A ADLINK

= | =
PLICE

OpenSplice GPB
Tutorial

Release 6.x

Contents

1 Preface
1.1 About the Vortex OpenSplice Google Protocol Buffers Tutorial
1.2 Conventions i e e e e e e

2 Introduction

2.1 Google Protocol Buffers for DDS
3 Proto message for a DDS system

3.1 Usecase: Persono e e e

3.2 Protofile for the Personexample e

3.3 Annotating a proto message foruseasatypeinDDS oo

4 Compiling the datamodel with the GPB compiler

4.1 DDS-specific GPB-compiler plugin to generate code.
42 JavaSexample e e e e e e
43 CHrexample e e e e e
4.4 Tempory IDL file created by the GPB data-model
5 Using the generated API in applications
5.1 Protobufdatamodel
5.2 Java . Lo e e e
53 ISO-CH+ . . o
6 Evolving data models
6.1 Old publisher and old subscriber L
6.2 New publisher and new subscriber
6.3 Old publisher and new subscriber oL
6.4 New publisher and old subscriber e

7 Contacts & Notices
T1 Contacts o e e e e e
T2 NOUCES . . v v v o e e e e e e e e e e e e

Preface

1.1 About the Vortex OpenSplice Google Protocol Buffers Tutorial

This Vortex OpenSplice GPB Tutorial is included with the Vortex OpenSplice Documentation Set.

It describes how to use the Vortex OpenSplice ISO C++ API and Java 5 API in combination with Google
Protocol Buffers (GPB) data models.

This Tutorial assumes that the user is already familiar with the DDS API as well as the Vortex OpenSplice product.
Intended Audience

This Guide is intended for anyone who wants to use Google Protocol Buffers for DDS in developing and running
applications with Vortex OpenSplice.

Further Information

Detailed information about Vortex OpenSplice itself is provided in the User and Deployment Guides, which also
give details of where additional information can be found, such as the Vortex OpenSplice FAQs, Knowledge Base,
bug reports, efc.

1.2 Conventions

The icons shown below are used to help readers to quickly identify information relevant to their specific use of
Vortex OpenSplice.

Icon Meaning

Item of special significance or where caution needs to be taken.

Item contains helpful hint or special information.

Windows Information applies to Windows (e.g. XP, 2003, Windows 7) only.

Information applies to Unix-based systems (e.g. Solaris) only.

Information applies to Linux-based systems (e.g. Ubuntu) only.

C language specific.

()

SEEEAERE

+

+

C++ language specific.

o)
H*

C# language specific.

Java Java language specific.

Introduction

2.1 Google Protocol Buffers for DDS

Vortex OpenSplice is capable of using the Google Protocol Buffer (GPB) system for publishing and subscribing
GPB messages in a DDS system. This makes it possible to use GPB as an alternative to OMG-IDL for those who
prefer to use GPB rather than IDL. With the seamless integration of GPB and DDS technologies there is no need
for OMG-IDL knowledge or visibility when working with GPB data models, and no OMG-DDS data-types are
needed in the application (no explicit type-mapping between GPB and DDS types is required).

This results in an easy migration of GPB users to DDS(-based data-sharing) with data-centric GPB with support
for keys, filters and (future) QoS-annotations (ony a few DDS calls are needed). Also easy migration of DDS
applications to GPB(-based data-modeling), only the field accessors change.

This Tutorial will describe how this is done for the language bindings Java5 and ISO-C++ by defining a GPB
message layout which is compiled into proper interfaces for the Vortex DDS system.

2.1.1 GPB Installation and usage with DDS

Google Protocol Buffers (GPB) can be downloaded from the following locations:
Linux: https://github.com/google/protobuf/releases/download/v2.6.1/protobuf-2.6.1.tar.gz
Windows: https://github.com/google/protobuf/releases/download/v2.6.1/protobuf-2.6.1.zip

After unpacking follow the install instructions located in install.txt in the unpacked directory. For windows there
is a visual studio solution file that will build everything that is needed.

In order for GPB to work with DDS an environment variable PROTOBUF_HOME needs to be
set that points to the unpacked directory.

For windows also another environment variable PROTOBUF_LIB_HOME needs to be set that
points to the directory that contains the generated libprotobuf.lib.

2.1.2 IDL usage in a DDS system

In a Data Distributed System (DDS) as a Global DataSpace (GDS) for ubiquitous information-sharing in dis-
tributed systems as specified by the Object Management Group (OMG), the data is traditionally captured in the
platform- and language-independent OMG-IDL language. The relational model of DDS is supported by the notion
of identifying key fields in these data structures where structure/content-awareness by the middleware allows for
dynamic querying and filtering of data.

2.1.3 Google Protocol Buffers

Google Protocol Buffers (GPB) are a flexible, efficient, automated mechanism for serializing structured data; think
XML, but smaller, faster, and simpler. One can define how data needs to be structured once, after which language-

https://github.com/google/protobuf/releases/download/v2.6.1/protobuf-2.6.1.tar.gz
https://github.com/google/protobuf/releases/download/v2.6.1/protobuf-2.6.1.zip

OpenSplice GPB Tutorial, Release 6.x

specific source code can be generated to easily write and read this structured data to and from a variety of data
streams using a variety of languages. The information structure is defined in so-called protocol buffer message
types in . proto files. Each protocol buffer message is a small logical record of information, containing a series
of name-value pairs. This approach is quite similar to using IDL for data modeling in combination with an IDL
compiler (as available in OpenSplice and DDS implementations in general).

Additionally, the GPB data structure can be updated without breaking deployed programs that are compiled against
the ‘old’ format, similar to the xTypes concept as defined for DDS.

Using a GPB data-model instead of an IDL data-model
For an IDL-OMG based application, the IDL file is compiled with the IDL-PP compiler to generate the needed
classes.
For Java as an example, Address.idl will (among others) be compiled into:
* Address. java
* AddressTypesSupport. java
* AddressDataWriter. java
* AddressDataReader. java

Using a GPB data-model, it is not necessary to create IDL files. The protoc_gen_ddsJava plug-in in Open-
Splice will create them from the given . proto data-model.

