandler.checkStatus (status, "DDS.DataReader set listener");
149
150 /* Create a DataReader for the nameService Topic
151 (using the appropriate QoS). */
152 parentReader = multiSub.create datareader (
153 nameServiceTopic,
154 DATAREADER QOS USE TOPIC QOS.value,
155 null, - - - -
156 STATUS MASK NONE.value) ;
157 ErrorHandler.checkHandle (
183
A ADLINK

C Tutorial Guide

Appendices

158
159
160
lel
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

184
C Tutorial Guide

parentReader, "DDS.Subscriber.create datareader (NameService)");

/* Narrow the abstract parent into its typed representative. */
nameServiceDR = NameServiceDataReaderHelper.narrow (parentReader) ;
ErrorHandler.checkHandle (

nameServiceDR, "Chat.NameServiceDataReaderHelper.narrow");

/* Define the SQL expression (using a parameterized value). */
nameFinderExpr = new String("userID = %0");

/* Allocate and assign the query parameters. */
nameFinderParams = new String[l];
nameFinderParams [0] = expression parameters[0];

/* Create a QueryCondition to only read corresponding
nameService information by key-value. */
nameFinder = nameServiceDR.create querycondition (
ANY SAMPLE STATE.value,
ANY VIEW STATE.value,
ANY INSTANCE STATE.value,
nameFinderExpr,
nameFinderParams) ;
ErrorHandler.checkHandle (

nameFinder, "DDS.DataReader.create querycondition (nameFinder)"):;

/* Create the Topic that simulates the multi-topic
(use Qos from chatMessage) .*/

status = chatMessageTopic.get gos (namedMessageQos) ;

ErrorHandler.checkStatus (status, "DDS.Topic.get gos");

/* Create the NamedMessage Topic whose samples simulate
the MultiTopic */
namedMessageTopic = realParticipant.create topic(
"Chat NamedMessage",
type name,
namedMessageQos.value,
null,
STATUS MASK NONE.value) ;
ErrorHandler.checkHandle (
namedMessageTopic,
"DDS.DomainParticipant.create topic (NamedMessage)");

/* Adapt the default PublisherQos to write into the
"ChatRoom" Partition. */
status = realParticipant.get default publisher gos (pubQos) ;
ErrorHandler.checkStatus (
status, "DDS.DomainParticipant.get default publisher gos");
pubQos.value.partition.name = new String[l];
pubQos.value.partition.name[0] = partitionName;

/* Create a private Publisher for the multitopic simulator. */
multiPub = realParticipant.create publisher (

pubQos.value, null, STATUS MASK NONE.value);
ErrorHandler.checkHandle (

multiPub,

"DDS.DomainParticipant.create publisher (for multitopic)");

/* Create a DataWriter for the multitopic. */

parentWriter = multiPub.create datawriter (
namedMessageTopic,
DATAWRITER QOS USE TOPIC QOS.value,

A
= _ADLINK

Appendices

219 null,

220 STATUS MASK NONE.value) ;

221 ErrorHandler.checkHandle (

222 parentWriter, "DDS.Publisher.create datawriter (NamedMessage)"):;
223

224 /* Narrow the abstract parent into its typed representative. */
225 namedMessageDW = NamedMessageDataWriterHelper.narrow (parentWriter) ;
226 ErrorHandler.checkHandle (

227 namedMessageDW, "Chat.NamedMessageDataWriterHelper.narrow") ;
228

229 /* Store the relevant Entities in our Listener. */

230 msglListener.chatMessageDR = chatMessageDR;

231 msglListener.nameServiceDR = nameServiceDR;

232 msglistener.namedMessageDW = namedMessageDW;

233 msglListener.nameFinder = nameFinder;

234 msglistener.nameFinderParams = nameFinderParams;

235

236 /* Return the simulated Multitopic. */

237 return namedMessageTopic;

238

239 }

240

241 public int delete simulated multitopic (

242 TopicDescription smt)

243 {

244 int status;

245

246 /* Remove the DataWriter */

247 status = multiPub.delete datawriter (msgListener.namedMessageDW) ;
248 ErrorHandler.checkStatus (status, "DDS.Publisher.delete datawriter");
249

250 /* Remove the Publisher. */

251 status = realParticipant.delete publisher (multiPub) ;

