
RMI User Guide
Release 6.x

Contents
1 Preface 1

1.1 About the RMI User Guide . 1
1.2 Conventions . 1

2 Introduction 2
2.1 Features . 2
2.2 Benefits . 3

3 Vortex OpenSplice RMI over DDS 4
3.1 Key components . 5
3.2 Binding Languages . 5

4 Building an RMI Application 6
4.1 About RMI Applications . 6
4.2 Services description . 6
4.3 QoS policies description . 7
4.4 RMI compilation . 8
4.5 Application implementation . 9
4.6 Using a specific DDS domain . 16
4.7 Server Threading and Scheduling policies . 17

5 Language mapping for Vortex OpenSplice RMI 20
5.1 Mapping for interfaces . 20
5.2 Mapping for operations . 21
5.3 Mapping for basic types . 21

6 RMI Interface to DDS topics mapping rules 22

7 RMI Runtime Configuration Options 24
7.1 RMIClientThreadingModel option . 24
7.2 RMIServiceDiscoveryTimeout option . 24
7.3 RMIServerThreadingModel option . 24
7.4 RMIServerSchedulingModel option . 24
7.5 RMIDurability option . 25
7.6 RMIClientSchedulingModel option . 25
7.7 RMILegacyTopicNames option . 25

8 QoS policies XML schema 26

9 Contacts & Notices 31
9.1 Contacts . 31
9.2 Notices . 31

i

1
Preface

1.1 About the RMI User Guide

The Vortex OpenSplice RMI User Guide is intended to explain the steps required to take advantage of the
client/server interaction paradigm provided by Vortex OpenSplice RMI layered over the publish/subscribe
paradigm of Vortex OpenSplice.

Intended Audience

This Vortex OpenSplice RMI User Guide is for developers using remote invocations in DDS applications.

Organisation

The first two chapters give a general introduction to RMI over DDS.

Building an RMI Application describes the steps involved in building applications using RMI over DDS.

Language mapping for Vortex OpenSplice RMI gives the ‘C++ and Java’ mapping of the IDL types that can be
declared in the RMI services description file.

RMI Interface to DDS topics mapping rules shows how IDL declarations of RMI interfaces are mapped into IDL
declarations of the implied DDS topics.

RMI Runtime Configuration Options describes the command-line options available when starting the RMI runtime.

QoS policies XML schema contains the XML schema for reference.

1.2 Conventions

The icons shown below are used to help readers to quickly identify information relevant to their specific use of
Vortex.

Icon Meaning

Item of special significance or where caution needs to be taken.

Item contains helpful hint or special information.

Information applies to Windows (e.g. XP, 2003, Windows 7) only.

Information applies to Unix-based systems (e.g. Solaris) only.

Information applies to Linux-based systems (e.g. Ubuntu) only.

C language specific.

C++ language specific.

C# language specific.

Java language specific.

1

2
Introduction

2.1 Features

Vortex OpenSplice RMI provides an implementation of the general concept of invoking a remote method over
DDS. It enhances Vortex OpenSplice with a service-oriented interaction pattern that can be used with combination
with the native data-centric pattern. Vortex OpenSplice RMI is a service invocation framework on top of DDS
DCPS that uses DDS mechanisms to export, find and invoke services. It maps all the application-exchanged
requests/replies into DDS data exchanges, and gives the ability to configure the associated QoS policies according
to the application needs. Finally, Vortex OpenSplice RMI enables the definition of a distributed services space
over a DDS data space with all the known DDS benefits, such as discovery, fault tolerance, performance and
real-time features.

RMI Communication Scheme

Vortex OpenSplice RMI targets service-oriented applications needing a request/reply communication scheme
while they need to have a very fine control over the data and the underlying network quality of service. Typi-
cally, Vortex OpenSplice RMI can be used in systems to issue commands. Commands are a kind of stimulus that
express the ability of the system to do something. As commands have the ‘do-something’ connotation, it is often
useful to be informed synchronously that the command has been executed. Thanks to the various DDS QoSs,
applications can associate expiration time, prioritities, persistency and so on to those commands.

2

RMI User Guide, Release 6.x

2.2 Benefits

As a complementary paradigm to data centricity, Vortex OpenSplice RMI provides these benefits:

• A more productive and higher abstraction level than can be achieved manually through topic exchanges and
applications synchronization.

• A unique middleware technology for mixing Global Services and Data Spaces with an easy and dynamic
services registration, data declaration, and the same discovery mechanisms.

• Enables data-centric applications to use RMI without the burden of an additional middleware technology
(e.g. CORBA).

• Strong services location transparency. Thanks to the connectionless nature of DDS, service identities do not
need to include any network-related information. In Vortex OpenSplice RMI, a service is identified by a
simple name. Services’ identities are exported naturally via a DDS publication on specific topics. Services
can even move from one location to another without any impact on client applications.

• Simple API.

• Easy deployment process.

2.2. Benefits 3

3
Vortex OpenSplice RMI over DDS

As in traditional service-oriented applications, communication from client to server is performed through a well-
defined service model. The RMI module enables a user to build a service model with remote method invocation
capabilities and completely hides the DDS DCPS API. Of course, using RMI does not prevent the application
from using the DDS API as shown by the following figure:

RMI Relationship to DDS

A service model is defined by one or more object-oriented interfaces. A DDS RMI interface is an IDL interface
having a name and a set of operations. Each operation has a fixed set of typed parameters. The RMI module
provides:

• A service invocation framework that maps the different services operations onto a set of DDS topics that
hold the operation’s invocation requests and replies. A set of mapping rules have been defined for this
purpose. At runtime, this framework sets up the underlying DDS environment and handles the remote
interface invocations using the basic DDS read/write operations.

• A simple and intuitive programming model for both the server application side implementing the interface,
and the client application side invoking that interface. The server programming model is as simple as
implementing an interface, and the client programming model is as simple as calling a local interface.

• A powerful feature to enable tuning of the invocation request and reply QoS by setting their corresponding
DDS QoS policies. This feature enables developers to improve the invocations quality with real-time and
high-performance features. For instance, priorities and validity durations (lifespan) could be set on the
different operation requests/replies.

• Synchronous, asynchronous and oneway invocation modes. The synchronous mode is the invocation mode
that blocks the client thread until the reply is sent back to him by the server. The asynchronous mode is
similar to the CORBA Asynchronous Messaging Interface (AMI) callback model. It is a non-blocking mode
where the client does not wait for the reply from the server, but rather provides a callback object that will be
invoked by the middleware to deliver the request return values when they are received. Finally, the oneway
mode is a fire-and-forget invocation mode where the client does not care about the success or failure of the
invocation. A oneway method cannot return values and no reply message will ever return to the client once
the request is sent to the server.

