Point Cloud Library (PCL)
1.7.0
|
00001 /* 00002 * Software License Agreement (BSD License) 00003 * 00004 * Point Cloud Library (PCL) - www.pointclouds.org 00005 * Copyright (c) 2013-, Open Perception, Inc. 00006 * 00007 * All rights reserved. 00008 * 00009 * Redistribution and use in source and binary forms, with or without 00010 * modification, are permitted provided that the following conditions 00011 * are met: 00012 * 00013 * * Redistributions of source code must retain the above copyright 00014 * notice, this list of conditions and the following disclaimer. 00015 * * Redistributions in binary form must reproduce the above 00016 * copyright notice, this list of conditions and the following 00017 * disclaimer in the documentation and/or other materials provided 00018 * with the distribution. 00019 * * Neither the name of the copyright holder(s) nor the names of its 00020 * contributors may be used to endorse or promote products derived 00021 * from this software without specific prior written permission. 00022 * 00023 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00024 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00025 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00026 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00027 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00028 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00029 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00030 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00031 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00032 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00033 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00034 * POSSIBILITY OF SUCH DAMAGE. 00035 * 00036 * ground_based_people_detection_app.h 00037 * Created on: Nov 30, 2012 00038 * Author: Matteo Munaro 00039 */ 00040 00041 #ifndef PCL_PEOPLE_GROUND_BASED_PEOPLE_DETECTION_APP_H_ 00042 #define PCL_PEOPLE_GROUND_BASED_PEOPLE_DETECTION_APP_H_ 00043 00044 #include <pcl/point_types.h> 00045 #include <pcl/sample_consensus/sac_model_plane.h> 00046 #include <pcl/sample_consensus/ransac.h> 00047 #include <pcl/filters/extract_indices.h> 00048 #include <pcl/segmentation/extract_clusters.h> 00049 #include <pcl/kdtree/kdtree.h> 00050 #include <pcl/filters/voxel_grid.h> 00051 #include <pcl/people/person_cluster.h> 00052 #include <pcl/people/head_based_subcluster.h> 00053 #include <pcl/people/person_classifier.h> 00054 00055 namespace pcl 00056 { 00057 namespace people 00058 { 00059 /** \brief GroundBasedPeopleDetectionApp performs people detection on RGB-D data having as input the ground plane coefficients. 00060 * It implements the people detection algorithm described here: 00061 * M. Munaro, F. Basso and E. Menegatti, 00062 * Tracking people within groups with RGB-D data, 00063 * In Proceedings of the International Conference on Intelligent Robots and Systems (IROS) 2012, Vilamoura (Portugal), 2012. 00064 * 00065 * \author Matteo Munaro 00066 * \ingroup people 00067 */ 00068 template <typename PointT> class GroundBasedPeopleDetectionApp; 00069 00070 template <typename PointT> 00071 class GroundBasedPeopleDetectionApp 00072 { 00073 public: 00074 00075 typedef pcl::PointCloud<PointT> PointCloud; 00076 typedef boost::shared_ptr<PointCloud> PointCloudPtr; 00077 typedef boost::shared_ptr<const PointCloud> PointCloudConstPtr; 00078 00079 /** \brief Constructor. */ 00080 GroundBasedPeopleDetectionApp (); 00081 00082 /** \brief Destructor. */ 00083 virtual ~GroundBasedPeopleDetectionApp (); 00084 00085 /** 00086 * \brief Set the pointer to the input cloud. 00087 * 00088 * \param[in] cloud A pointer to the input cloud. 00089 */ 00090 void 00091 setInputCloud (PointCloudPtr& cloud); 00092 00093 /** 00094 * \brief Set the ground coefficients. 00095 * 00096 * \param[in] ground_coeffs Vector containing the four plane coefficients. 00097 */ 00098 void 00099 setGround (Eigen::VectorXf& ground_coeffs); 00100 00101 /** 00102 * \brief Set sampling factor. 00103 * 00104 * \param[in] sampling_factor Value of the downsampling factor (in each dimension) which is applied to the raw point cloud (default = 1.). 00105 */ 00106 void 00107 setSamplingFactor (int sampling_factor); 00108 00109 /** 00110 * \brief Set voxel size. 00111 * 00112 * \param[in] voxel_size Value of the voxel dimension (default = 0.06m.). 00113 */ 00114 void 00115 setVoxelSize (float voxel_size); 00116 00117 /** 00118 * \brief Set intrinsic parameters of the RGB camera. 00119 * 00120 * \param[in] intrinsics_matrix RGB camera intrinsic parameters matrix. 00121 */ 00122 void 00123 setIntrinsics (Eigen::Matrix3f intrinsics_matrix); 00124 00125 /** 00126 * \brief Set SVM-based person classifier. 00127 * 00128 * \param[in] person_classifier Needed for people detection on RGB data. 00129 */ 00130 void 00131 setClassifier (pcl::people::PersonClassifier<pcl::RGB> person_classifier); 00132 00133 /** 00134 * \brief Set sensor orientation (vertical = true means portrait mode, vertical = false means landscape mode). 00135 * 00136 * \param[in] vertical Set landscape/portait camera orientation (default = false). 00137 */ 00138 void 00139 setSensorPortraitOrientation (bool vertical); 00140 00141 /** 00142 * \brief Set head_centroid_ to true (person centroid is in the head) or false (person centroid is the whole body centroid). 00143 * 00144 * \param[in] head_centroid Set the location of the person centroid (head or body center) (default = true). 00145 */ 00146 void 00147 setHeadCentroid (bool head_centroid); 00148 00149 /** 00150 * \brief Set minimum and maximum allowed height for a person cluster. 