252 ErrorHandler.checkStatus (

253 status, "DDS.DomainParticipant.delete publisher");

254

255 /* Remove the QueryCondition. */

256 status = msglistener.nameServiceDR.delete readcondition (

257 msgListener.nameFinder) ; -

258 ErrorHandler.checkStatus (

259 status, "DDS.DataReader.delete readcondition");

260

261 /* Remove the DataReaders. */

262 status = multiSub.delete datareader (msgListener.nameServiceDR) ;
263 ErrorHandler.checkStatus (status, "DDS.Subscriber.delete datareader");
264 status = multiSub.delete datareader (msgListener.chatMessageDR) ;
265 ErrorHandler.checkStatus (status, "DDS.Subscriber.delete datareader");
266

267 /* Remove the Subscriber. */

268 status = realParticipant.delete subscriber (multiSub) ;

269 ErrorHandler.checkStatus (

270 status, "DDS.DomainParticipant.delete subscriber");

271

272 /* Remove the ContentFilteredTopic. */

273 status = realParticipant.delete contentfilteredtopic(

274 filteredMessageTopic) ;

275 ErrorHandler.checkStatus (

276 status, "DDS.DomainParticipant.delete contentfilteredtopic");
277

278 /* Remove all other topics. */

279 status = realParticipant.delete topic (namedMessageTopic) ;

A ADLINK

C Tutorial Guide

Appendices

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

186

ErrorHandler.checkStatus (

status, "DDS.DomainParticipant.delete topic (namedMessageTopic)");
status = realParticipant.delete topic (nameServiceTopic);
ErrorHandler.checkStatus (

status, "DDS.DomainParticipant.delete topic (nameServiceTopic)");
status = realParticipant.delete topic(chatMessageTopic) ;
ErrorHandler.checkStatus (

status, "DDS.DomainParticipant.delete topic (chatMessageTopic)");

return status;

}i

public Publisher create publisher (
PublisherQos gos, PublisherListener a listener, int mask) {
return realParticipant.create publisher(gos, a listener, mask);

}

public int delete publisher (Publisher p) {
return realParticipant.delete publisher (p);

}

public Subscriber create subscriber (
SubscriberQos qos, SubscriberListener a listener, int mask) {
return realParticipant.create subscriber (gos, a listener, mask);

}

public int delete subscriber (Subscriber s) {
return realParticipant.delete subscriber (s);

}

public Subscriber get builtin subscriber() {
return realParticipant.get builtin subscriber();

}

public Topic create topic(
String topic name,
String type name,
TopicQos gos,
TopicListener a listener,
int mask) {
return realParticipant.create topic(
topic name, type name, qgos, a listener, mask);

}

public int delete topic(Topic a topic) {
return realParticipant.delete topic(a topic);

}

public Topic find topic(String topic name, Duration t timeout) ({
return realParticipant.find topic(topic name, timeout);

}

public TopicDescription lookup topicdescription (String name) {
return realParticipant.lookup topicdescription (name) ;

}

public ContentFilteredTopic create contentfilteredtopic(
String name,
Topic related topic,
String filter expression,
String[] filter parameters) {

A
= _ADLINK

C Tutorial Guide

Appendices

341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

return

}

public int

realParticipant.create contentfilteredtopic(
name,

related topic,

filter expression,

filter parameters);

delete contentfilteredtopic (

ContentFilteredTopic a contentfilteredtopic) ({

return

}

realParticipant.delgte_contentfilteredtopic(
a_contentfilteredtopic);

public MultiTopic create multitopic(
String name,
String type name,
String subscription expression,

Stringl[]

return

}

public int
return

}

public int
return

}

public int
return

}
public int
return

}

public int

expression parameters) {
realParticipant.create multitopic(
name,

type name,

subscription expression,
expression parameters) ;

delete multitopic(MultiTopic a multitopic) {
realParticipant.delete multitopic(a multitopic);

delete contained entities () {
realParticipant.delete contained entities();

set gos(DomainParticipantQos qgos) {
realParticipant.set gos(qgos);

get gos (DomainParticipantQosHolder gos) {
realParticipant.get gos(qgos);

set listener (DomainParticipantListener a listener,

return realParticipant.set listener(a listener, mask);
}
public DomainParticipantListener get listener() {

return realParticipant.get listener();