• ‘C++ and Java’ implementation.

4

RMI User Guide, Release 6.x

3.1 Key components

The Vortex OpenSplice RMI module includes the following components:

RMI Pre-processor (rmipp) Generates the interface-type-specific requests/replies topics and invocation han-
dling classes.

Core library Provides the runtime setup operations and a generic invocation framework.

3.2 Binding Languages

The Vortex OpenSplice RMI module is available for both Java and C++ languages.

3.1. Key components 5

4
Building an RMI Application

4.1 About RMI Applications

The process of building an Vortex OpenSplice RMI application is shown in Steps Building Applications with RMI
below. The different steps are described in the following subsections.

Steps Building Applications with RMI

4.2 Services description

The first step in building an RMI application is the definition of its provided services in terms of interfaces. The
application interfaces should be declared using the OMG IDL language. The operations parameters can be either
of basic (short, long, ...) or complex (struct, sequence, string, ...) types. However, the following
restrictions should be respected:

• the Any and the valuetype IDL types are not supported because they are not supported by the underlying
DDS DCPS layer. Union type is also not supported.

• Exceptions are not supported at this time.

• Each interface must extend DDS_RMI::Services base interface to indicate that it is invocable over DDS.
This interface is defined in the file dds_rmi.idl, which must be included.

• Each interface must be declared ‘local’.

• Oneway operations are supported. The semantics of oneway operations is the same as for the OMG CORBA
interfaces. A oneway operation must not contain any output parameter and must return a void type.

6

RMI User Guide, Release 6.x

The following IDL snippet shows an example of a service data description:

#include "dds_rmi.idl"
module HelloWorld
{

// interface definition
local interface HelloService : ::DDS_RMI::Services
{

string greet();
};
};

4.3 QoS policies description

The Vortex OpenSplice RMI module provides the ability to tune the quality of service of the services invocations
(requests and/or replies), if needed, by setting the underlying DDS QoS policies. By default, the DDS RMI module
uses the default values of the DDS QoS policies except for the reliability QoS policy which is set to RELIABLE.

If needed, the application designer can define the QoS policies to be set on the invocations in an XML file. This
file must respect the XML schema given in QoS policies XML schema.

Note that setting the DDS QoS policies requires a good knowledge of the rules for mapping the specified interfaces
onto the DDS topics description (please refer to RMI Interface to DDS topics mapping rules).

The following XML snippet shows an example:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<dcps xmlns="http://www.omg.org/dds/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.omg.org/dds/DCPS.xsd">

<domain id="">
<topic name="greet_req"

idltype="::HelloWorld::HelloService::greet_request" idlfile="">

<topic_qos>
<destinationOrderQosPolicy>
<destinationOrderKind>

BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS
</destinationOrderKind>

</destinationOrderQosPolicy>

<durabilityQosPolicy>
<durabilityKind>

PERSISTENT_DURABILITY_QOS
</durabilityKind>

</durabilityQosPolicy>

<latencyBudgetQosPolicy>
<duration>

<nanosec>10000000</nanosec>
<sec>0</sec>

</duration>
</latencyBudgetQosPolicy>

<reliabilityQosPolicy>
<duration>

<nanosec>100000000</nanosec>
<sec>0</sec>

</duration>
<reliabilityKind>
RELIABLE_RELIABILITY_QOS

4.3. QoS policies description 7

RMI User Guide, Release 6.x

</reliabilityKind>
</reliabilityQosPolicy>

</topic_qos>

</topic>

</domain>
</dcps>

This example specifies the QoS policies to be applied on the topic invocation request of the greet operation of
the interface HelloWorld::HelloService. Note that the invocation request topic is named greet_req
and its IDL type is HelloWorld::HelloService::greet_request.

4.4 RMI compilation

Once the application has defined its services and (optionally) its QoS settings, these definitions are compiled to
generate type-specific code for the application services invocation.

The RMI compilation is done using the rmipp pre-processor applied on the interfaces definition file and the QoS
file if it exists. The rmipp usage is:

rmipp [-l (java | c++)] [-I <path>] [-d <directory>] [-topics
<qos_file>] [-P dll_macro_name[,<header-file>]] <interfaces_file>

The parameters are:

-l (java | c++) Define the target language. The C++ language is the default.

-I <path> Define the include path directives.

-d <directory> Define the location to place the generated files.

-topics <qos_file> Define the XML file including the QoS policies settings.

-P dll_macro_name[,<header-file>] Only applicable to C and C++. Sets export macro that will be prefixed to
all functions in the generated code. This allows creating DLLs from generated code. Optionally a header
file can be given that will be included in each generated file.

<interfaces_file> The IDL file including the interfaces definition.

The rmipp compilation will generate a set of Java or C++ source files as well as an IDL file including the
mapping of the provided interfaces onto the DDS topics. The generated IDL file name is the interfaces file name
with “_topics” concatenated.

Rmipp follows the mapping rules described in Language mapping for Vortex OpenSplice RMI.

Example usage:

rmipp -d generated HelloService.idl

The generated directory will include:

HelloService_topics.idl

HelloService_Interface.h

HelloService_Interface.cpp

HelloService_InterfaceProxy.h

HelloService_InterfaceProxy.cpp

In addition, the rmipp compiler performs a DDS compilation to generate the DDS/DCPS code that is required to
support the requests/replies transport over DDS.

4.4. RMI compilation 8

RMI User Guide, Release 6.x

4.5 Application implementation

As mentioned before, the target applications have a client/server design. A typical application includes a server
part that implements the provided interfaces, and a client part that invokes these interfaces. This section describes
the programming model of both parts.

4.5.1 Runtime starting and stopping

Any DDS RMI application process must initialize the RMI runtime prior to any other operation, regardless of
whether it is a client and/or a server process. The runtime initialization sets up the underlying DDS infrastructure
and configures it to make the services invocable and the clients capable of invoking the services. It is also important
to stop the runtime when the application is no longer using RMI.

The following code snippets show the runtime initialisation and stopping procedure in C++ and Java.