For the GPB .proto based application, the .proto file is first compiled by the Google protoc compiler.
This compiler will call the protoc_gen_ddsJava plug-in in OpenSplice with the . proto data parsed into a
CodeGeneratorRequest protocol buffer.

The OpenSplice plug-in will generate an IDL file from this data. Any field member that is marked as key or
filterable is explicitly mapped to a member in the IDL type.

The complete serialized .proto message is stored in the generic ospl_protobuf_data attribute as a se-
quence of bytes (making it opaque data for DDS). The mapping between data types is given in the table Mapping
of GPB types to DDS types.

As the next step the IDL-PP compiler will generate the previously-named files from the idl file needed for the
DDS domain. The Google protoc compiler will generate the classes needed for the GPB domain.

The dds options for the proto file are given in the omg/dds/descriptor.proto file listed below. This proto file shows
how the different dds options on the proto file are interpreted, and gives the unique id 1016 to the dds types.

Note that the id 1016 has officially been granted to the Vortex product by Google.
This ensures these options are always unique and won’t clash with any options used by users.

How mapping is done between the different languages is shown below in the table Mapping of GPB types to DDS
types.

omg/dds/descriptor.proto

import "google/protobuf/descriptor.proto";
package omg.dds;

option java_package = "org.omg.dds.protobuf";
option java_outer_classname = "DescriptorProtos";

/% These options are required for any .proto message that needs to be available

2.1. Google Protocol Buffers for DDS 3

OpenSplice GPB Tutorial, Release 6.x

+ in DDS.
*
* — name: An optional scoped name to allow overriding the name of the type in
* DDS. The dot(’.’) can be used as a scoping separator. In case the name
* starts with a dot, the name will be interpreted as an absolute scope name.
* If not, the name will be considered relative to the scope of the message
* including its ’package’.
*/
message MessageOptions {

optional string name = 1 [default = ""];

extend google.protobuf.MessageOptions {
optional omg.dds.MessageOptions type = 1016;

/+ These options are provided to assign specific behaviour to a member of a
* DDS—enabled .proto message in DDS. These options will only be applied in case
* the omg.dds.MessageOptions.type has been applied to the message in which the
* member 1s modeled.

* — key: Make the member part of the key of the type in DDS. Each unique

* key-value will become a separate instance with its own history in DDS. Only
* ’required’ members can be made part of the key and key—-definitions cannot

* be modified in future versions of the message. Members that are part of the
* key are automatically filterable as well.

* — filterable: Ensure the member is filterable in DDS using a so-called

* ContentFilteredTopic or QueryCondition. Only ’‘required’ members can be made
* filterable and filterable definitions cannot be modified in future versions
* of the message.

* — name: Override the name of the member in DDS. This only applies to members
* that are marked as key and/or filterable.
*/

message FieldOptions {
optional bool key = 1 [default = false];
optional bool filterable = 2 [default = false];
optional string name = 3 [default = ""];

extend google.protobuf.FieldOptions {
optional omg.dds.FieldOptions member = 1016;

2.1. Google Protocol Buffers for DDS 4

OpenSplice GPB Tutorial, Release 6.x

Mapping of GPB types to DDS types

.proto Notes C++ Type | Java DDS IDL
Type Type Type
double double double double
float float float float
int32 Uses variable-length encoding. Inefficient for encod- | int32 int long
ing negative numbers; if your field is likely to have
negative values, use sint32 instead
int64 Uses variable-length encoding. Inefficient for encod- | int64 long long long
ing negative numbers; if your field is likely to have
negative values, use sint64 instead
uint32 Uses variable-length encoding uint32 int unsigned
long
uint64 Uses variable-length encoding uint64 long unsigned
long long
sint32 Uses variable-length encoding. Signed int value. | int32 int long
These encode negative numbers more efficiently than
regular int32s.
sint64 Uses variable-length encoding. Signed int value. | int64 long long long
These encode negative numbers more efficiently than
regular int64s.
fixed32 Always four bytes. More efficient than uint32 if val- | uint32 int unsigned
ues are often greater than 2/28. long
fixed64 Always eight bytes. More efficient than uint64 if val- | uint64 long unsigned
ues are often greater than 2°56. long long
sfixed32 Always four bytes. int32 int long
sfixed64 Always eight bytes. int64 long long long
bool bool boolean bool
string A string must always contain UTF-8 encoded or 7-bit | string String string

ASCII text

2.1. Google Protocol Buffers for DDS

Proto message for a DDS system

Individual declarations in a . proto file can be annotated with a number of options. Options do not change the
overall meaning of a declaration, but may affect the way it is handled in a particular context.

Options can be defined at different levels:

¢ File-level options: meaning they should be written at the top-level scope, not inside any message, enum, or
service definition.

* Message-level options: meaning they should be written inside message definitions.

* Field-level options: meaning they should be written inside field definitions. Enum types, enum values,
service types, and service methods.

3.1 Use case: Person

In this use case example, a system capable of describing the personal data of persons must be built using the GPB
data-model

The layout can be:

string name

integer age

sequence phone—-number + type
sequence friends

3.2 Proto file for the Person example

This use case is described in this . proto file:

import "omg/dds/descriptor.proto";
package address;

message Person {
required string name =
required int32 age = 2;
optional string email =

1;
3;

enum PhoneType {
UNDEFINED = 0
MOBILE = 1;
HOME = 2;
WORK =3

’

’

message PhoneNumber {
required string number = 1;
optional PhoneType type = 2 [default = HOME];

OpenSplice GPB Tutorial, Release 6.x

}

repeated PhoneNumber phone = 4;
repeated Person friend = 5;

}

GPB labels every field as either a required or an optional field. Required fields are always used/filled; optional
fields may or may not be.

Different data models are compatible if all required fields are the same. Data models can be extended with extra
fields; if those new fields are all optional, then the new model will still be compatible with older applications using
the old data model.

In our example the name and age are always required. The email string is optional, as extra information for this
person. The sequences with phone numbers and friends are allowed to be empty.