}

public int
return

}

public int
return

}

public int
return

}

A
A _ADLINK

ignore participant (long handle) ({
realParticipant.ignore participant (handle) ;

ignore topic(long handle) {
realParticipant.ignore topic (handle) ;

ignore publication(long handle) {
realParticipant.ignore publication (handle) ;

int mask) {

187
C Tutorial Guide

Appendices

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462

188

public int
return

}

ignore subscription (long handle) {
realParticipant.ignore subscription (handle) ;

public String get domain id() {

return

}

public int
return

}

public int
return

}

public int
return

}

public int
return

}

public int
return

}

public int
return

}

public int
return

}
public int
return

}

public int

realParticipaHt.get_domain_id();

assert liveliness() {
realParticipant.assert liveliness();

set default publisher gos(PublisherQos gos) {
realParticipant.set default publisher gos(qos):;

get default publisher gos (PublisherQosHolder gos) {
realParticipant.get default publisher gos(qos):;

set default subscriber gos (SubscriberQos gos) {
realParticipant.set default subscriber gos(qgos);

get default subscriber gos (SubscriberQosHolder gos)
realParticipant.get default subscriber gos(qgos);

set default topic gos (TopicQos gos) {
realParticipant.set default topic gos(gos);

get default topic gos (TopicQosHolder gos) {
realParticipant.get default topic gos(gos);

{

get discovered participants(InstanceHandleSegHolder handles) {
realParticipant.get discovered participants (handles);

get discovered participant data (

long participant handle,
ParticipantBuiltinTopicDataHolder participant data) {

return

}

realParticipant.get_discovered_participant:data(
participant handle, participant data);

public int get discovered topics(InstanceHandleSegHolder handles) ({

return

}

public int

realParticipant.get discovered topics (handles):;

get discovered topic data (

long topic handle,
TopicBuiltinTopicDataHolder topic data) {

return

}

realParticipant.get discovered topic data(
topic _handle, topic data);

public boolean contains entity(long a handle) {

return

}

C Tutorial Guide

realParticipant.contains entity(a handle);

A
= _ADLINK

Appendices

463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484

}

public int get current time(Time tHolder current time) {
return realParticipant.get current time(current time);

}

public int enable() {
return realParticipant.enable () ;

}

public StatusCondition get statuscondition() {
return realParticipant.get statuscondition();

}

public int get status changes () {
return realParticipant.get status changes();

}

public long get instance handle () {
return realParticipant.get instance handle();

}

ExtDomainParticipantHelper.java

OO Jo Ul WwWN

A
=~ _ADLINK

/*

*

¥ ok X o o ok o % b ok ¥ F ok X

Ak kA hk kA hhkhkh Ak hk Ak hkhh Ak hhkhkhkhhhkhkhhAhkhkhkhhkhhhkhkhrhkhkhkhhkhkhkdhhkhkhkhkrhkhkhkhkrhkkkhkkkxk

Copyright (c) 2007
PrismTech Ltd.
All rights Reserved.

LOGICAL NAME: ExtDomainParticipantHelper. java

FUNCTION: Vortex OpenSplice Tutorial example code.
MODULE : Tutorial for the Java programming language.
DATE june 2007.

Ak kA kA A hhkhkh Ak kA hhkh kA hkhhkhk kA hhkhkh Ak hkhkhhkhhhkhkhrhkhkhkhhkhkhkdhhkhkhkhkrhkkhkhkrhkkhkhkkkxk

This file contains the implementation for a Helper class of the extended
DomainParticipant, that simulates the behavior of a Helper class with respect
to narrowing an existing DomainParticipant into its extended representation.

**/

package chatroom;

import DDS.DomainParticipant;

public class ExtDomainParticipantHelper {

public static ExtDomainParticipant narrow (
DomainParticipant participant) {
return new ExtDomainParticipant (participant);

189
C Tutorial Guide

Appendices

UserLoad.java

1 /********************‘k*‘k*‘k************‘k*‘k*‘k******************************
2 *

3 * Copyright (c) 2007

4 * PrismTech Ltd.

5 * All rights Reserved.

6 *

7 * LOGICAL NAME: UserLoad.java

8 * FUNCTION: Vortex OpenSplice Tutorial example code.

9 * MODULE: Tutorial for the Java programming language.

10 * DATE Jjune 2007.