RMI runtime starting and stopping in C++

01 #include "ddsrmi.hpp"
02
03 using namespace org::opensplice::DDS_RMI;
04
05 int main (int argc, char * argv [])
06 {
07 CRuntime_ref runtime = CRuntime::getDefaultRuntime();
08 if (runtime.get() == NULL)
09 {
10 std::cout << "Failed to get the Runtime " << std::endl;
11 exit(1);
12 }
13
14 //starting the runtime
15 bool result = runtime->start(argc, argv);
16 if (result !=true)
17 {
18 std::cout << "Failed to start the Runtime " << std::endl;
19 exit(1);
20 }
21 ...
22
23 //stopping the runtime
24 result = runtime->stop();
25 if (result !=true)
26 {
27 std::cout << "Failed to stop the Runtime " << std::endl;
28 exit(1);
29 }
30 }

Comments below refer to line numbers in the sample code above:

1 Include the OpenSplice RMI library header file. Any OpenSplice RMI application should include this file.

3 Declare the usage of the OpenSplice RMI library namespace.

7-12 Get the default DDS runtime. This selects the default DDS domain as the data space where all subsequent
RMI requests and replies will be exchanged.

15-20 Initialize the created runtime. This creates all the needed DDS entities. A set of configuration options can
be passed to the start operation via argc and argv parameters. This latter is a string array including
possible option names and values, and argc is the length of this array. Note that these parameters are

4.5. Application implementation 9

RMI User Guide, Release 6.x

typically the same parameters that were passed to the main program so that the RMI options can be specified
on the command line, each following the format ‘--option=value‘. All of the supported options are
described in the section RMI Runtime Configuration Options.

24-28 Stop the created runtime. This removes all the created DDS entities and releases the RMI-allocated re-
sources. It is strongly recommended to stop the runtime when it no longer needed.

The Java code below works in a similar way.

RMI runtime starting and stopping in Java

import org.opensplice.DDS_RMI;

static void main (String[] args)
{

CRuntime runtime = CRuntime.getDefaultRuntime();
if(null == runtime)
{
System.out.println();
System.exit(1);

}

//starting the runtime
boolean result = runtime.start(args);
if(!result)
{
System.out.println("Failed to start the Runtime") ;
System.exit(1);

}
...
//stopping the runtime
result = runtime.stop();
if(!result)
{
System.out.println("Failed to stop the Runtime") ;
System.exit(1);

}
}

4.5.2 Server programming model

At the server side of the application, each provided interface should be implemented, then instantiated and finally
registered to be invocable via Vortex OpenSplice.

To define an implementation, the application developer must write an implementation class including public meth-
ods corresponding to the operations of the related IDL interface. The rmipp compilation generates for each
interface a skeleton class, named ::DDS_RMI::HelloWorld::HelloServiceInterface, that must be
extended by the application-supplied implementation class. The language mapping rules of the RMI IDL inter-
faces are given in Language mapping for Vortex OpenSplice RMI.

To make an interface invocable over DDS, it must be registered within the RMI framework, then activated. The
registration process requires the following information:

• the implementation class object

• the server name, as well as a unique id identifying that interface inside the server.

The services activation makes the RMI runtime wait for incoming requests for all the registered services.

The following code snippets show the server programming model in C++ and Java.

4.5. Application implementation 10

RMI User Guide, Release 6.x

C++ RMI interface implementation

class HelloService_impl :
public virtual DDS_RMI::HelloWorld::HelloServiceInterface

{
public:

HelloService_impl();
~ HelloService_impl();

virtual DDS::String greet ();
}

Java RMI interface implementation

public class HelloService_impl :
DDS_RMI.HelloWorld.myInterfaceInterface {

public String greet ()
{

// operation implementation
}

}

C++ RMI server

01 #include “ddsrmi.hpp”
02 #include “HelloService_Interface.hpp”
03
04 using namespace org::opensplice::DDS_RMI;
05
06 int main (int argc, char * argv [])
07 {
08
09 // Runtime starting
10 ...
11
12 // implementation class instantiation
13 shared_ptr<HelloService_impl> impl (new HelloService_impl());
14
15 //interface registration
16 bool res = DDS_Service::register_interface<
16 ::DDS_RMI::HelloWorld::HelloServiceInterface, HelloService_impl>
17 (
18 impl, //implementation class
19 “HelloServer”, // server name
20 1 // unique server id
21);
22
23 if(!res)
24 {
25 std::cout << "Failed to register the
25 HelloWorld::HelloService interface") ;
26 System.exit(1);
27 }
28 //services activation
29 runtime->run()
30 // Runtime stopping
31 ...

4.5. Application implementation 11

RMI User Guide, Release 6.x

32 }

Comments below refer to line numbers in the sample code above:

1-2 Include the OpenSplice RMI library header file as well as the generated interface skeleton header file.

4 Declare the usage of the OpenSplice RMI library namespace.

10 Start the DDS runtime.

13 Instantiate the implementation class of the HelloService interface and assign it to a smart pointer.
The OpenSplice RMI library provides an implementation of smart pointers via the shared_ptr template
class.

16-27 Register the HelloService interface in the default DDS domain. The register_interface
function is a template function requiring the interface skeleton class and the interface implementation class
as template parameters.

28 Activates all the registered services including the HelloServer service. This is a blocking call that makes
the server runtime wait for incoming requests. To shut down the server runtime the shutdown() operation
must be called.

31 Stop the DDS runtime.

The Java code below works in a similar way.

Java RMI server

static void main (String[] args)
{

// Runtime starting
...

// implementation class instanciation
HelloService_impl impl = new HelloService_impl();

// interface registration
boolean res = org.opensplice.DDS_RMI.DDS_Service.register_interface
(

impl, // implementation class
“HelloServer”, // server name
1, // unique server id
DDS_RMI.HelloWorld.HelloServiceInterface.class //Interface java Class

);

if(!res)
{

System.out.println("Failed to register the
HelloWorld::HelloService interface") ;

System.exit(1);
}

runtime.run();
// Runtime stopping
...

}

4.5.3 Client programming model

As mentioned before, OpenSplice RMI supports synchronous, asynchronous and oneway invocation modes. The
following subsections present the synchronous and asynchronous programming model. The oneway programming
model is similar to the synchronous one but, of course, with a different behaviour.

4.5. Application implementation 12

RMI User Guide, Release 6.x

Synchronous invocation mode

The client part of the RMI application is as simple as calling a local class. Note that these calls
block until the server-side responds or an internal timeout expires. Typically, in case of failure, the
call will block until the timeout expiration. This timeout value is set by default to 10 minutes,
but it may be configured via the interface proxy object. This object is a generated object, named
::DDS_RMI::HelloWorld::HelloServiceInterfaceProxy, that is the local representative of the
RMI interface. This object is mainly used to call the RMI services, as shown in the following client code exam-
ples.