Detailed explanation for the layout of a . proto file can be found in the Google Protocol buffer documentation
on https://developers.google.com/protocol-buffers/docs/proto

3.3 Annotating a proto message for use as a type in DDS

For the GPB message to be able to be handled correctly in a DDS system, some options are needed in the . proto
file which define how the GPB message shall behave in the DDS system.

At the message level there is an extra option . omg.dds . type. This tells the protocol buffer compiler that this
message is also a dds type message. This type option has a optional extra parameter for giving this type a dds type
name. By default it has the same name in the DDS domain as it has in GPB.

The Person example with this option:

import "omg/dds/descriptor.proto";
package address;

message Person {
option (.omg.dds.type) = {};
required string name 1

)
required int32 age = 2;

enum PhoneType {
UNDEFINED = 0;
MOBILE =
HOME =
WORK =
}

’

w N

’
’

message PhoneNumber {
required string number = 1;
optional PhoneType type = 2 [default = HOME];
}
repeated PhoneNumber phone = 4;
repeated Person friend = 5;

}

3.3.1 Proto file with omg.dds.member.key option

For support of a key value in the datamodel, the option key can be given as a field-member option. One or more
fields containing this option will indicate that these members make a unique key identifier in the data model. A
field indicated as a key field must always be a required field for GPB. Also a key field is automatically a filterable
field, as described below.

3.3. Annotating a proto message for use as a type in DDS 7

https://developers.google.com/protocol-buffers/docs/proto

OpenSplice GPB Tutorial, Release 6.x

The Person example with name as a unique key (this means that each unique value of the name will lead to a
separate instance in DDS with its own history):

import "omg/dds/descriptor.proto";
package address;

message Person {
option (.omg.dds.type)
required string name =
required int32 age = 2;
optional string email =

= {};
1 [(.omg.dds.member) .key = true];
3;
}
enum PhoneType {
UNDEFINED = 0;
MOBILE 1;
HOME =
WORK =

’

w Nl

2
}
message PhoneNumber {
required string number = 1;
optional PhoneType type = 2 [default = HOME];

repeated PhoneNumber phone = 4;
repeated Person friend = 5;

3.3.2 Proto file with omg.dds.member.filterable option

For support of filterable fields in the datamodel, the option £ilterable can be given as a field-member option.

One or more fields with this option indicates that these members are available for dynamic querying and filtering
by means of a QueryCondition or ContentFilteredTopic in DDS.

A field marked as a filterable field must always be a required field in GPB. A key field is always filterable, by
definition.

The Person example with age as a filterable attribute:

import "omg/dds/descriptor.proto";
package address;

message Person {
option (.omg.dds.type) = {};
required string name = 1 [(.omg.dds.member) .key = true];
required int32 age = 2 [(.omg.dds.member).filterable = true];
optional string email = 3;

enum PhoneType {
UNDEFINED = 0
MOBILE = 1;
HOME = 2;
WORK = 3

’

’

message PhoneNumber {
required string number = 1;
optional PhoneType type = 2 [default = HOME];
}
repeated PhoneNumber phone = 4;
repeated Person friend = 5;

}

3.3. Annotating a proto message for use as a type in DDS 8

OpenSplice GPB Tutorial, Release 6.x

3.3.3 Proto file with omg.dds.member.name option
The previous examples will result in a DDS type with the directly-mapped fields in IDL with the same name as in
proto. (Key fields and filterable fields are directly mapped.)

If a different name is needed in the DDS domain for a fieldname in the generated IDL and dds type, a name can
be given as an omg . dds . member option.

Example where the age field will be named AgeInYears in the DDS domain:

import "omg/dds/descriptor.proto";
package address;

message Person {
option (.omg.dds.type)
required string name =
required int32 age = 2
optional string email = 3 ;

= {};
1 [(.omg.dds.member) .key = true];
[(.omg.dds.member) = { name: "AgelInYears" filterable: true }];

enum PhoneType {
UNDEF INED
MOBILE =
HOME =
WORK =

w N = O

’
’
’

’

message PhoneNumber ({
required string number = 1;
optional PhoneType type = 2 [default = HOME];
}
repeated PhoneNumber phone = 4;
repeated Person friend = 5;

}

3.3. Annotating a proto message for use as a type in DDS 9

Compiling the datamodel with the GPB
compiler

Once you’ve defined your messages, you run the protocol buffer compiler for your application’s language on your
.proto file to generate data access classes. These provide simple accessors for each field so, for instance, if your
chosen language is ISO-C++, running the compiler on the above example will generate a class called Person. You
can then use this class in your application to populate, serialize, and retrieve Person protocol buffer messages.

4.1 DDS-specific GPB-compiler plugin to generate code.

The GPB compiler can be extended to support new languages via so-called plugins. The compiler invokes the plu-
gin while providing the GPB type definition to it in the form of a GPB message. For DDS support the OpenSplice
GPB-compiler is delivered with Vortex OpenSplice.

The Vortex OpenSplice IDL compiler is invoked by the OpenSplice GPB-compiler plugin to generate the DDS
type including typed DataWriter and DataReader code. Additionally, code is generated to convert an instance of
the DDS type to the GPB type and vice versa, which hides the DDS type from the application entirely.

4.2 Java 5 example

In this example we assume that a correct OpenSplice environment is set (release.bat has been run).

For creating the DDS-specific code by the GPB compiler the option ——dds java_out must be given to the
compiler. Also the path to the OpenSplice GPB-compiler must be supplied.

Example:
protoc —-—-java_out =outputPath
--ddsjava_out =outputPath
——proto_path =PathToProtoFile
——-proto_path =PathToProtoSelf
——-proto_path =PathToOpenSpliceProtoCompiler
protoFileToCompile

* ——Jjava_out gives the path where the GDP generated code will be stored.

* ——ddsjava_out gives the path where the DDS-specific generated code will be stored.

* first -——proto_path: the protoc compiler needs the path where the . proto file is located.