11 Ak hkhkkhkhkhkhkhkhhhkhkhhhhhkhhkdh kb hkhhkhhhk kb dhkhkhh bk bk bk bk hkhkhkhr kb h kb hkrhkhkrhkhkhkhhkhkhkrkhxkhx
1z =

13 * This file contains the implementation for the 'UserLoad' executable.
14 =

15 ***/

16

17 package chatroom;

18

19 import DDS.*;
20 import Chat.*;

21

22 public class UserLoad extends Thread {

23

24 /* entities required by all threads. */

25 public static GuardCondition escape;

26

27 [/ *x*

28 * Sleeper thread: sleeps 60 seconds and then triggers the WaitSet.
29 =/

30 public void run() {

31 int status;

32

33 try {

34 sleep (60000) ;

35 } catch (InterruptedException e) {

36 e.printStackTrace() ;

37 }

38 status = escape.set trigger value (true);

39 ErrorHandler.checkStatus (

40 status, "DDS.GuardCondition.set trigger value");
41 }

42

43 public static void main(String[] args) {

44 /* Generic DDS entities */

45 DomainParticipant participant;

46 Topic chatMessageTopic;
47 Topic nameServiceTopic;
48 Subscriber chatSubscriber;
49 DataReader parentReader;

50 QueryCondition singleUser;

51 ReadCondition newUser;

52 StatusCondition leftUser;

53 WaitSet userLoadWsS;

54 LivelinessChangedStatusHolder livChangStatus =
55 new LivelinessChangedStatusHolder () ;

56

57 /* QosPolicy holders */

58 TopicQosHolder settingTopicQos = new TopicQosHolder () ;
190

C Tutorial Guide

A
= _ADLINK

Appendices

59 TopicQosHolder reliableTopicQos = new TopicQosHolder () ;
60 SubscriberQosHolder subQos = new SubscriberQosHolder () ;
61 DataReaderQosHolder messageQos = new DataReaderQosHolder () ;
62
63 /* DDS Identifiers */
64 String domain = DOMAIN ID DEFAULT.value;
65 int status;
66 ConditionSegHolder guardList = new ConditionSeqgHolder () ;
67
68 /* Type-specific DDS entities */
69 ChatMessageTypeSupport chatMessageTS;
70 NameServiceTypeSupport nameServiceTS;
71 NameServiceDataReader namesServer;
72 ChatMessageDataReader loadAdmin;
73 ChatMessageSeqgHolder msgList = new ChatMessageSegHolder () ;
74 NameServiceSeqgHolder nsList = new NameServiceSeqgHolder () ;
75 SampleInfoSegHolder infoSeq = new SampleInfoSegHolder () :;
76 SampleInfoSegHolder infoSeqg2 = new SampleInfoSegHolder () ;
77
78 /* Others */
79 Stringl] params;
80 String chatMessageTypeName;
81 String nameServiceTypeNamne;
82 boolean closed = false;
83 int prevCount = 0;
84
85 /* Create a DomainParticipant (using the
86 'TheParticipantFactory' convenience macro) . */
87 participant = TheParticipantFactory.value.create participant (
88 domain,
89 PARTICIPANT QOS DEFAULT.value,
90 null,
91 STATUS MASK NONE.value) ;
92 ErrorHandler.checkHandle (
93 participant, "DDS.DomainParticipantFactory.create participant");
94
95 /* Register the required datatype for ChatMessage. */
96 chatMessageTS = new ChatMessageTypeSupport () ;
97 ErrorHandler.checkHandle (
98 chatMessageTS, "new ChatMessageTypeSupport") ;
99 chatMessageTypeName = chatMessageTS.get type name () ;
100 status = chatMessageTS.register type(
101 participant, chatMessageTypeName) ;
102 ErrorHandler.checkStatus (
103 status, "Chat.ChatMessageTypeSupport.register type");
104
105 /* Register the required datatype for NameService. */
106 nameServiceTS = new NameServiceTypeSupport () ;
107 ErrorHandler.checkHandle (
108 nameServiceTS, "new NameServiceTypeSupport") ;
109 nameServiceTypeName = nameServiceTS.get type name();
110 status = nameServiceTS.register type(
111 participant, nameServiceTypeName) ;
112 ErrorHandler.checkStatus (
113 status, "Chat.NameServiceTypeSupport.register type");
114
115 /* Set the ReliabilityQosPolicy to RELIABLE. */
116 status = participant.get default topic gos(reliableTopicQos) ;
117 ErrorHandler.checkStatus (
118 status, "DDS.DomainParticipant.get default topic gos");
119 reliableTopicQos.value.reliability.kind =
191
A ADLINK