C++ RMI client

01 #include “ddsrmi.hpp”
02 #include “HelloService_InterfaceProxy.hpp”
03
04 using namespace org::opensplice::DDS_RMI;
05
06 int main (int argc, char * argv [])
07 {
08
09 // Runtime starting
10 ...
11
12 // Getting the interface proxy
13 shared_ptr<::DDS_RMI::HelloWorld::HelloServiceInterfaceProxy> proxy ;
14 bool ret = DDS_Service::getServerProxy<
14 ::DDS_RMI::HelloWorld::HelloServiceInterfaceProxy>
15 (
16 “HelloServer”, //server name
17 1, //unique proxy instance id
18 proxy // proxy reference
19);
20
21 // Calling the services
22 proxy->greet();
23
24 // Runtime stopping
25 ...
26
27 }

Comments below refer to line numbers in the sample code above:

1-2 Include the RMI library header file as well as the generated interface proxy header file.

4 Declare the usage of the OpenSplice RMI library namespace.

10 Start the DDS runtime.

13 Declare a smart pointer of the HelloService interface proxy type.

13-19 Get the HelloServer service proxy. The getServerProxy function is a template function requiring the
proxy class type as a template parameter. This function accepts the service name, a proxy instance id and
the smart pointer to the proxy object as parameters. In case of success, the smart pointer is set to the created
proxy object. The proxy instance id is a unique identifier that refers to the created proxy. It is important
to ensure the uniqueness of the identifiers of all the proxies of the same service. If the client application
intends to use the same proxy in different threads, the MultiThreaded mode must be set (see MultiThreaded
Client later in this chapter). If the requested service is not found, the getServerProxy operation will
raise an org::opensplice::DDS_RMI::SERVICE_NOT_FOUND exception.

22 Invoke the greet operation synchronously using the created proxy.

25 Stop the runtime.

4.5. Application implementation 13

RMI User Guide, Release 6.x

The Java code below works in a similar way.

Java RMI client

import org.opensplice.DDS_RMI.*;

static void main (String[] args) {

// Runtime starting
...

// Getting the interface proxy
try {
DDS_RMI.HelloWorld.HelloServiceInterfaceProxy proxy =
DDS_Service.getServerProxy (

"HelloServer", //server name
1, //unique proxy instance id
DDS_RMI.HelloWorld.HelloServiceInterfaceProxy.class // proxy java Class

);

// Calling the services
proxy.greet();
} catch (SERVICE_NOT_FOUND e) {
// error
}
// Runtime stopping
...

}

Asynchronous invocation mode

To invoke asynchronously a given non-oneway operation, such as the greet operation in the examples shown
here, the client application must:

• Implement a specific reply handler class to handle the operation out/inout/return parameters if any. This
handler must extend a base reply handler class that is generated for each operation and implement the
greetReply callback function or method whose parameters are the out/inout/return parameters of the
related IDL operation.

• Use the generated asynchronous function or method that maps to the IDL operation whose name is the
concatenation of ‘async_’ and the IDL operation name. This operation is a void operation that accepts
only the in and inout IDL parameters, in addition to the eference of the implemented reply handler.

Note that the reply handler class is not re-entrant in the current implementation. It cannot handle concurrent
replies. It means that if two successive asynchronous calls are made with the same reply handler instance, this
latter will reject the second reply if it has not finished dispatching the first one. In this case the asynchronous call
will raise a BAD_PARAM exception.

IMPORTANT: It is strongly recommended not to mix synchronous and asynchronous calls of the same
operation without proper synchronization. The application should ensure that the asynchronous call has
received its reply before requesting a synchronous one.

C++ RMI Client with asynchronous invocation

01 #include "ddsrmi.hpp"
02 #include "HelloService_InterfaceProxy.hpp"
03

4.5. Application implementation 14

RMI User Guide, Release 6.x

04 using namespace org::opensplice::DDS_RMI;
05
06 /**
07 * Reply Handler of the ’async_greet’ operation
08 *
09 */
10 class MyGreetReplyHandler :
11 public virtual HelloWorld_HelloService_greet_Reply_Handler
12 {
13 void greet_Reply(DDS::String ret)
14 {
15 std::cout << "Reply received: " << ret << std::endl;
16 }
17 }
18
19 int main (int argc, char * argv [])
20 {
21
22 // Runtime starting
23 ...
24
25 // Getting the interface proxy
26 shared_ptr<::DDS_RMI::HelloWorld::HelloServiceInterfaceProxy> proxy ;
27 bool ret = DDS_Service::getServerProxy<
27 ::DDS_RMI::HelloWorld::HelloServiceInterfaceProxy>
28 (
29 "HelloServer", //server name
30 1, // proxy instance id
31 proxy // proxy reference
32);
33
34 // instantiating a reply handler
35 MyGreetReplyHandler handler;
36
37 // Calling the services asynchronously
38 proxy->async_greet(&handler);
39 ...
40
41 // Runtime stopping
42 ...
43
44 }

Comments below refer to line numbers in the sample code above:

10-16 Provide the implementation class of the greet operation reply handler.

21 Start the DDS runtime.

24-31 Get the HelloServer service proxy as for the synchronous mode.

34 Instantiate the greet reply handler class.

37 Invoke the async_greet() operation by providing the reply handler. This call is a non-blocking call.
The application steps immediately to the next instruction. The invocation reply will be delivered to the
application by invoking the greet_Reply operation of the reply handler. Note that this operation will be
invoked in a middleware-provided thread.

41 Stop the runtime. Note that some synchronization may be needed to avoid exiting before the async_greet
reply is delivered to the application.

The Java code below works in a similar way.

4.5. Application implementation 15

RMI User Guide, Release 6.x

Java RMI Client with asynchronous invocation

import org.opensplice.DDS_RMI.*;

/**
* Reply Handler of the ’async_greet’ operation

*
*/

class MyGreetReplyHandler extends
DDS_RMI.HelloWorld.HelloServiceInterfaceProxy.greet_Reply_Handler {

public void greet_Reply(String ret) {
System.out.println("async_greet returns: " + ret);

}
};

static void main (String[] args) {

// Runtime starting
...

try {
// Getting the interface proxy
DDS_RMI.HelloWorld.HelloServiceInterfaceProxy proxy =

DDS_Service.getServerProxy (
"HelloServer", //server name
1, //server instance id
DDS_RMI.HelloWorld.HelloServiceInterfaceProxy.class // proxy java Class

);

// Calling the services asynchronously
proxy.asynch_greet();
} catch(SERVICE_NOT_FOUND e) {
System.out.println("’HelloServer’ service not found !");

}

// Runtime stopping
...