* second ——proto_path: the path where the GPB environment is installed on your local machine.

e third ——proto_path: specifies the path to the OpenSplice proto descriptor. This is normally
SOSPL_HOME/include/protobuf.

* protoFileToCompile the last option is the .proto file.

10

OpenSplice GPB Tutorial, Release 6.x

Assuming that we need the generated code in the . /generated directory and the previous address.proto
example is in the current directory, the command will be:

protoc —-—-java_out=./generated
-—-ddsjava_out=./generated
—-—proto_path=./
——proto_path=$PROTOBUF_HOME/src
——proto_path=$0SPL_HOME/include/protobuf
./address.proto

The generated code, in the . /generated directory, can be compiled normally with the Java compiler together
with your own written applications.

The only pre-requisite is that $SOSPL_HOME/ jar/dcpssaj5. jar and
$OSPL_HOME/jar/dcpsprotobuf. jar are in the classpath so that the Java compiler can find the
included OpenSplice jar files.

This example is delivered with OpenSplice, and is located in examples/protobuf/javabs.

If the generated . 1d1 file is needed by other applications, this file will also be generated in the ——dds java_out
path if the environment variable OSPL_PROTOBUF_INCLUDE_IDL is set to true.

4.3 C++ example

C++

In this example we assume that a correct OpenSplice environment is set (so release.bat has been run) For creating
the DDS specific code by the GPB compiler the option —ddscpp_out must be given to the compiler. Also the path
to the OpenSplice GPB-compiler must be given. Example:

protoc —--cpp_out =outputPath
——ddscpp_out =outputPath
——-proto_path =PathToProtoFile
——proto_path =PathToProtoSelf
——proto_path =PathToOpenSpliceProtoCompiler
protoFileToCompile

e ——cpp_out gives the path where the GDP generated code will be stored.

* ——ddscpp_out gives the path where the DDS-specific generated code will be stored.

* first ——proto_path: the protoc compiler needs the path where the . proto file is located.

* second ——proto_path: the path where the GPB environment is installed on your local machine.

e third ——proto_path: specifies the path to the OpenSplice proto descriptor. This is normally
$SOSPL_HOME/include/protobuf.

* protoFileToCompile the last option is the . proto file.

Assuming that we need the generated code in the . /generated directory and the previous address.proto
example is in the current directory, the command will be:

protoc -—-cpp_out=./generated
——ddscpp_out=./generated
—-—-proto_path=./
——proto_path=$PROTOBUF_HOME/src
——proto_path=$0SPL_HOME/include/protobuf
./address.proto

The generated code, in the . /generated directory, can be compiled normally with the C++ compiler together
with your own written applications.

This example is delivered with OpenSplice, and is located in examples/protobuf/isocpp?2.

4.3. C++ example 11

OpenSplice GPB Tutorial, Release 6.x

If the generated . 1d1 file is needed by other applications, this file will also be generated in the -——ddscpp_out

path if the environment variable OSPL_PROTOBUF_INCLUDE_IDL is set to true.

4.4 Tempory IDL file created by the GPB data-model

The IDL file created for the previous example will contain:

module org {
module omg {
module dds {
module protobuf {
typedef sequence<octet> gpb_payload_t;
}i
}i
bi
bi

module address {
module dds {
struct Person {
string name;
long age;
string worksFor_name;
string worksFor_address;
::org::omg: :dds: :protobuf: :gpb_payload_t ospl_protobuf_data;
}i
#pragma keylist Person name worksFor_name
}i
bi

This idl file is deleted after the idI-pp compiler is finished. If the temporary idl file is needed in other DDS applica-
tions (it also usable for other DDS vendors), then the environment variable OSPIL_PROTORUF_INCLUDE_IDL

must be set to true to prevent the idl file from being deleted.

4.4. Tempory IDL file created by the GPB data-model

12

Using the generated API in applications

The DDS API implementation will allow the use of GPB types for DDS transparently, and the generated underly-
ing DDS type will be invisible to the application.

5.1 Protobuf data model

For the comming example the following proto file is used:

import "omg/dds/descriptor.proto";
package address;

message Organisation {

required string name = 1 [(.omg.dds.member) .key = true];
required string address = 2 [(.omg.dds.member) .filterable = true];
optional Person.PhoneNumber phone = 3;

message Person {

option (.omg.dds.type) = {name: "dds.Person"};
required string name = 1 [(.omg.dds.member) .key = truel;
required int32 age = 2 [(.omg.dds.member) = {filterable: true}];

(
optional string email = 3;
enum PhoneType {
MOBILE = 0;
HOME = 1;
WORK = 2;

message PhoneNumber {
required string number = 1;
optional PhoneType type = 2 [default = HOME];

}
repeated PhoneNumber phone = 4;
required Organisation worksFor = 5;

5.2 Java

In this example we will publish a person Jane Doe with one friend, John Doe.

The Subscriber example will read this data and print it to the st dout. This example is delivered with OpenSplice,
and is located in examples/protobuf/javabs.

13

OpenSplice GPB Tutorial, Release 6.x

5.2.1 Publisher

Example Publisher for the generated Person data:

import java.util.concurrent.TimeoutException;

import org.
import org.
import org.
import org.
import org.
import org.
import org.
import org.
import org.

omg.dds.core.InstanceHandle;
omg.dds.core.ServiceEnvironment;
omg.dds.core.policy.PolicyFactory;
omg.dds.core.status.PublicationMatchedStatus;
omg.dds.domain.DomainParticipant;
omg.dds.domain.DomainParticipantFactory;
omg.dds.pub.DataWriter;
omg.dds.pub.Publisher;

omg.dds.topic.Topic;

import address.Address.Organisation;
import address.Address.Person;

import address.Address.Person.PhoneNumber;
import address.Address.Person.PhoneType;

public class ProtobufPublisher {

public

static void main (String[] args) {

ServiceEnvironment env;

DomainParticipantFactory domainParticipantFactory;
DomainParticipant participant;

Topic<Person> topic;

Publisher publisher;

DataWriter<Person> writer;

Person.Builder janeDoeBuilder;

