Point Cloud Library (PCL)
1.7.0
|
00001 /* 00002 * Software License Agreement (BSD License) 00003 * 00004 * Point Cloud Library (PCL) - www.pointclouds.org 00005 * Copyright (c) 2010-2011, Willow Garage, Inc. 00006 * Copyright (c) 2012-, Open Perception, Inc. 00007 * 00008 * All rights reserved. 00009 * 00010 * Redistribution and use in source and binary forms, with or without 00011 * modification, are permitted provided that the following conditions 00012 * are met: 00013 * 00014 * * Redistributions of source code must retain the above copyright 00015 * notice, this list of conditions and the following disclaimer. 00016 * * Redistributions in binary form must reproduce the above 00017 * copyright notice, this list of conditions and the following 00018 * disclaimer in the documentation and/or other materials provided 00019 * with the distribution. 00020 * * Neither the name of the copyright holder(s) nor the names of its 00021 * contributors may be used to endorse or promote products derived 00022 * from this software without specific prior written permission. 00023 * 00024 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00025 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00026 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00027 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00028 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00029 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00030 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00031 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00032 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00033 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00034 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00035 * POSSIBILITY OF SUCH DAMAGE. 00036 * 00037 * $Id$ 00038 * 00039 */ 00040 00041 #ifndef PCL_SAMPLE_CONSENSUS_MODEL_PARALLELLINE_H_ 00042 #define PCL_SAMPLE_CONSENSUS_MODEL_PARALLELLINE_H_ 00043 00044 #include <pcl/sample_consensus/sac_model_line.h> 00045 #include <pcl/sample_consensus/sac_model_perpendicular_plane.h> 00046 00047 namespace pcl 00048 { 00049 /** \brief SampleConsensusModelParallelLine defines a model for 3D line segmentation using additional angular 00050 * constraints. 00051 * The model coefficients are defined as: 00052 * - \b point_on_line.x : the X coordinate of a point on the line 00053 * - \b point_on_line.y : the Y coordinate of a point on the line 00054 * - \b point_on_line.z : the Z coordinate of a point on the line 00055 * - \b line_direction.x : the X coordinate of a line's direction 00056 * - \b line_direction.y : the Y coordinate of a line's direction 00057 * - \b line_direction.z : the Z coordinate of a line's direction 00058 * 00059 * \author Radu B. Rusu 00060 * \ingroup sample_consensus 00061 */ 00062 template <typename PointT> 00063 class SampleConsensusModelParallelLine : public SampleConsensusModelLine<PointT> 00064 { 00065 public: 00066 typedef typename SampleConsensusModelLine<PointT>::PointCloud PointCloud; 00067 typedef typename SampleConsensusModelLine<PointT>::PointCloudPtr PointCloudPtr; 00068 typedef typename SampleConsensusModelLine<PointT>::PointCloudConstPtr PointCloudConstPtr; 00069 00070 typedef boost::shared_ptr<SampleConsensusModelParallelLine> Ptr; 00071 00072 /** \brief Constructor for base SampleConsensusModelParallelLine. 00073 * \param[in] cloud the input point cloud dataset 00074 * \param[in] random if true set the random seed to the current time, else set to 12345 (default: false) 00075 */ 00076 SampleConsensusModelParallelLine (const PointCloudConstPtr &cloud, 00077 bool random = false) 00078 : SampleConsensusModelLine<PointT> (cloud, random) 00079 , axis_ (Eigen::Vector3f::Zero ()) 00080 , eps_angle_ (0.0) 00081 { 00082 } 00083 00084 /** \brief Constructor for base SampleConsensusModelParallelLine. 00085 * \param[in] cloud the input point cloud dataset 00086 * \param[in] indices a vector of point indices to be used from \a cloud 00087 * \param[in] random if true set the random seed to the current time, else set to 12345 (default: false) 00088 */ 00089 SampleConsensusModelParallelLine (const PointCloudConstPtr &cloud, 00090 const std::vector<int> &indices, 00091 bool random = false) 00092 : SampleConsensusModelLine<PointT> (cloud, indices, random) 00093 , axis_ (Eigen::Vector3f::Zero ()) 00094 , eps_angle_ (0.0) 00095 { 00096 } 00097 00098 /** \brief Empty destructor */ 00099 virtual ~SampleConsensusModelParallelLine () {} 00100 00101 /** \brief Set the axis along which we need to search for a plane perpendicular to. 00102 * \param[in] ax the axis along which we need to search for a plane perpendicular to 00103 */ 00104 inline void 00105 setAxis (const Eigen::Vector3f &ax) { axis_ = ax; axis_.normalize (); } 00106 00107 /** \brief Get the axis along which we need to search for a plane perpendicular to. */ 00108 inline Eigen::Vector3f 00109 getAxis () { return (axis_); } 00110 00111 /** \brief Set the angle epsilon (delta) threshold. 00112 * \param[in] ea the maximum allowed difference between the plane normal and the given axis. 00113 */ 00114 inline void 00115 setEpsAngle (const double ea) { eps_angle_ = ea; } 00116 00117 /** \brief Get the angle epsilon (delta) threshold. */ 00118 inline double getEpsAngle () { return (eps_angle_); } 00119 00120 /** \brief Select all the points which respect the given model coefficients as inliers. 00121 * \param[in] model_coefficients the coefficients of a line model that we need to compute distances to 00122 * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers 00123 * \param[out] inliers the resultant model inliers 00124 */ 00125 void 00126 selectWithinDistance (const Eigen::VectorXf &model_coefficients, 00127 const double threshold, 00128 std::vector<int> &inliers); 00129 00130 /** \brief Count all the points which respect the given model coefficients as inliers. 00131 * 00132 * \param[in] model_coefficients the coefficients of a model that we need to compute distances to 00133 * \param[in] threshold maximum admissible distance threshold for determining the inliers from the outliers 00134 * \return the resultant number of inliers 00135 */ 00136 virtual int 00137 countWithinDistance (const Eigen::VectorXf &model_coefficients, 00138 const double threshold); 00139 00140 /** \brief Compute all squared distances from the cloud data to a given line model. 00141 * \param[in] model_coefficients the coefficients of a line model that we need to compute distances to 00142 * \param[out] distances the resultant estimated squared distances 00143 */ 00144 void 00145 getDistancesToModel (const Eigen::VectorXf &model_coefficients, 00146 std::vector<double> &distances); 00147 00148 /** \brief Return an unique id for this model (SACMODEL_PARALLEL_LINE). */ 00149 inline pcl::SacModel 00150 getModelType () const { return (SACMODEL_PARALLEL_LINE); } 00151 00152 protected: 00153 /** \brief Check whether a model is valid given the user constraints. 00154 * \param[in] model_coefficients the set of model coefficients 00155 */ 00156 bool 00157 isModelValid (const Eigen::VectorXf &model_coefficients); 00158 00159 protected: 00160 /** \brief The axis along which we need to search for a plane perpendicular to. */ 00161 Eigen::Vector3f axis_; 00162 00163 /** \brief The maximum allowed difference between the plane normal and the given axis. */ 00164 double eps_angle_; 00165 }; 00166 } 00167 00168 #ifdef PCL_NO_PRECOMPILE 00169 #include <pcl/sample_consensus/impl/sac_model_parallel_line.hpp> 00170 #endif 00171 00172 #endif //#ifndef PCL_SAMPLE_CONSENSUS_MODEL_PARALLELLINE_H_