}

MultiThreaded Client

The default threading model of a client application is single threaded. It means that, by default, a service proxy may
not be used by multiple concurrent threads to perform service invocations. To enable or disable the multithreaded
mode for clients, a configuration option must be specified in the command line as follows:

--RMIClientThreadingModel=[ST|MT]

4.6 Using a specific DDS domain

Using the default RMI CRuntime implies that all the RMI invocations will be performed within the default DDS
domain. The default domain id is the one specified by the current Vortex OpenSplice configuration, specifically
in the Domain Service section of the related XML file. The default Vortex OpenSplice configuration files set the
domain id to 0. For more information on configuring Vortex OpenSplice please refer to the Vortex OpenSplice
Deployment Guide.

If the RMI application operates with a user-defined domain id, using the default CRuntime enables RMI inter-
actions within that domain. In case of an application operating in multiple domains, it should create a CRun-
time object for the targeted domain id and get a DDS_ServiceInterface object from that CRuntime.

4.6. Using a specific DDS domain 16

RMI User Guide, Release 6.x

The DDS_ServiceInterface object provides all the convenient methods for server applications to regis-
ter/unregister services and for client applications to get service proxies on the relevant domain id. These methods
are the same as the DDS_Service object ones. The following code snippets show this in C++ and Java.

Getting DDS_ServiceInterface in C++

// Getting a CRuntime on my specific domain
CRuntime_ref runtime = CRuntime::getRuntime(my_domain_id);
// Getting a DDS_ServiceInterface object
DDS_ServiceInterface_ref dds_service = runtime->getDDS_ServiceInterface();

Getting DDS_ServiceInterface in Java

// Getting a CRuntime on my specific domain
CRuntime runtime = CRuntime.getRuntime(my_domain_id);
// Getting a DDS_ServiceInterface object
DDS_ServiceInterface dds_service = runtime.getDDS_ServiceInterface();

4.7 Server Threading and Scheduling policies

OpenSplice RMI allows configuration of the threading and the scheduling models of the RMI server applications
by enabling a set of policies that control how the server allocates threads to handle service invocations and how
these threads are scheduled with regard to the others. Hence developers may enhance the responsiveness of their
services by choosing a multi-threaded execution model, or may protect a non-thread-safe service implementation
by choosing a single thread execution model.

4.7.1 Threading policies

OpenSplice RMI provides three threading policies that apply on a single RMI runtime at the server side. The RMI
runtime uses a thread pool that hosts a number of threads to execute the services incoming requests. This number
defines the thread pool size and depends on the specified threading policy.

1 – Single Thread (ST) policy This policy allocates a single thread to process all the services’ incoming requests
within the server process. The requests are processed one by one in the order that they are received. It
guarantees that no two threads will execute concurrently the different services calls within that server. In
this case, the RMI runtime creates a single thread pool. This policy is the default threading policy. The ST
policy ensures thread safety to all the services within the server process, but with the drawback that services
with long-running tasks will block the others.

2 – Thread Per Service (TPS) policy This policy allocates a single thread to each service, up to the number
specified as the thread pool size. All the requests coming to one service are processed in sequence by
a single thread borrowed from the thread pool, but different services requests are processed in parallel,
within the limit of the thread pool size. The thread pool size is defined by the user application. The TPS
policy ensures that services having long-running requests won’t block the others, but concurrent calls are
not possible for one single service.

3 – Multi Thread (MT) policy This policy allows for a full multi-threaded environment. All the incoming re-
quests are processed concurrently in different threads whatever the targeted services, within the limit of the
thread pool size. The service implementation should take care of that and ensure thread safety. The thread
pool size is user-defined.

4.7. Server Threading and Scheduling policies 17

RMI User Guide, Release 6.x

Scheduling policies

These policies specify the scheduling parameters that will be used for the threads created by the RMI runtime for
a RMI server.

A RMI scheduling policy is defined by a scheduling priority and a scheduling class. The scheduling priority spec-
ifies the priority that will be assigned to all the threads that are spawned by the RMI runtime. The scheduling class
may be SCHEDULE_DEFAULT, SCHEDULE_TIMESHARING, or SCHEDULE_REALTIME. These scheduling
classes depend on the underlying operating system. A SCHEDULE_DEFAULT class is the default OS scheduling
algorithm.

In general, the Timesharing class attempts to distribute the processor resources fairly among the threads. In a
Realtime class a thread normally runs until completion but can be pre-empted by higher-priority threads. Both
Timesharing and Realtime scheduling classes are priority-based, so the scheduling priority is meaningful for both
classes.

Note that some scheduling classes may not be supported by the underlying operating system, or that you
may need special privileges to select particular settings.

Note that the Java platform does not define a scheduling model for threads but defers to the underly-
ing thread implementation. As a result, only the scheduling priority is usable for the Java RMI applications.
In fact, there is a notion of priority in the Java threading model, but this is only a hint to the scheduler. The
way in which the JVM maps these hints to the underlying OS scheduler varies from JVM to JVM and even
from platform to platform for a given JVM.

Service priority

OpenSplice RMI allows priorities to be assigned to the services registered in a RMI runtime within a server
process. It defines the business importance of each service relative to the others. It allows incoming requests to be
handled in order of priority if not enough threads are available to handle them concurrently. The service priority is
exploited by the OpenSplice RMI framework to decide which service request a thread should be assigned to first,
whereas the scheduling priority is exploited by the OS scheduler itself to decide which thread should run first.

By default, each RMI service has priority set to 0.

Programming model

Threading and scheduling policies may be passed either by command line, or programmatically at runtime. The
command line options are described in RMI Runtime Configuration Options; this section shows the related APIs
only.

Setting the threading/sceduling policies in Java

01 // getting and starting the default runtime
02 CRuntime runtime = Cruntime.getDefaultRuntime();
03 boolean res = runtime.start(argv);
04
05 //setting a MT threading policy with a thread pool size set to 5
06 ServerThreadingPolicy t_policy = new ServerThreadingPolicy
06 (ThreadingPolicyKind.MT, 5);
07 runtime.setServerThreadingPolicy(t_policy);
08
09 // setting a scheduling priority and keeping the scheduling
10 // class to the default
11 SchedulingPolicy s_policy = runtime.getServerSchedulingPolicy();
12 s_policy.schedulingPriority = 10;
13 runtime.setServerSchedulingPolicy(s_policy);
14

4.7. Server Threading and Scheduling policies 18

RMI User Guide, Release 6.x

15 //registering a set of services
16 HelloService_impl impl = new HelloService_impl();
17 res = DDS_Service.register_interface(impl, "HelloServer",1,
18 DDS_RMI.HelloWorld.HelloServiceInterface.class);
19 // registering other services
20
21 // making HelloServer service the highest priority service
22 impl.setPriority(2);
23
24 //running the runtime
25 runtime.run();

Note that setting the thread pool size on java is done asynchronously. This means that there could be more
server threads (and thus parallel calls) then expected when reducing the thread pool size.