00151 * 00152 * \param[in] min_height Minimum allowed height for a person cluster (default = 1.3). 00153 * \param[in] max_height Maximum allowed height for a person cluster (default = 2.3). 00154 */ 00155 void 00156 setHeightLimits (float min_height, float max_height); 00157 00158 /** 00159 * \brief Set minimum and maximum allowed number of points for a person cluster. 00160 * 00161 * \param[in] min_points Minimum allowed number of points for a person cluster. 00162 * \param[in] max_points Maximum allowed number of points for a person cluster. 00163 */ 00164 void 00165 setDimensionLimits (int min_points, int max_points); 00166 00167 /** 00168 * \brief Set minimum distance between persons' heads. 00169 * 00170 * \param[in] heads_minimum_distance Minimum allowed distance between persons' heads (default = 0.3). 00171 */ 00172 void 00173 setMinimumDistanceBetweenHeads (float heads_minimum_distance); 00174 00175 /** 00176 * \brief Get minimum and maximum allowed height for a person cluster. 00177 * 00178 * \param[out] min_height Minimum allowed height for a person cluster. 00179 * \param[out] max_height Maximum allowed height for a person cluster. 00180 */ 00181 void 00182 getHeightLimits (float& min_height, float& max_height); 00183 00184 /** 00185 * \brief Get minimum and maximum allowed number of points for a person cluster. 00186 * 00187 * \param[out] min_points Minimum allowed number of points for a person cluster. 00188 * \param[out] max_points Maximum allowed number of points for a person cluster. 00189 */ 00190 void 00191 getDimensionLimits (int& min_points, int& max_points); 00192 00193 /** 00194 * \brief Get minimum distance between persons' heads. 00195 */ 00196 float 00197 getMinimumDistanceBetweenHeads (); 00198 00199 /** 00200 * \brief Get floor coefficients. 00201 */ 00202 Eigen::VectorXf 00203 getGround (); 00204 00205 /** 00206 * \brief Get pointcloud after voxel grid filtering and ground removal. 00207 */ 00208 PointCloudPtr 00209 getNoGroundCloud (); 00210 00211 /** 00212 * \brief Extract RGB information from a point cloud and output the corresponding RGB point cloud. 00213 * 00214 * \param[in] input_cloud A pointer to a point cloud containing also RGB information. 00215 * \param[out] output_cloud A pointer to a RGB point cloud. 00216 */ 00217 void 00218 extractRGBFromPointCloud (PointCloudPtr input_cloud, pcl::PointCloud<pcl::RGB>::Ptr& output_cloud); 00219 00220 /** 00221 * \brief Swap rows/cols dimensions of a RGB point cloud (90 degrees counterclockwise rotation). 00222 * 00223 * \param[in,out] cloud A pointer to a RGB point cloud. 00224 */ 00225 void 00226 swapDimensions (pcl::PointCloud<pcl::RGB>::Ptr& cloud); 00227 00228 /** 00229 * \brief Perform people detection on the input data and return people clusters information. 00230 * 00231 * \param[out] clusters Vector of PersonCluster. 00232 * 00233 * \return true if the compute operation is succesful, false otherwise. 00234 */ 00235 bool 00236 compute (std::vector<pcl::people::PersonCluster<PointT> >& clusters); 00237 00238 protected: 00239 /** \brief sampling factor used to downsample the point cloud */ 00240 int sampling_factor_; 00241 00242 /** \brief voxel size */ 00243 float voxel_size_; 00244 00245 /** \brief ground plane coefficients */ 00246 Eigen::VectorXf ground_coeffs_; 00247 00248 /** \brief ground plane normalization factor */ 00249 float sqrt_ground_coeffs_; 00250 00251 /** \brief pointer to the input cloud */ 00252 PointCloudPtr cloud_; 00253 00254 /** \brief pointer to the cloud after voxel grid filtering and ground removal */ 00255 PointCloudPtr no_ground_cloud_; 00256 00257 /** \brief pointer to a RGB cloud corresponding to cloud_ */ 00258 pcl::PointCloud<pcl::RGB>::Ptr rgb_image_; 00259 00260 /** \brief person clusters maximum height from the ground plane */ 00261 float max_height_; 00262 00263 /** \brief person clusters minimum height from the ground plane */ 00264 float min_height_; 00265 00266 /** \brief if true, the sensor is considered to be vertically placed (portrait mode) */ 00267 bool vertical_; 00268 00269 /** \brief if true, the person centroid is computed as the centroid of the cluster points belonging to the head; 00270 * if false, the person centroid is computed as the centroid of the whole cluster points (default = true) */ 00271 bool head_centroid_; // if true, the person centroid is computed as the centroid of the cluster points belonging to the head (default = true) 00272 // if false, the person centroid is computed as the centroid of the whole cluster points 00273 /** \brief maximum number of points for a person cluster */ 00274 int max_points_; 00275 00276 /** \brief minimum number of points for a person cluster */ 00277 int min_points_; 00278 00279 /** \brief true if min_points and max_points have been set by the user, false otherwise */ 00280 bool dimension_limits_set_; 00281 00282 /** \brief minimum distance between persons' heads */ 00283 float heads_minimum_distance_; 00284 00285 /** \brief intrinsic parameters matrix of the RGB camera */ 00286 Eigen::Matrix3f intrinsics_matrix_; 00287 00288 /** \brief SVM-based person classifier */ 00289 pcl::people::PersonClassifier<pcl::RGB> person_classifier_; 00290 00291 /** \brief flag stating if the classifier has been set or not */ 00292 bool person_classifier_set_flag_; 00293 }; 00294 } /* namespace people */ 00295 } /* namespace pcl */ 00296 #include <pcl/people/impl/ground_based_people_detection_app.hpp> 00297 #endif /* PCL_PEOPLE_GROUND_BASED_PEOPLE_DETECTION_APP_H_ */