C Tutorial Guide

Appendices

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
lel
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

192
C Tutorial Guide

ReliabilityQosPolicyKind.RELIABLE RELIABILITY QOS;

/* Make the tailored QoS the new default. */
status = participant.set default topic gos(reliableTopicQos.value);
ErrorHandler.checkStatus (

status, "DDS.DomainParticipant.set default topic gos");

/* Use the changed policy when defining the ChatMessage topic */
chatMessageTopic = participant.create topic(

"Chat ChatMessage",

chatMessageTypeName,

reliableTopicQos.value,

null,

STATUS MASK NONE.value) ;
ErrorHandler.checkHandle (

chatMessageTopic,

"DDS.DomainParticipant.create topic (ChatMessage)");

/* Set the DurabilityQosPolicy to TRANSIENT. */
status = participant.get default topic gos(settingTopicQos) ;
ErrorHandler.checkStatus (
status, "DDS.DomainParticipant.get default topic gos");
settingTopicQos.value.durability.kind =
DurabilityQosPolicyKind.TRANSIENT DURABILITY QOS;

/* Create the NameService Topic. */
nameServiceTopic = participant.create topic(
"Chat NameService",
nameServiceTypeNamne,
settingTopicQos.value,
null,
STATUS MASK NONE.value) ;
ErrorHandler.checkHandle (
nameServiceTopic, "DDS.DomainParticipant.create topic");

/* Adapt the default SubscriberQos to read from the

"ChatRoom" Partition. */
status = participant.get default subscriber gos (subQos):;
ErrorHandler.checkStatus (

status, "DDS.DomainParticipant.get default subscriber gos");
subQos.value.partition.name = new String[l];
subQos.value.partition.name[0] = new String("ChatRoom") ;

/* Create a Subscriber for the UserLoad application. */
chatSubscriber = participant.create subscriber (

subQos.value, null, STATUS MASK NONE.value) ;
ErrorHandler.checkHandle (- N

chatSubscriber, "DDS.DomainParticipant.create subscriber");

/* Create a DataReader for the NameService Topic
(using the appropriate QoS). */
parentReader = chatSubscriber.create datareader (
nameServiceTopic,
DATAREADER QOS USE TOPIC QOS.value,
null, - - - B
STATUS MASK NONE.value) ;
ErrorHandler.checkHandle (
parentReader, "DDS.Subscriber.create datareader (NameService)");

/* Narrow the abstract parent into its typed representative. */
nameServer = NameServiceDataReaderHelper.narrow (parentReader) ;

A
= _ADLINK

Appendices

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

2 ADLINK

)

ErrorHandler.checkHandle (
nameServer, "Chat.NameServiceDataReaderHelper.narrow") ;

/* Adapt the DataReaderQos for the ChatMessageDataReader to
keep track of all messages. */
status = chatSubscriber.get default datareader gos (messageQos);
ErrorHandler.checkStatus (
status, "DDS.Subscriber.get default datareader gos");
status = chatSubscriber.copy from topic gos(
messageQos, reliableTopicQos.value) ;
ErrorHandler.checkStatus (
status, "DDS.Subscriber.copy from topic gos");
messageQos.value.history.kind =
HistoryQosPolicyKind.KEEP ALL HISTORY QOS;

/* Create a DataReader for the ChatMessage Topic
(using the appropriate QoS). */
parentReader = chatSubscriber.create datareader (
chatMessageTopic,
messageQos.value,
null,
STATUS MASK NONE.value) ;
ErrorHandler.checkHandle (
parentReader, "DDS.Subscriber.create datareader (ChatMessage)"):;

/* Narrow the abstract parent into its typed representative. */
loadAdmin = ChatMessageDataReaderHelper.narrow (parentReader) ;
ErrorHandler.checkHandle (

loadAdmin, "Chat.ChatMessageDataReaderHelper.narrow") ;

/* Initialize the Query Arguments. */
params = new String[l];
params[0] = new String("0");