Setting the threading/sceduling policies in C++

01 // getting and starting the default runtime
02 CRuntime_ref runtime = Cruntime::getDefaultRuntime();
03 bool res = runtime.start(argc, argv);
04
05 //setting a MT threading policy with a thread pool size set to 5
06 ServerThreadingPolicy t_policy = runtime->getServerThreadingPolicy();
06 t_policy.kind = MT;
07 t_policy.threadPoolSize = 5;
08 runtime->setServerThreadingPolicy(t_policy);
09
10 // setting a scheduling priority and keeping the scheduling
11 // class to the default
12 SchedulingPolicy s_policy = runtime->getServerSchedulingPolicy();
13 s_policy.schedulingPriority = 10;
14 runtime.setServerSchedulingPolicy(s_policy);
15
16 //registering a set of services
17 shared_ptr<HelloService_impl> impl (new HelloService_impl());
18 res = DDS_Service::register_interface<DDS_RMI::HelloWorld::HelloServiceInterface,
19 HelloService_impl> (impl, "HelloServer",1);
20 // registering other services
21
22 // making HelloServer service the highest priority service
23 impl->set_priority(2);
24
25 //running the runtime
26 runtime->run();

Note that the threading policy may only be changed as long as the runtime is not run. Once run, only the
thread pool size may be changed.

4.7. Server Threading and Scheduling policies 19

5
Language mapping for Vortex
OpenSplice RMI

Rmipp compilation follows a set of mapping rules to generate language-specific source code. Most of these
rules come from the standard OMG IDL-to-C++ and IDL-to-Java mapping specifications but with some specific
differences. This chapter focuses on specific parts of this mapping. For more information, please refer to the
relevant OMG specifications.

The following figure shows the language mapping of the HelloService IDL interface previously defined.

IDL Interface Mapping

5.1 Mapping for interfaces

An interface is mapped to two C++ (or Java) classes that contain public definitions of the operations defined in the
interface.

The HelloServiceInterface abstract class is the base class of the HelloService implementation class.
The HelloServiceInterfaceProxy class is the proxy object that represents locally the remote service.
The client application should get a reference to this class to be able to invoke the remote service.

20

RMI User Guide, Release 6.x

5.2 Mapping for operations

Each IDL operation, if not oneway, is mapped to two C++ functions (Java methods). The first one, having the same
name as the IDL operation, is used for synchronous invocations. The second one, having async_ concatenated
to the IDL operation, is used for asynchronous invocations. A oneway operation maps only to the synchronous
form of the operations.

The operations parameters and return types obey the same parameter passing rules as for the standard OMG
IDL-to-C++ and IDL-to-Java mapping. The asynchronous functions (methods) will return void and take only
the in/inout parameters of the IDL operation, as well as a callback object used as a reply handler. This handler
class is also generated for each non-void operation as an inner abstract class of the proxy class as depicted in the
diagram with the greet_Reply_Handler class. This latter should be implemented by the user to handle the
asynchronous invocation reply. Hence, the greet_Reply function (method) provides all the inout/out/return
parameters of the corresponding IDL operation.

5.3 Mapping for basic types

The table below shows the ‘C++ and Java’ mapping of the IDL types that can be declared in the RMI services
description file.

IDL sequences are mapped as specified by the DDS standard.

Mapping for basic types

IDL type C++ Java
boolean DDS::Boolean boolean
char DDS::Char char
octet DDS::Octet byte
short DDS::Short short
unsigned short DDS::UShort short
long DDS::Long int
unsigned long DDS::ULong int
long long DDS::LongLong long
unsigned long long DDS::ULongLong long
float DDS::Float float
double DDS::Double double
string DDS::String String

Please be aware that the RMI middleware assumes ownership of any DDS::String that is pro-
vided to it (either by an in/inout argument or return value). This also means that it’ll free the given string.
This can cause issues when the application keeps using the provided string after the RMI call or if RMI is
called with a const string literal. It is advised to apply DDS::string_dup(str) when using strings in
conjunction with RMI. This is also applicable to sequences of strings.

5.2. Mapping for operations 21

6
RMI Interface to DDS topics mapping
rules

This chapter demonstrates the mapping rules driving the transformation of the IDL declarations of the RMI inter-
faces into the IDL declarations of the implied DDS topics.

• For each <InterfaceName>, a new module is created with the same name and scope in the module
DDS_RMI, where all the topics associated with the interface operations will be made.

• Each <InterfaceName>.<operation name> creates two data structures, suffixed respectively with
_request for the data structure that handles the request, and _reply for the data structure that handles
the reply.

• The <operation name>_request data struct will gather all [in] or [inout] parameters.

• The <operation name>_reply data struct will gather the return value and all [inout] or [out]
parameters.

• req_info is used to enable the client service handler to pick the reply it is waiting for.

module HelloWorld {
local interface HelloService : ::DDS_RMI::Services
{

void op1 (in string p1, inout short p2, out long p3);
};

};

module DDS_RMI {
module HelloWorld {
module HelloService {

struct op1_request {
DDS_RMI::Request_Header req_info;
string p1;
short p2;

};
#pragma keylist op1_request req_info.client_id.client_impl

req_info.client_id.client_instance

struct op1_reply {
DDS_RMI::Request_Header req_info;
short p2;
long p3;

};
#pragma keylist op1_reply req_info.client_id.client_impl

req_info.client_id.client_instance

22

RMI User Guide, Release 6.x

};
};

};

23

7
RMI Runtime Configuration Options

The RMI runtime can be configured by a set of command line options. These options are passed directly to the
runtime start operation as described in the section Runtime starting and stopping.

This chapter describes the set of supported options.

7.1 RMIClientThreadingModel option

--RMIClientThreadingModel = [ST | MT]

This option specifies the threading model of a given client. The ST and MT option values set respectively the
Single-Threaded and Multi-Threaded models.

7.2 RMIServiceDiscoveryTimeout option

--RMIServiceDiscoveryTimeout = <seconds>

This is a client-side option that specifies the maximum duration (in seconds) that a client application can wait to
find services. It influences the execution time of the DDS_Service.getServerProxy operation that is used to find
a given service. The default value is set to 10 seconds. The need to set this value may come from some specific
deployment environements with bad communication conditions.

7.3 RMIServerThreadingModel option

--RMIServerThreadingModel=ST | MT | TPS [,<thread-pool-size>]

This is a server-side option that specifies the threading policy of the server runtime including the threading policy
name and the thread pool size.

ST selects Single Threaded policy.

MT selects Multi Thread policy.