PhoneNumber phone;

Person janeDoe;

PolicyFactory policyFactory;

System.setProperty (

env

ServiceEnvironment . IMPLEMENTATION_CLASS_NAME_PROPERTY,
"org.opensplice.dds.core.OsplServiceEnvironment") ;

= ServiceEnvironment.createlnstance (ProtobufPublisher.class
.getClassLoader ());

policyFactory = PolicyFactory.getPolicyFactory (env);
participant = null;
domainParticipantFactory = DomainParticipantFactory.getInstance (env) ;

try {

participant = domainParticipantFactory.createParticipant ();
// Creating a Topic for a Protobuf class
topic = participant.createTopic ("Person", Person.class);

// Creating a Publisher and DataWriter for the Protobuf Topic
publisher = participant.createPublisher();
writer = publisher.createDataWriter (
topic,
publisher.getDefaultDataWriterQos () .withPolicy (
policyFactory.Reliability () .withReliable()));

waitForSubscriber (writer);
// Creating a builder the Protobuf data structure
janeDoeBuilder = Person.newBuilder();

5.2. Java

14

OpenSplice GPB Tutorial, Release 6.x

// Creating Jane Doe
janeDoeBuilder.setName ("Jane Doe")

.setEmail (" jane.doe@somedomain.com") .setAge (23) ;
phone = PhoneNumber.newBuilder () .setNumber ("0123456789") .build() ;
janeDoeBuilder.addPhone (phone) ;

Organisation.Builder orgBuilder = Organisation.newBuilder ();
orgBuilder.setName ("Acme Corporation");
orgBuilder.setAddress ("Wayne Manor, Gotham City");
orgBuilder.setPhone (PhoneNumber.newBuilder ()

.setNumber ("9876543210") .setType (PhoneType.WORK)) ;
janeDoeBuilder.setWorksFor (orgBuilder) ;

janeDoe = janeDoeBuilder.build() ;

System.out.println ("Publisher: publishing Person: "
+ janeDoe.getName ()) ;
writer.write (janeDoe) ;

System.out.println ("Publisher: sleeping for 5 seconds...");
Thread.sleep (5000) ;
System.out.println ("Publisher: disposing Jane Doe...");

// Disposing the DDS instance associated with the name field of the
// Protobuf data structure which is the key in DDS
writer.dispose (InstanceHandle.nilHandle (env), Person.newBuilder ()
.setName ("Jane Doe") .setWorksFor (
Organisation.newBuilder () .setName ("Acme Corporation.") .buildPartial (

} catch (TimeoutException e) {
System.err.println (e.getMessage());
e.printStackTrace();

} catch (InterruptedException e) {

System.err.println (e.getMessage());
e.printStackTrace();

} finally {
System.out.println ("Publisher: terminating...");
if (participant != null) {

participant.close();

public static void waitForSubscriber (DataWriter<Person> writer)
throws InterruptedException {
PublicationMatchedStatus matched;
long millis = System.currentTimeMillis();
long timeout = millis + (30 = 1000);
boolean stop = false;

System.out.println ("Publisher: waiting for subscriber... ");

do {
matched = writer.getPublicationMatchedStatus /() ;

if (System.currentTimeMillis () > timeout) {
stop = true;

}

if ((matched.getCurrentCount () == 0) && (!stop)) {
Thread.sleep (500);

5.2. Java 15

OpenSplice GPB Tutorial, Release 6.x

} while ((matched.getCurrentCount () == 0) && (!stop));
if (matched.getCurrentCount () != 0) {

System.out.println ("Publisher: Subscriber found");
} else {

System.out.println ("Publisher: Subscriber NOT found");

throw new InterruptedException (

"Publisher: subscriber not detected within 30 seconds.

5.2.2 Subscriber

Example Subscriber for the generated Person data:

import
import

import
import
import
import
import
import
import
import
import
import

import
import

public

java.util.concurrent.TimeUnit;
java.util.concurrent.TimeoutException;

org.omg.dds.core.ServiceEnvironment;
org.omg.dds.core.WaitSet;
org.omg.dds.core.policy.PolicyFactory;
org.omg.dds.domain.DomainParticipant;
org.omg.dds.domain.DomainParticipantFactory;
org.omg.dds.sub.DataReader;
org.omg.dds.sub.Sample;
org.omg.dds.sub.Sample.Iterator;
org.omg.dds.sub.Subscriber;
org.omg.dds.topic.Topic;

address.Address.Person;
address.Address .Person.PhoneNumber;

class ProtobufSubscriber

public static void main(String[] args) {

ServiceEnvironment env;

DomainParticipantFactory domainParticipantFactory;
DomainParticipant participant;

Topic<Person> topic;

DataReader<Person> reader;

Subscriber subscriber;

WaitSet ws;

PolicyFactory policyFactory;

int expectedUpdates = 2;

System.setProperty (

ServiceEnvironment . IMPLEMENTATION_CLASS_NAME_PROPERTY,
"org.opensplice.dds.core.OsplServiceEnvironment") ;

env = ServiceEnvironment.createlnstance (ProtobufSubscriber.class

.getClassLoader()) ;

policyFactory = PolicyFactory.getPolicyFactory (env) ;
participant = null;

domainParticipantFactory = DomainParticipantFactory.getInstance (env);

try {

participant = domainParticipantFactory.createParticipant ();

// Creating a Topic for a Protobuf class

5.2. Java

16

OpenSplice GPB Tutorial, Release 6.x

topic = participant.createTopic ("Person", Person.class);

// Creating a Subscriber and DataReader for the Protobuf Topic
subscriber = participant.createSubscriber();

reader = subscriber.createDataReader (
topic,
subscriber.getDefaultDataReaderQos () .withPolicy (
policyFactory.Reliability () .withReliable()));

// Creating a WaitSet to block for incoming samples

ws = env.getSPI () .newWaitSet () ;

ws.attachCondition (reader.createReadCondition (subscriber
.createDataState () .withAnyViewState ()
.withAnyInstanceState () .withAnySampleState()));

