Point Cloud Library (PCL)
1.7.0
|
00001 /* 00002 * Software License Agreement (BSD License) 00003 * 00004 * Point Cloud Library (PCL) - www.pointclouds.org 00005 * Copyright (c) 2010-2011, Willow Garage, Inc. 00006 * Copyright (c) 2012-, Open Perception, Inc. 00007 * 00008 * All rights reserved. 00009 * 00010 * Redistribution and use in source and binary forms, with or without 00011 * modification, are permitted provided that the following conditions 00012 * are met: 00013 * 00014 * * Redistributions of source code must retain the above copyright 00015 * notice, this list of conditions and the following disclaimer. 00016 * * Redistributions in binary form must reproduce the above 00017 * copyright notice, this list of conditions and the following 00018 * disclaimer in the documentation and/or other materials provided 00019 * with the distribution. 00020 * * Neither the name of the copyright holder(s) nor the names of its 00021 * contributors may be used to endorse or promote products derived 00022 * from this software without specific prior written permission. 00023 * 00024 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00025 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00026 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00027 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00028 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00029 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00030 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00031 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00032 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00033 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00034 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00035 * POSSIBILITY OF SUCH DAMAGE. 00036 * 00037 * $Id$ 00038 * 00039 */ 00040 00041 #ifndef PCL_RIFT_H_ 00042 #define PCL_RIFT_H_ 00043 00044 #include <pcl/features/feature.h> 00045 00046 namespace pcl 00047 { 00048 /** \brief RIFTEstimation estimates the Rotation Invariant Feature Transform descriptors for a given point cloud 00049 * dataset containing points and intensity. For more information about the RIFT descriptor, see: 00050 * 00051 * Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. 00052 * A sparse texture representation using local affine regions. 00053 * In IEEE Transactions on Pattern Analysis and Machine Intelligence, volume 27, pages 1265-1278, August 2005. 00054 * 00055 * \author Michael Dixon 00056 * \ingroup features 00057 */ 00058 00059 template <typename PointInT, typename GradientT, typename PointOutT> 00060 class RIFTEstimation: public Feature<PointInT, PointOutT> 00061 { 00062 public: 00063 using Feature<PointInT, PointOutT>::feature_name_; 00064 using Feature<PointInT, PointOutT>::getClassName; 00065 00066 using Feature<PointInT, PointOutT>::surface_; 00067 using Feature<PointInT, PointOutT>::indices_; 00068 00069 using Feature<PointInT, PointOutT>::tree_; 00070 using Feature<PointInT, PointOutT>::search_radius_; 00071 00072 typedef typename pcl::PointCloud<PointInT> PointCloudIn; 00073 typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut; 00074 00075 typedef typename pcl::PointCloud<GradientT> PointCloudGradient; 00076 typedef typename PointCloudGradient::Ptr PointCloudGradientPtr; 00077 typedef typename PointCloudGradient::ConstPtr PointCloudGradientConstPtr; 00078 00079 typedef typename boost::shared_ptr<RIFTEstimation<PointInT, GradientT, PointOutT> > Ptr; 00080 typedef typename boost::shared_ptr<const RIFTEstimation<PointInT, GradientT, PointOutT> > ConstPtr; 00081 00082 00083 /** \brief Empty constructor. */ 00084 RIFTEstimation () : gradient_ (), nr_distance_bins_ (4), nr_gradient_bins_ (8) 00085 { 00086 feature_name_ = "RIFTEstimation"; 00087 }; 00088 00089 /** \brief Provide a pointer to the input gradient data 00090 * \param[in] gradient a pointer to the input gradient data 00091 */ 00092 inline void 00093 setInputGradient (const PointCloudGradientConstPtr &gradient) { gradient_ = gradient; }; 00094 00095 /** \brief Returns a shared pointer to the input gradient data */ 00096 inline PointCloudGradientConstPtr 00097 getInputGradient () const { return (gradient_); }; 00098 00099 /** \brief Set the number of bins to use in the distance dimension of the RIFT descriptor 00100 * \param[in] nr_distance_bins the number of bins to use in the distance dimension of the RIFT descriptor 00101 */ 00102 inline void 00103 setNrDistanceBins (int nr_distance_bins) { nr_distance_bins_ = nr_distance_bins; }; 00104 00105 /** \brief Returns the number of bins in the distance dimension of the RIFT descriptor. */ 00106 inline int 00107 getNrDistanceBins () const { return (nr_distance_bins_); }; 00108 00109 /** \brief Set the number of bins to use in the gradient orientation dimension of the RIFT descriptor 00110 * \param[in] nr_gradient_bins the number of bins to use in the gradient orientation dimension of the RIFT descriptor 00111 */ 00112 inline void 00113 setNrGradientBins (int nr_gradient_bins) { nr_gradient_bins_ = nr_gradient_bins; }; 00114 00115 /** \brief Returns the number of bins in the gradient orientation dimension of the RIFT descriptor. */ 00116 inline int 00117 getNrGradientBins () const { return (nr_gradient_bins_); }; 00118 00119 /** \brief Estimate the Rotation Invariant Feature Transform (RIFT) descriptor for a given point based on its 00120 * spatial neighborhood of 3D points and the corresponding intensity gradient vector field 00121 * \param[in] cloud the dataset containing the Cartesian coordinates of the points 00122 * \param[in] gradient the dataset containing the intensity gradient at each point in \a cloud 00123 * \param[in] p_idx the index of the query point in \a cloud (i.e. the center of the neighborhood) 00124 * \param[in] radius the radius of the RIFT feature 00125 * \param[in] indices the indices of the points that comprise \a p_idx's neighborhood in \a cloud 00126 * \param[in] squared_distances the squared distances from the query point to each point in the neighborhood 00127 * \param[out] rift_descriptor the resultant RIFT descriptor 00128 */ 00129 void 00130 computeRIFT (const PointCloudIn &cloud, const PointCloudGradient &gradient, int p_idx, float radius, 00131 const std::vector<int> &indices, const std::vector<float> &squared_distances, 00132 Eigen::MatrixXf &rift_descriptor); 00133 00134 protected: 00135 00136 /** \brief Estimate the Rotation Invariant Feature Transform (RIFT) descriptors at a set of points given by 00137 * <setInputCloud (), setIndices ()> using the surface in setSearchSurface (), the gradient in 00138 * setInputGradient (), and the spatial locator in setSearchMethod () 00139 * \param[out] output the resultant point cloud model dataset that contains the RIFT feature estimates 00140 */ 00141 void 00142 computeFeature (PointCloudOut &output); 00143 00144 /** \brief The intensity gradient of the input point cloud data*/ 00145 PointCloudGradientConstPtr gradient_; 00146 00147 /** \brief The number of distance bins in the descriptor. */ 00148 int nr_distance_bins_; 00149 00150 /** \brief The number of gradient orientation bins in the descriptor. */ 00151 int nr_gradient_bins_; 00152 }; 00153 } 00154 00155 #ifdef PCL_NO_PRECOMPILE 00156 #include <pcl/features/impl/rift.hpp> 00157 #endif 00158 00159 #endif // #ifndef PCL_RIFT_H_