TPS selects Thread Per Service policy.

These policies are described in detail in the section Server Threading and Scheduling policies.

7.4 RMIServerSchedulingModel option

--RMIServerSchedulingModel=<priority>

This is a server-side option that specifies the scheduling policy of a Java server RMI runtime.

24

RMI User Guide, Release 6.x

7.5 RMIDurability option

Note: The RMIDurability option is currently only implemented for C++.

--RMIDurability = yes | no

This is a client-side and server-side option that indicates whether the underlying DDS middleware support the
non-default durability Qos policies (TRANSIENT_LOCAL and above) or not.

By default, this option value is yes.

RMI servers uses non-volatile topics for services advertising to allow late-joining clients to discover them. This
option is useful for adapting services registration and discovery mechanisms when the durability support is missing
in the underlying DDS middleware.

Note that this feature must be either enabled or disabled for all of the RMI applications in a given DDS
domain. It means that durability-*en*abled (option value is yes) RMI applications cannot be deployed
with durability-*dis*abled (option value is no) RMI applications in the same DDS domain.

7.6 RMIClientSchedulingModel option

Note: The RMIClientSchedulingModel option is currently only implemented for Java.

--RMIClientSchedulingModel=<priority>

This is a client-side option that specifies the priority of all the threads created by OpenSplice RMI at the client
side, including the AsyncWaiter thread, which is the one that waits for asynchronous replies.

7.7 RMILegacyTopicNames option

Note: The RMILegacyTopicNames option applies only to C++.

--RMILegacyTopicNames = yes | no

This client- and server-side option allows to switch topic names between a legacy-mode and a Java-compatible
mode.

In legacy-mode, topics are named DDS_ServiceDefinition and DDS_ServiceIdentification. In
this mode, a C++ RMI client or server is compatible with previous releases of C++ RMI. Since Java RMI uses
different topic names, a C++ RMI client cannot communicate with a Java RMI server (or vice-versa). This is the
default behaviour.

When legacy-mode is disabled, topics are named DDS_RMIDefinition and DDS_RMIIdentification.
This enables compatibility with Java RMI which has always used these topic names, but unfortunately doesn’t
allow communication with older versions of C++ RMI that don’t support this option.

7.5. RMIDurability option 25

8
QoS policies XML schema

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.omg.org/dds/"
xmlns="http://www.omg.org/dds/"
elementFormDefault="qualified">

<xsd:element name="dcps">
<xsd:complexType>

<xsd:all>
<xsd:element ref="domain" minOccurs="1" maxOccurs="1"/>

</xsd:all>
</xsd:complexType>

</xsd:element>
<xsd:element name="domain">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="topic" minOccurs="1" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="id" type="xsd:string" use="required"/>

</xsd:complexType>
</xsd:element>
<xsd:element name="topic">

<xsd:complexType>
<xsd:all>

<xsd:element ref="keylist" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="topic_qos" minOccurs="0" maxOccurs="1"/>

</xsd:all>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="idltype" type="xsd:string" use="required"/>
<xsd:attribute name="idlfile" type="xsd:string" use="required"/>

</xsd:complexType>
</xsd:element>

<xsd:element name="keylist">
<xsd:complexType>
<xsd:sequence>

<xsd:element ref="keyMember" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name="keyMember" type="xsd:string"/>

<xsd:element name="topic_qos">
<xsd:complexType>
<xsd:all>

<xsd:element ref="topicDataQosPolicy" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="deadlineQosPolicy" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="durabilityQosPolicy" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="durabilityServiceQosPolicy" minOccurs="0"

maxOccurs="1"/>
<xsd:element ref="latencyBudgetQosPolicy" minOccurs="0" maxOccurs="1"/>

26

RMI User Guide, Release 6.x

<xsd:element ref="livelinessQosPolicy" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="reliabilityQosPolicy" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="destinationOrderQosPolicy" minOccurs="0"

maxOccurs="1"/>
<xsd:element ref="historyQosPolicy" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="resourceLimitsQosPolicy" minOccurs="0"

maxOccurs="1"/>
<xsd:element ref="transportPriorityQosPolicy" minOccurs="0"

maxOccurs="1"/>
<xsd:element ref="lifespanQosPolicy" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="ownershipQosPolicy" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="timeBasedFilterQosPolicy" minOccurs="0"

maxOccurs="1"/>
</xsd:all>

</xsd:complexType>
</xsd:element>

<xsd:element name="deadlineQosPolicy">
<xsd:complexType>

<xsd:all>
<xsd:element ref="duration" minOccurs="1" maxOccurs="1"/>

</xsd:all>
</xsd:complexType>

</xsd:element>

<xsd:element name="timeBasedFilterQosPolicy">
<xsd:complexType>

<xsd:all>
<xsd:element ref="duration" minOccurs="1" maxOccurs="1"/>

</xsd:all>
</xsd:complexType>

</xsd:element>

<xsd:element name="topicDataQosPolicy">
<xsd:complexType>
<xsd:all>
<xsd:element name="value" type="xsd:base64Binary" minOccurs="1"

maxOccurs="1"/>
</xsd:all>

</xsd:complexType>
</xsd:element>

<xsd:element name="duration">
<xsd:complexType>

<xsd:all>
<xsd:element name="sec" type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element name="nanosec" type="xsd:string" minOccurs="1"

maxOccurs="1"/>
</xsd:all>

</xsd:complexType>
</xsd:element>

<xsd:element name="durabilityQosPolicy">
<xsd:complexType>

<xsd:all>
<xsd:element ref="durabilityKind" minOccurs="1" maxOccurs="1"/>

</xsd:all>
</xsd:complexType>

</xsd:element>

<xsd:element name="durabilityKind">
<xsd:simpleType>

<xsd:restriction base="xsd:string">

27

RMI User Guide, Release 6.x

<xsd:enumeration value="VOLATILE_DURABILITY_QOS"/>
<xsd:enumeration value="TRANSIENT_LOCAL_DURABILITY_QOS"/>
<xsd:enumeration value="TRANSIENT_DURABILITY_QOS"/>
<xsd:enumeration value="PERSISTENT_DURABILITY_QOS"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

<xsd:element name="durabilityServiceQosPolicy">
<xsd:complexType>

<xsd:all>
<xsd:element ref="duration" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="historyKind" minOccurs="1" maxOccurs="1"/>
<xsd:element name="history_depth" type="xsd:positiveInteger"

minOccurs="1" maxOccurs="1"/>
<xsd:element name="max_samples" type="xsd:positiveInteger"

minOccurs="1" maxOccurs="1"/>
<xsd:element name="max_instances" type="xsd:positiveInteger"

minOccurs="1" maxOccurs="1"/>
<xsd:element name="max_samples_per_instance"

type="xsd:positiveInteger" minOccurs="1" maxOccurs="1"/>
</xsd:all>

</xsd:complexType>
</xsd:element>

<xsd:element name="historyKind">
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:enumeration value="KEEP_LAST_HISTORY_QOS"/>
<xsd:enumeration value="KEEP_ALL_HISTORY_QOS"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