System.out.println ("Subscriber: waiting for incoming samples...");

do {
// Waiting for data to become available
ws.waitForConditions (30, TimeUnit.SECONDS) ;

// Take all data and print it to the screen
expectedUpdates —= printAllData (reader) ;
} while (expectedUpdates > 0);

} catch (RuntimeException e) {
System.err.println(e.getMessage());
e.printStackTrace () ;

} catch (TimeoutException e) {
System.out

.println ("Subscriber: time-out while waiting for updates.");
} finally {
System.out.println ("Subscriber: terminating...");
if (participant != null) {

participant.close();

public static int printAllData (DataReader<Person> reader) {
Iterator<Person> iter;
Sample<Person> sample;
Person data;
String states;
int sampleCount = 0;

iter = reader.take();

while (iter.hasNext ()) {
sample = iter.next();
sampleCount++;
states = " (" + sample.getSampleState() + ", "
+ sample.getViewState() + ", " + sample.getInstanceState()
+ "";
if (sample.getData() != null) {
System.out
.println ("Subscriber: reading sample " + states + ":");
printPerson (sample.getData(), "");
} else {

5.2. Java 17

OpenSplice GPB Tutorial, Release 6.x

data = ((org.opensplice.dds.sub.Sample<Person>) sample)
.getKeyValue () ;

System.out.println ("Subscriber: reading invalid sample "

+ states + ":");
System.out.println("- Name = " + data.getName());
System.out.println (" - Company =");
System.out.println (" — Name ="

+ data.getWorksFor () .getName ()) ;

}

return sampleCount;

public static void printPerson (Person person, String tabs) {

System.out.println(tabs + "- Name = " + person.getName()) ;
System.out.println(tabs + "- Age = " + person.getAge());
System.out.println(tabs + "- Email = " + person.getEmail());
for (PhoneNumber phone : person.getPhonelist ()) {
System.out.println(tabs + "- Phone = " + phone.getNumber ()
+ """
+ phone.getType () + ")");
}
System.out.println(tabs + "- Company =");
System.out.println(tabs + " — Name ="
+ person.getWorksFor () .getName ()) ;
System.out .println(tabs + " — Address = "
+ person.getWorksFor () .getAddress());
if (person.getWorksFor () .hasPhone()) {
System.out.println(tabs + " — Phone ="
+ person.getWorksFor () .getPhone () .getNumber () + " ("
+ person.getWorksFor () .getPhone () .getType() + ")");
} else {
System.out.println (tabs + " — Phone = ");

5.3 ISO-C++

C++

In this example the publisher and subscriber are embedded into one file.

The publisher part will publish a person Jane Doe with one friend, John Doe.

The Subscriber part in this example will read this data and print it to the stdout.

This example is delivered with Vortex OpenSplice, and is located in examples/protobuf/isocpp?2.

/ *
* Vortex OpenSplice

* This software and documentation are Copyright 2006 to TO_YEAR ADLINK
* Technology Limited, its affiliated companies and licensors. All rights

* reserved.

* Licensed under the Apache License, Version 2.0 (the "License");

5.3. ISO-C++ 18

OpenSplice GPB Tutorial, Release 6.x

* you
* You

* Unl
* dis

may not use this file except in compliance with the License.
may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

ess required by applicable law or agreed to in writing, software
tributed under the License 1is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See
* 1im

#include
#include

#include

#include

namespac

int publ
{
int
(voi
(voi
try
{

the License for the specific language governing permissions and
itations under the License.

"implementation.hpp"
"common/example _utilities.h"
<iostream>
"address.pbdds.hpp"
e examples { namespace protobuf { namespace isocpp {
isher (int argc, char xargv([])
result = 0;
d) argc;
d) argv;

/*+ A dds::domain::DomainParticipant is created for the default domain. */
dds::domain::DomainParticipant dp (org::opensplice::domain::default_id());

/++ A dds::topic::Topic is created for our protobuf type on the domain participant. #*/
dds::topic::Topic<address::Person> topic(dp, "Person");

/*+ A dds::pub::Publisher is created on the domain participant. */
dds: :pub: :Publisher pub (dp);

/*+ The dds::pub::qos::DataWriterQos is derived from the topic qos */
dds::pub::gos::DataWriterQos dwgos;

dwgos << dds::core::policy::Reliability::Reliable();
/*+ A dds::pub::DataWriter is created on the Publisher & Topic with the modififed Qos.
dds: :pub::DataWriter<address: :Person> dw(pub, topic);

/*+* Synchronize on subscriber availability. x/

std::cout << "Publisher: waiting for subscriber... " <<std::endl;
unsigned long current = exampleTimevalToMicroseconds (exampleGetTime ());
unsigned long timeout = current + (30 » 1000 = 1000);

bool stop = false;

::dds::core::status: :PublicationMatchedStatus matched;

do {
matched = dw.publication_matched_status();

if (exampleTimevalToMicroseconds (exampleGetTime()) > timeout) {
stop = true;

}

if ((matched.current_count () == 0) && (!stop)) {

exampleSleepMilliseconds (500) ;

}
} while ((matched.current_count() == 0) && (!stop));

5.3. ISO-C++ 19

*/

OpenSplice GPB Tutorial, Release 6.x

if (matched.current_count () != 0) {
std::cout << "Publisher: Subscriber found" << std::endl;

/*+* A sample 1is created and then written. */
address: :Person msglnstance;
msgInstance.set_name ("Jane Doe");
msgInstance.set_email ("jane.doel@somedomain.com") ;
msgInstance.set_age (23);

address: :Person: :PhoneNumber* phone = msgInstance.add_phone();
phone->set_number ("0123456789") ;

address: :0Organisation* worksFor = msgInstance.mutable_worksfor();
worksFor—->set_name ("Acme Corporation");
worksFor->set_address ("Wayne Manor, Gotham City");
worksFor->mutable_phone () —>set_number ("9876543210") ;

worksFor—->mutable_phone () —>set_type (::address::Person_PhoneType_ WORK) ;
std::cout << "Publisher: publishing Person: " << msglInstance.name () << std::endl;
::dds::core::InstanceHandle handle = dw.register_instance (msgInstance);

dw << msglnstance;

std::cout << "Publisher: sleeping for 5 seconds..." << std::endl;
exampleSleepMilliseconds (5000) ;

std::cout << "Publisher: disposing Jane Doe..." << std::endl;

