Point Cloud Library (PCL)
1.7.0
|
00001 /* 00002 * Software License Agreement (BSD License) 00003 * 00004 * Point Cloud Library (PCL) - www.pointclouds.org 00005 * Copyright (c) 2010-2011, Willow Garage, Inc. 00006 * Copyright (c) 2012-, Open Perception, Inc. 00007 * 00008 * All rights reserved. 00009 * 00010 * Redistribution and use in source and binary forms, with or without 00011 * modification, are permitted provided that the following conditions 00012 * are met: 00013 * 00014 * * Redistributions of source code must retain the above copyright 00015 * notice, this list of conditions and the following disclaimer. 00016 * * Redistributions in binary form must reproduce the above 00017 * copyright notice, this list of conditions and the following 00018 * disclaimer in the documentation and/or other materials provided 00019 * with the distribution. 00020 * * Neither the name of the copyright holder(s) nor the names of its 00021 * contributors may be used to endorse or promote products derived 00022 * from this software without specific prior written permission. 00023 * 00024 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00025 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00026 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00027 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00028 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00029 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00030 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00031 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00032 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00033 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00034 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00035 * POSSIBILITY OF SUCH DAMAGE. 00036 * 00037 * $Id$ 00038 * 00039 */ 00040 #ifndef PCL_REGISTRATION_CORRESPONDENCE_REJECTION_DISTANCE_H_ 00041 #define PCL_REGISTRATION_CORRESPONDENCE_REJECTION_DISTANCE_H_ 00042 00043 #include <pcl/registration/correspondence_rejection.h> 00044 00045 namespace pcl 00046 { 00047 namespace registration 00048 { 00049 /** 00050 * @b CorrespondenceRejectorDistance implements a simple correspondence 00051 * rejection method based on thresholding the distances between the 00052 * correspondences. 00053 * 00054 * \note If \ref setInputCloud and \ref setInputTarget are given, then the 00055 * distances between correspondences will be estimated using the given XYZ 00056 * data, and not read from the set of input correspondences. 00057 * 00058 * \author Dirk Holz, Radu B. Rusu 00059 * \ingroup registration 00060 */ 00061 class PCL_EXPORTS CorrespondenceRejectorDistance: public CorrespondenceRejector 00062 { 00063 using CorrespondenceRejector::input_correspondences_; 00064 using CorrespondenceRejector::rejection_name_; 00065 using CorrespondenceRejector::getClassName; 00066 00067 public: 00068 typedef boost::shared_ptr<CorrespondenceRejectorDistance> Ptr; 00069 typedef boost::shared_ptr<const CorrespondenceRejectorDistance> ConstPtr; 00070 00071 /** \brief Empty constructor. */ 00072 CorrespondenceRejectorDistance () : max_distance_(std::numeric_limits<float>::max ()), 00073 data_container_ () 00074 { 00075 rejection_name_ = "CorrespondenceRejectorDistance"; 00076 } 00077 00078 /** \brief Empty destructor */ 00079 virtual ~CorrespondenceRejectorDistance () {} 00080 00081 /** \brief Get a list of valid correspondences after rejection from the original set of correspondences. 00082 * \param[in] original_correspondences the set of initial correspondences given 00083 * \param[out] remaining_correspondences the resultant filtered set of remaining correspondences 00084 */ 00085 void 00086 getRemainingCorrespondences (const pcl::Correspondences& original_correspondences, 00087 pcl::Correspondences& remaining_correspondences); 00088 00089 /** \brief Set the maximum distance used for thresholding in correspondence rejection. 00090 * \param[in] distance Distance to be used as maximum distance between correspondences. 00091 * Correspondences with larger distances are rejected. 00092 * \note Internally, the distance will be stored squared. 00093 */ 00094 virtual inline void 00095 setMaximumDistance (float distance) { max_distance_ = distance * distance; }; 00096 00097 /** \brief Get the maximum distance used for thresholding in correspondence rejection. */ 00098 inline float 00099 getMaximumDistance () { return std::sqrt (max_distance_); }; 00100 00101 /** \brief Provide a source point cloud dataset (must contain XYZ 00102 * data!), used to compute the correspondence distance. 00103 * \param[in] cloud a cloud containing XYZ data 00104 */ 00105 template <typename PointT> inline void 00106 setInputCloud (const typename pcl::PointCloud<PointT>::ConstPtr &cloud) 00107 { 00108 PCL_WARN ("[pcl::registration::%s::setInputCloud] setInputCloud is deprecated. Please use setInputSource instead.\n", getClassName ().c_str ()); 00109 if (!data_container_) 00110 data_container_.reset (new DataContainer<PointT>); 00111 boost::static_pointer_cast<DataContainer<PointT> > (data_container_)->setInputSource (cloud); 00112 } 00113 00114 /** \brief Provide a source point cloud dataset (must contain XYZ 00115 * data!), used to compute the correspondence distance. 00116 * \param[in] cloud a cloud containing XYZ data 00117 */ 00118 template <typename PointT> inline void 00119 setInputSource (const typename pcl::PointCloud<PointT>::ConstPtr &cloud) 00120 { 00121 if (!data_container_) 00122 data_container_.reset (new DataContainer<PointT>); 00123 boost::static_pointer_cast<DataContainer<PointT> > (data_container_)->setInputSource (cloud); 00124 } 00125 00126 /** \brief Provide a target point cloud dataset (must contain XYZ 00127 * data!), used to compute the correspondence distance. 00128 * \param[in] target a cloud containing XYZ data 00129 */ 00130 template <typename PointT> inline void 00131 setInputTarget (const typename pcl::PointCloud<PointT>::ConstPtr &target) 00132 { 00133 if (!data_container_) 00134 data_container_.reset (new DataContainer<PointT>); 00135 boost::static_pointer_cast<DataContainer<PointT> > (data_container_)->setInputTarget (target); 00136 } 00137 00138 /** \brief Provide a pointer to the search object used to find correspondences in 00139 * the target cloud. 00140 * \param[in] tree a pointer to the spatial search object. 00141 * \param[in] force_no_recompute If set to true, this tree will NEVER be 00142 * recomputed, regardless of calls to setInputTarget. Only use if you are 00143 * confident that the tree will be set correctly. 00144 */ 00145 template <typename PointT> inline void 00146 setSearchMethodTarget (const boost::shared_ptr<pcl::search::KdTree<PointT> > &tree, 00147 bool force_no_recompute = false) 00148 { 00149 boost::static_pointer_cast< DataContainer<PointT> > 00150 (data_container_)->setSearchMethodTarget (tree, force_no_recompute ); 00151 } 00152 00153 00154 protected: 00155 00156 /** \brief Apply the rejection algorithm. 00157 * \param[out] correspondences the set of resultant correspondences. 00158 */ 00159 inline void 00160 applyRejection (pcl::Correspondences &correspondences) 00161 { 00162 getRemainingCorrespondences (*input_correspondences_, correspondences); 00163 } 00164 00165 /** \brief The maximum distance threshold between two correspondent points in source <-> target. If the 00166 * distance is larger than this threshold, the points will not be ignored in the alignment process. 00167 */ 00168 float max_distance_; 00169 00170 typedef boost::shared_ptr<DataContainerInterface> DataContainerPtr; 00171 00172 /** \brief A pointer to the DataContainer object containing the input and target point clouds */ 00173 DataContainerPtr data_container_; 00174 }; 00175 00176 } 00177 } 00178 00179 #include <pcl/registration/impl/correspondence_rejection_distance.hpp> 00180 00181 #endif /* PCL_REGISTRATION_CORRESPONDENCE_REJECTION_DISTANCE_H_ */