<xsd:element name="latencyBudgetQosPolicy">
<xsd:complexType>
<xsd:all>
<xsd:element ref="duration" minOccurs="1" maxOccurs="1"/>

</xsd:all>
</xsd:complexType>

</xsd:element>
<xsd:element name="livelinessQosPolicy">

<xsd:complexType>
<xsd:all>
<xsd:element ref="duration" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="livelinessKind" minOccurs="1" maxOccurs="1"/>

</xsd:all>
</xsd:complexType>

</xsd:element>

<xsd:element name="reliabilityQosPolicy">
<xsd:complexType>

<xsd:all>
<xsd:element ref="reliabilityKind" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="duration" minOccurs="1" maxOccurs="1"/>

</xsd:all>
</xsd:complexType>

</xsd:element>

<xsd:element name="reliabilityKind">
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:enumeration value="BEST_EFFORT_RELIABILITY_QOS"/>

28

RMI User Guide, Release 6.x

<xsd:enumeration value="RELIABLE_RELIABILITY_QOS"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>

<xsd:element name="destinationOrderQosPolicy">
<xsd:complexType>

<xsd:all>
<xsd:element ref="destinationOrderKind" minOccurs="1" maxOccurs="1"/>

</xsd:all>
</xsd:complexType>

</xsd:element>

<xsd:element name="destinationOrderKind">
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:enumeration value="BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS"/>
<xsd:enumeration value="BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

<xsd:element name="livelinessKind">
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:enumeration value="AUTOMATIC_LIVELINESS_QOS"/>
<xsd:enumeration value="MANUAL_BY_PARTICIPANT_LIVELINESS_QOS"/>
<xsd:enumeration value="MANUAL_BY_TOPIC_LIVELINESS_QOS"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

<xsd:element name="historyQosPolicy">
<xsd:complexType>

<xsd:all>
<xsd:element ref="historyKind" minOccurs="1" maxOccurs="1"/>
<xsd:element name="depth" type="xsd:positiveInteger" default="1"

minOccurs="1" maxOccurs="1"/>
</xsd:all>

</xsd:complexType>
</xsd:element>

<xsd:element name="resourceLimitsQosPolicy">
<xsd:complexType>

<xsd:all>
<xsd:element name="max_samples" type="xsd:positiveInteger"

minOccurs="1" maxOccurs="1"/>
<xsd:element name="max_instances" type="xsd:positiveInteger"

minOccurs="1" maxOccurs="1"/>
<xsd:element name="max_samples_per_instance"

type="xsd:positiveInteger" minOccurs="1"
maxOccurs="1"/>

<xsd:element name="initial_samples" type="xsd:positiveInteger"
minOccurs="1" maxOccurs="1"/>
<xsd:element name="initial_instances" type="xsd:positiveInteger"

minOccurs="1" maxOccurs="1"/>
</xsd:all>

</xsd:complexType>
</xsd:element>

<xsd:element name="transportPriorityQosPolicy">
<xsd:complexType>

<xsd:all>

29

RMI User Guide, Release 6.x

<xsd:element name="value" type="xsd:nonNegativeInteger"
minOccurs="1" maxOccurs="1"/>

</xsd:all>
</xsd:complexType>

</xsd:element>

<xsd:element name="lifespanQosPolicy">
<xsd:complexType>

<xsd:all>
<xsd:element ref="duration" minOccurs="1" maxOccurs="1"/>

</xsd:all>
</xsd:complexType>

</xsd:element>

<xsd:element name="ownershipQosPolicy">
<xsd:complexType>

<xsd:all>
<xsd:element ref="ownershipKind" minOccurs="1" maxOccurs="1"/>

</xsd:all>
</xsd:complexType>

</xsd:element>

<xsd:element name="ownershipKind">
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:enumeration value="SHARED_OWNERSHIP_QOS"/>
<xsd:enumeration value="EXCLUSIVE_OWNERSHIP_QOS"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
</xsd:schema>

30

9
Contacts & Notices

9.1 Contacts

ADLINK Technology Corporation
400 TradeCenter
Suite 5900
Woburn, MA
01801
USA
Tel: +1 781 569 5819

ADLINK Technology Limited
The Edge
5th Avenue
Team Valley
Gateshead
NE11 0XA
UK
Tel: +44 (0)191 497 9900

ADLINK Technology SARL
28 rue Jean Rostand
91400 Orsay
France
Tel: +33 (1) 69 015354

Web: http://ist.adlinktech.com/

Contact: http://ist.adlinktech.com

E-mail: ist_info@adlinktech.com

LinkedIn: https://www.linkedin.com/company/79111/

Twitter: https://twitter.com/ADLINKTech_usa

Facebook: https://www.facebook.com/ADLINKTECH

9.2 Notices

Copyright © 2018 ADLINK Technology Limited. All rights reserved.

31

http://ist.adlinktech.com/
http://ist.adlinktech.com
mailto:ist_info@adlinktech.com
https://www.linkedin.com/company/79111/
https://twitter.com/ADLINKTech_usa
https://www.facebook.com/ADLINKTECH

RMI User Guide, Release 6.x

This document may be reproduced in whole but not in part. The information contained in this document is subject
to change without notice and is made available in good faith without liability on the part of ADLINK Technology
Limited. All trademarks acknowledged.

9.2. Notices 32

	Preface
	About the RMI User Guide
	Conventions

	Introduction
	Features
	Benefits

	Vortex OpenSplice RMI over DDS
	Key components
	Binding Languages

	Building an RMI Application
	About RMI Applications
	Services description
	QoS policies description
	RMI compilation
	Application implementation
	Using a specific DDS domain
	Server Threading and Scheduling policies

	Language mapping for Vortex OpenSplice RMI
	Mapping for interfaces
	Mapping for operations
	Mapping for basic types

	RMI Interface to DDS topics mapping rules
	RMI Runtime Configuration Options
	RMIClientThreadingModel option
	RMIServiceDiscoveryTimeout option
	RMIServerThreadingModel option
	RMIServerSchedulingModel option
	RMIDurability option
	RMIClientSchedulingModel option
	RMILegacyTopicNames option

	QoS policies XML schema
	Contacts & Notices
	Contacts
	Notices