/* Create a QueryCondition that will contain all messages
with userID=ownID */
singleUser = loadAdmin.create querycondition (
ANY SAMPLE STATE.value,
ANY VIEW STATE.value,
ANY INSTANCE STATE.value,
"userID=%0",

params) ;
ErrorHandler.checkHandle (
singleUser, "DDS.DataReader.create querycondition");

/* Create a ReadCondition that will contain new users only */
newUser = nameServer.create readcondition (

NOT READ SAMPLE STATE.value,

NEW VIEW STATE.value,

ALIVE INSTANCE STATE.value);
ErrorHandler.checkHandle (

newUser, "DDS.DataReader.create readcondition");

/* Obtain a StatusCondition that triggers only when a Writer

changes Liveliness */
leftUser = loadAdmin.get statuscondition();
ErrorHandler.checkHandle (

leftUser, "DDS.DataReader.get statuscondition");

status = leftUser.set enabled statuses(

LIVELINESS CHANGED STATUS.value);
ErrorHandler.checkStatus (

193
C Tutorial Guide

Appendices

242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

194
C Tutorial Guide

status, "DDS.StatusCondition.set enabled statuses");

/* Create a bare guard which will be used to close the room */

escape

= new GuardCondition () ;

/* Create a waitset and add the ReadConditions */
userLoadWS = new WaitSet () ;

status

= userLoadWS.attach condition (newUser) ;

ErrorHandler.checkStatus (
status, "DDS.WaitSet.attach condition (newUser)"):;

status

= userLoadWS.attach condition(leftUser);

ErrorHandler.checkStatus (
status, "DDS.WaitSet.attach condition (leftUser)");

status

= userLoadWS.attach_condftion(escape);

ErrorHandler.checkStatus (
status, "DDS.WaitSet.attach condition (escape)");

/* Initialize and pre-allocate the GuardList used to obtain

the

triggered Conditions. */

guardList.value = new Condition[3];

/* Remove all known Users that are not currently active.

status

= nameServer.take (

nsList,

infoSeq,

LENGTH UNLIMITED.value,

ANY SAMPLE STATE.value,

ANY VIEW STATE.value,

NOT ALIVE INSTANCE STATE.value);
ErrorHandler.checkStatus (

status, "Chat.NameServiceDataReader.take");

status

= nameServer.return loan(nsList, infoSeq);

ErrorHandler.checkStatus (
status, "Chat.NameServiceDataReader.return loan");

/* Start the sleeper thread. */
new UserLoad() .start();

while

/*

(!closed) {
Wait until at least one of the Conditions in the
waitset triggers. */

*/

status = userLoadWS. wait (guardList, DURATION INFINITE.value);

ErrorHandler.checkStatus (status, "DDS.WaitSet. wait");

/*

Walk over all guards to display information */

for (int 1 = 0; i < guardList.value.length; i++) {

if (guardList.value[i] == newUser) {

/* The newUser ReadCondition contains data */

status = nameServer.read w condition (
nsList,
infoSeq,
LENGTH _UNLIMITED.value,
newUser) ;
ErrorHandler.checkStatus (
status,

’

"Chat.NameServiceDataReader.read w condition");

for (int j = 0; j < nsList.value.length; j++)
System.out.println (
"New user: " + nsList.valuel[]j].name);

{

A
= _ADLINK

Appendices

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

A

)

ADLINK

status = nameServer.return loan (nsList, infoSeq);
ErrorHandler.checkStatus (
status, "Chat.NameServiceDataReader.return loan");

} else if (guardList.value[i] == leftUser) {

// Some liveliness has changed (either a DataWriter
// Jjoined or a DataWriter left)
status = loadAdmin.get liveliness changed status(
livChangStatus) ;
ErrorHandler.checkStatus (
status,
"DDS.DataReader.get liveliness changed status");
if (livChangStatus.value.alive count < prevCount) {
/* A user has left the ChatRoom, since a DataWriter
lost its liveliness. Take the effected users
so they will not appear in the list later on. */
status = nameServer.take (
nsList,
infoSeq,
LENGTH UNLIMITED.value,
ANY SAMPLE STATE.value,
ANY VIEW STATE.value,
NOT ALIVE NO WRITERS INSTANCE STATE.value);
ErrorHandler.checkStatus (
status, "Chat.NameServiceDataReader.take");

for (int j = 0; j < nsList.value.length; Jj++) {

/* re-apply query arguments */

params[0] =
Integer.toString(nsList.value[]j] .userID);

status = singleUser.set query parameters (params) ;