/++ Disposing the DDS instance associated with the name field of the
* Protobuf data structure which is the key in DDS*/

dw.dispose_instance (handle) ;
exampleSleepMilliseconds (1000) ;
} else {
throw ::dds::core::PreconditionNotMetError ("Subscriber NOT found, terminating...");

}
catch (const dds::core::Exceptioné& e)

{
std::cerr << "Publisher: ERROR: " << e.what () << std::endl;

result = 1;
}

std::cout << "Publisher: terminating..." << std::endl;
return result;

class ReadCondHandler
{

public:
VA
* @param dataState The dataState on which to filter the samples
*/
ReadCondHandler () : updateCount (0) {}
void operator () (dds::sub::cond::ReadCondition c)

{

std::string states, sampleState, viewState, instanceState;
dds: :sub::DataReader<address: :Person> dr = c.data_reader();
dds: :sub: :LoanedSamples<address: :Person> samples = dr.select () .state(c.state_filter()) .ta

for (dds::sub::LoanedSamples<address::Person>::const_iterator sample = samples.begin();
sample < samples.end(); t++sample)

5.3. I1ISO-C++ 20

OpenSplice GPB Tutorial, Release 6.x

updateCount++;

if (sample->info () .state() .sample_state ()
sampleState = "READ";

} else {
sampleState = "NOT_READ";

}

if (sample->info () .state() .view_state() == dds:
viewState = "NEW";

} else {
viewState = "NOT_NEW";

}

if (sample->info () .state () .instance_state() == dds:
instanceState = "ALIVE";

} else if (sample->info().state().instance_state()
instanceState = "NOT_ALIVE_DISPOSED";

} else {
instanceState = "NOT_ALIVE_NO_WRITERS";

}

states = " (" + sampleState + ", " + viewState + "

if (sample->info () .valid())
{
<<

std::cout << "Subscriber:

printPerson (sample->data (),

reading sample "
ll"),.

} else {
std::cout << "Subscriber: reading invalid sample "
std: :cout << "- Name = " << sample—>data () .name ()
std::cout << "- Company = " << std::endl;
std::cout << " - Name ="

int getUpdateCount () {
return updateCount;

private:
int updateCount;

void printPhone (const
std::string type;

switch (phone.type ()) {

case ::address::Person_PhoneType MOBILE:
type = "MOBILE";
break;

case ::address::Person_PhoneType HOME :
type = "HOME";
break;

case ::address::Person_PhoneType WORK:
type = "WORK";
break;

default:
type = "UNKNOWN";
break;

}
std::cout << tabs <<
" (" + type <<

"— Phone ="
") n

<< std::endl;

<< sample—>data () .worksfor () .name ()

:raddress: :Person_PhoneNumber phone,

<< phone.number ()

== dds::sub::status::SampleState::read()) {

:sub::status::ViewState: :new_view()) {

:sub::status::InstanceState: :alive (

dds::sub::status::InstanceState:

wy w,
/

" + instanceState + ;

states << ":" << std::endl;

<< states << ":" << std::endl;

<< std::endl;

<< std::endl;

std: :string tabs) {

<<

5.3. ISO-C++

21

OpenSplice GPB Tutorial, Release 6.x

void printPerson (address: :Person person, std::string tabs) {

std: :cout << tabs << "- Name " << person.name () << std::endl;
std::cout << tabs << "- Age = " << person.age () << std::endl;
std::cout << tabs << "- Email = " << person.email () << std::endl;

for (int i=0; i< person.phone_size(); i++) {
printPhone (person.phone (i), tabs);

}

std::cout << tabs << "- Company = " << std::endl;
std: :cout << tabs << " - Name = " << person.worksfor () .name () << std::endl;
std::cout << tabs << " — Address = " << person.worksfor().address () << std::endl;
if (person.worksfor () .has_phone()) {

printPhone (person.worksfor () .phone (), tabs + " ")
} else {

std::cout << tabs << " — Phone = NONE" << std::endl;

}i

/*
* Runs the subscriber role of this example.
* @return 0 if a sample is successfully read, 1 otherwise.
*/
int subscriber (int argc, char xargv([])
{
int result = 0;
(void) argc;
(void) argv;
try
{
int expectedUpdates = 2;
/*% A dds::domain::DomainParticipant 1is created for the default domain. */
dds: :domain: :DomainParticipant dp(org::opensplice::domain::default_id());

/*+ A dds::topic::Topic is created for our protobuf type on the domain participant.
dds: :topic::Topic<address::Person> topic(dp, "Person");

/4% A dds::pub::Subscriber is created on the domain participant. */
dds: :sub::Subscriber sub (dp);

/*% The dds::pub::qos::DataWWriterQos is derived from the topic gos */
dds: :sub::gos: :DataReaderQos drqgos;

drgos << dds::core::policy::Reliability::Reliable();
/*% A dds::pub::Reader is created on the Subscriber & Topic with the modififed Qos.

*/

*/

dds: :sub::DataReader<address: :Person> dr = dds::sub::DataReader<address::Person> (sub, top

/*% any sample, view and instance state */

dds::sub::cond: :ReadCondition readCond(dr, dds::sub::status::DataState::any());
ReadCondHandler personHandler;

readCond.handler (personHandler) ;

/+% A WaitSet is created and the four conditions created above are attached to it */

dds: :core::cond: :WaitSet waitSet;
wailtSet += readCond;

dds: :core::Duration waitTimeout (30, 0);

/** Wait until the condition in the WaitSet triggers and dispatch the corresponding funct

do {
waitSet.dispatch (waitTimeout) ;

5.3. ISO-C++ 22

OpenSplice GPB Tutorial, Release 6.x

} while (personHandler.getUpdateCount () < expectedUpdates);
}

catch (const dds::core::Exceptioné& e)

{

std::cerr << "Subscriber: ERROR: " << e.what () << std::endl;
result = 1;

}

std::cout << "Subscriber: terminating..." << std::endl;

return result;

EXAMPLE_ENTRYPOINT (DCPS_ISOCPP_Protobuf_publisher, examples::protobuf::isocpp: :publisher)
EXAMPLE_ENTRYPOINT (DCPS_ISOCPP_Protobuf_subscriber, examples::protobuf::isocpp::subscriber)

5.3. I1ISO-C++ 23

Evolving data models

It is likely that over time a data model will change; for example, new fields with extra information are often added
to an existing data model.