ErrorHandler.checkStatus (
status,
"DDS.QueryCondition.set query parameters");

/* Read this users history */
status = loadAdmin.take w condition (
msglist,
infoSeqg2,
LENGTH _UNLIMITED.value,
singleUser);
ErrorHandler.checkStatus (
status,
"Chat.ChatMessageDataReader.take w condition");

/* Display the user and his history */
System.out.println (

"Departed user " + nsList.value[j].name +

" has sent " + msglList.value.length +

" messages.");
status = loadAdmin.return loan(msgList, infoSeg2);
ErrorHandler.checkStatus (

status,

"Chat.ChatMessageDataReader.return loan");
msgList.value = null; -
infoSeg2.value = null;

}
status = nameServer.return loan(nsList, infoSeq);
ErrorHandler.checkStatus (
status,
"Chat.NameServiceDataReader.return loan");

195
C Tutorial Guide

Appendices

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399 }
400
401 }

196
C Tutorial Guide

nsList.value = null;
infoSeg.value = null;

}

prevCount = livChangStatus.value.alive count;

} else if (guardList.value[i] == escape) {

System.out.println ("UserLoad has terminated.");

closed = true;
}
else

{

}i
} /* for */
} /* while (!'closed) */

assert false : "Unknown Condition";

/* Remove all Conditions from the WaitSet. */
status = userLoadWS.detach condition (escape):;
ErrorHandler.checkStatus (

status, "DDS.WaitSet.detach condition (escape)");
status = userLoadWS.detach condition (leftUser);
ErrorHandler.checkStatus (

status, "DDS.WaitSet.detach condition (leftUser)");

status = userLoadWS.detach_condftion(newUser);
ErrorHandler.checkStatus (
status, "DDS.WaitSet.detach condition (newUser)");

/* Free all resources */
status = participant.delete contained entities();
ErrorHandler.checkStatus (

status, "DDS.DomainParticipant.delete contained entities");
status = TheParticipantFactory.value.delete participant (participant);

ErrorHandler.checkStatus (

status, "DDS.DomainParticipantFactory.delete participant");

A
A _ADLINK

BIBLIOGRAPHY

Bibliography

The following documents are referred to in the text:

[1] Data Distribution Service for Real-Time Systems Specification, Version 1.1, formal/05-12-04,
Object Management Group (OMG).

[2] C Language Mapping Specification, 99-07-35, June 1999 edtion, OMG.
[3] Vortex OpenSplice C Reference Guide, Version 6.x, PrismTech Limited.
[4] Vortex OpenSplice Deployment Guide, Version 6.x, PrismTech Limited.
[5] Vortex OpenSplice IDL Pre-processor Guide, Version 6.x, PrismTech Limited.

A ADLINK o199
C Tutorial Guide

Bibliography

200

A
S A_ADLINK
C Tutorial Guide

INDEX

Index

A

Analysing the Chatroom Example 13 Attaching a Listener. 75
Bibliography................. 199
Chatidl....................... 101, 131, 167 Client-Server vs Peer-to-Peer. 11
Chatter.C. ..., 104 Conclusion oo, 10
Chatter.Cpp . .. oo v v 134 Conditions and WaitSets 84
Chatterjava.c.coviinennnn .. 169 Configuration............................ 6
CheckStatus.c..............coiinin... 102 Connecting to a Domain. 24
CheckStatus.cpp. . ..o ovvv i 132 Creating and Using a MultiTopic............ 70
CheckStatus.h.......................... 132 Creating Publishers and DataWriters. 45
Cleaning Upt 96 Creating Subscribers and DataReaders 61
Client-Server Based Approach for a Chatroom . 12
Data types, Samples and Instances. 15 DDS-based Peer-to-Peer Approach 12
DataReaderListenerImpljava. 179 Default QosPolicy Settings 24
Entities, Policies, Listeners and Conditions. . . .21 ExtDomainParticipant.java 181
ErrorHandlerjava....................... 168 ExtDomainParticipantHelper.java.......... 189
Invoking the IDL Pre-processor. 19
Language Specific Representation........... 18
MessageBoard.c........................ 109 Modelling Data Types inIDL 16
MessageBoard.java. 174 Multitopic.C. . ..o oo v e 115
203

A
A_ADLINK

C Tutorial Guide

Index

multitopic.cpp -« v v oo 148 multitopic.h. L 114, 143
OMGDDS Layers.c.ovuiiinnenon.. 5 Overall. 6
OpenSplice Features and Benefits 8

Publishers, DataWriters and their QoS Policies 43

oS Policies 23
Q

QN

Registering Datatypes and Creating Topics ... 30

Return Code Meanings

S

Scalability i 6 Subscribers, DataReaders and their QoS Policies.
Simulating a MultiTopic Using Other Building 59
blocks............ il 73 Summary........c..oiiiii 5

SQL Controlled Building Blocks 69

Tailoring QosPolicy Settings 36 Topics as Global Concepts 35

UserLoad.c ..., 122 Using a QueryCondition. 78

UserLoad.cppovvvvvnin i, 160 Using a ReadCondition. &5

UserLoadjava............... 190 Using a StatusCondition 86

Using a ContentFilteredTopic.............. 73 UsingaWaitSet &9

Using a GuardCondition 88 Using the HistoryQosPolicy 92
204 A ADLINK

C Tutorial Guide

	C Tutorial Guide
	Table of Contents
	Preface
	About the C Tutorial Guide
	Contacts

	Vortex OpenSplice C Tutorial
	1 Introduction to Vortex OpenSplice
	1.1 Overview
	1.2 Vortex OpenSplice Summary
	1.3 Vortex OpenSplice Architecture
	1.3.1 Overall
	1.3.2 Scalability
	1.3.3 Configuration

	1.4 Vortex OpenSplice Implementation Benefits
	1.4.1 Vortex OpenSplice Tuner

	1.5 Conclusion

	2 A DDS-based Chatroom
	2.1 Client-Server vs Peer-to-Peer
	2.2 Analysing the Chatroom Example

	3 Data Modelling
	3.1 Data Types, Samples and Instances
	3.2 Modelling Data Types in IDL
	3.3 Language Specific Representation
	3.4 Invoking the IDL Pre-processor

	4 Managing Domains and Topics
	4.1 Entities, Policies, Listeners and Conditions
	4.2 QoS Policies
	4.3 Connecting to a Domain
	4.4 Registering Data Types and Creating Topics
	4.5 Topics as Global Concepts
	4.6 Tailoring QosPolicy Settings

	5 Publishing the Data
	5.1 Publishers, DataWriters and their QoS Policies
	5.2 Creating Publishers and DataWriters
	5.3 Requested/Offered QosPolicy Semantics
	5.4 Deleting Publishers and DataWriters
	5.5 Registering Instances and Writing Samples
	5.6 Unregistering and Disposing of Instances

	6 Subscribing to Data
	6.1 Subscribers, DataReaders and their QoS Policies
	6.2 Creating Subscribers and DataReaders
	6.3 Managing and Reading Samples

	7 Content-Subscription Profile and Listeners
	7.1 SQL Controlled Building Blocks
	7.2 Creating and Using a MultiTopic
	7.3 Simulating a MultiTopic Using Other Building Blocks
	7.3.1 Using a ContentFilteredTopic
	7.3.2 Attaching a Listener
	7.3.3 Using a QueryCondition

	8 Waiting for Conditions
	8.1 Conditions and WaitSets
	8.2 Using a ReadCondition
	8.3 Using a StatusCondition
	8.4 Using a GuardCondition
	8.5 Using a WaitSet
	8.6 Processing Expired Transient Data
	8.7 Using the HistoryQosPolicy
	8.8 Cleaning Up

	Appendices
	A C Language Examples’ Code
	Chat.idl
	CheckStatus.h
	CheckStatus.c
	Chatter.c
	MessageBoard.c
	multitopic.h
	multitopic.c
	UserLoad.c

	B C++ Language Examples’ Code
	Chat.idl
	CheckStatus.h
	CheckStatus.cpp
	Chatter.cpp
	MessageBoard.cpp
	multitopic.h
	multitopic.cpp
	UserLoad.cpp

	C Java Language Examples’ Code
	Chat.idl
	ErrorHandler.java
	Chatter.java
	MessageBoard.java
	DataReaderListenerImpl.java
	ExtDomainParticipant.java
	ExtDomainParticipantHelper.java
	UserLoad.java

	Bibliography
	Index