Normally all applications using that data model need to be recompiled against the new (changed) data model in
order to be aware of the extra fields. However, when using a data model based on the GPB system, it is possible
to add extra fields to the data model and use applications based on the original data model and applications based
on the new data model in a mixed environment.

A It is only possible to combine old and new applications with different data models as long as the required
fields are the same. Remember, a key field or a filterable field is always required, so these fields can not be
changed or added if it is necessary to combine old and new data models.

In our example we will make a new data model with some extra fields:
* new phonetype: SKYPE
* new phoneNumber property: secret
* new string for an alias: facebookname

Proto file with new options:

import "omg/dds/descriptor.proto";
package address;
message Person {
option (.omg.dds.type); // default type-name will be ’Person’

required string name = 1 [(.omg.dds.member).key = true];
required int32 age = 2 [(.omg.dds.member) .filterable = true];
optional string email = 3;

enum PhoneType {
UNDEFINED = O0;
MOBILE = 1;
HOME = 2;
WORK = 3;
SKYPE = 4; // *x*x added SKYPE phonetype enum-value *#*x*x*
}
message PhoneNumber {
required string number = 1;
optional PhoneType type = 2 [default = UNDEFINED];
optional bool secret = 3 [default = false];
// *xx* added a new phoneNumber property **x*x*
}
repeated PhoneNumber phone = 4;
repeated Person friend = 5;
optional string facebookname = 6 [default = "NONE"];
// *xx* added alias facebook name **x*x

24

OpenSplice GPB Tutorial, Release 6.x

6.1 Old publisher and old subscriber

Data printed by subscriber program:

Name = Jane Doe
Age = 23
Email = jane.doe@somedomain.com
Phone = 0123456789 (HOME)
Friend:
Name = John Doe
Age = 35
Email = john.doe@somedomain.com

6.2 New publisher and new subscriber

Data printed by subscriber program:

Name = Jane Doe
Facebook = Janel23
Age = 23
Email = jane.doe@somedomain.com
Phone = 0123456789 (HOME) secret=false
Phone = 0612345678 (MOBILE) secret=true
Phone = splicer (SKYPE) secret=false
Friend:

Name = John Doe

Facebook = NONE

Age = 35

Email = john.doe@somedomain.com

6.3 Old publisher and new subscriber

New subscriber gets default values for absent fields:

Name = Jane Doe
Facebook = NONE
Age = 23
Email = jane.doe@somedomain.com
Phone = 0123456789 (HOME) secret=false
Friend:
Name = John Doe
Facebook = NONE
Age = 35
Email = john.doe@somedomain.com

6.4 New publisher and old subscriber

Old subscriber doesn’t understand the SKYPE phonetype so reverts to the default UNDEF INED phonetype.

Read data in old subscriber:

Name = Jane Doe

Age = 23

Email = jane.doe@somedomain.com
Phone = 0123456789 (HOME)

Phone = 0612345678 (MOBILE)

6.1. Old publisher and old subscriber

25

OpenSplice GPB Tutorial, Release 6.x

Phone = splicer (UNDEFINED)

Friend:
Name = John Doe
Age = 35
Email = john.doe@somedomain.com

6.4. New publisher and old subscriber 26

Contacts & Notices

7.1 Contacts

ADLINK Technology Corporation
400 TradeCenter

Suite 5900

Woburn, MA

01801

USA

Tel: +1 781 569 5819

ADLINK Technology Limited
The Edge

5th Avenue

Team Valley

Gateshead

NE11 0XA

UK

Tel: +44 (0)191 497 9900

ADLINK Technology SARL
28 rue Jean Rostand

91400 Orsay

France

Tel: +33 (1) 69 015354

Web: http://ist.adlinktech.com/

Contact: http://ist.adlinktech.com

E-mail: ist_info@adlinktech.com

LinkedIn: https://www.linkedin.com/company/79111/
Twitter: https://twitter.com/ADLINKTech_usa
Facebook: https://www.facebook.com/ADLINKTECH

7.2 Notices

Copyright © 2018 ADLINK Technology Limited. All rights reserved.

http://ist.adlinktech.com/
http://ist.adlinktech.com
mailto:ist_info@adlinktech.com
https://www.linkedin.com/company/79111/
https://twitter.com/ADLINKTech_usa
https://www.facebook.com/ADLINKTECH

OpenSplice GPB Tutorial, Release 6.x

This document may be reproduced in whole but not in part. The information contained in this document is subject
to change without notice and is made available in good faith without liability on the part of ADLINK Technology
Limited. All trademarks acknowledged.

7.2. Notices 28

	Preface
	About the Vortex OpenSplice Google Protocol Buffers Tutorial
	Conventions

	Introduction
	Google Protocol Buffers for DDS

	Proto message for a DDS system
	Use case: Person
	Proto file for the Person example
	Annotating a proto message for use as a type in DDS

	Compiling the datamodel with the GPB compiler
	DDS-specific GPB-compiler plugin to generate code.
	Java 5 example
	C++ example
	Tempory IDL file created by the GPB data-model

	Using the generated API in applications
	Protobuf data model
	Java
	ISO-C++

	Evolving data models
	Old publisher and old subscriber
	New publisher and new subscriber
	Old publisher and new subscriber
	New publisher and old subscriber

	Contacts & Notices
	Contacts
	Notices

