Point Cloud Library (PCL)
1.7.0
|
00001 /* 00002 * Software License Agreement (BSD License) 00003 * 00004 * Point Cloud Library (PCL) - www.pointclouds.org 00005 * Copyright (c) 2010-2011, Willow Garage, Inc. 00006 * Copyright (c) 2012-, Open Perception, Inc. 00007 * 00008 * All rights reserved. 00009 * 00010 * Redistribution and use in source and binary forms, with or without 00011 * modification, are permitted provided that the following conditions 00012 * are met: 00013 * 00014 * * Redistributions of source code must retain the above copyright 00015 * notice, this list of conditions and the following disclaimer. 00016 * * Redistributions in binary form must reproduce the above 00017 * copyright notice, this list of conditions and the following 00018 * disclaimer in the documentation and/or other materials provided 00019 * with the distribution. 00020 * * Neither the name of the copyright holder(s) nor the names of its 00021 * contributors may be used to endorse or promote products derived 00022 * from this software without specific prior written permission. 00023 * 00024 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00025 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00026 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00027 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00028 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00029 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00030 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00031 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00032 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00033 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00034 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00035 * POSSIBILITY OF SUCH DAMAGE. 00036 * 00037 * $Id$ 00038 * 00039 */ 00040 00041 #ifndef PCL_SAMPLE_CONSENSUS_MODEL_NORMALPLANE_H_ 00042 #define PCL_SAMPLE_CONSENSUS_MODEL_NORMALPLANE_H_ 00043 00044 #include <pcl/sample_consensus/sac_model.h> 00045 #include <pcl/sample_consensus/sac_model_plane.h> 00046 #include <pcl/sample_consensus/sac_model_perpendicular_plane.h> 00047 #include <pcl/sample_consensus/model_types.h> 00048 00049 namespace pcl 00050 { 00051 /** \brief SampleConsensusModelNormalPlane defines a model for 3D plane 00052 * segmentation using additional surface normal constraints. Basically this 00053 * means that checking for inliers will not only involve a "distance to 00054 * model" criterion, but also an additional "maximum angular deviation" 00055 * between the plane's normal and the inlier points normals. 00056 * 00057 * The model coefficients are defined as: 00058 * - \b a : the X coordinate of the plane's normal (normalized) 00059 * - \b b : the Y coordinate of the plane's normal (normalized) 00060 * - \b c : the Z coordinate of the plane's normal (normalized) 00061 * - \b d : the fourth <a href="http://mathworld.wolfram.com/HessianNormalForm.html">Hessian component</a> of the plane's equation 00062 * 00063 * To set the influence of the surface normals in the inlier estimation 00064 * process, set the normal weight (0.0-1.0), e.g.: 00065 * \code 00066 * SampleConsensusModelNormalPlane<pcl::PointXYZ, pcl::Normal> sac_model; 00067 * ... 00068 * sac_model.setNormalDistanceWeight (0.1); 00069 * ... 00070 * \endcode 00071 * 00072 * \author Radu B. Rusu and Jared Glover 00073 * \ingroup sample_consensus 00074 */ 00075 template <typename PointT, typename PointNT> 00076 class SampleConsensusModelNormalPlane : public SampleConsensusModelPlane<PointT>, public SampleConsensusModelFromNormals<PointT, PointNT> 00077 { 00078 public: 00079 using SampleConsensusModel<PointT>::input_; 00080 using SampleConsensusModel<PointT>::indices_; 00081 using SampleConsensusModelFromNormals<PointT, PointNT>::normals_; 00082 using SampleConsensusModelFromNormals<PointT, PointNT>::normal_distance_weight_; 00083 using SampleConsensusModel<PointT>::error_sqr_dists_; 00084 using SampleConsensusModelPlane<PointT>::isModelValid; 00085 00086 typedef typename SampleConsensusModel<PointT>::PointCloud PointCloud; 00087 typedef typename SampleConsensusModel<PointT>::PointCloudPtr PointCloudPtr; 00088 typedef typename SampleConsensusModel<PointT>::PointCloudConstPtr PointCloudConstPtr; 00089 00090 typedef typename SampleConsensusModelFromNormals<PointT, PointNT>::PointCloudNPtr PointCloudNPtr; 00091 typedef typename SampleConsensusModelFromNormals<PointT, PointNT>::PointCloudNConstPtr PointCloudNConstPtr; 00092 00093 typedef boost::shared_ptr<SampleConsensusModelNormalPlane> Ptr; 00094 00095 /** \brief Constructor for base SampleConsensusModelNormalPlane. 00096 * \param[in] cloud the input point cloud dataset 00097 * \param[in] random if true set the random seed to the current time, else set to 12345 (default: false) 00098 */ 00099 SampleConsensusModelNormalPlane (const PointCloudConstPtr &cloud, 00100 bool random = false) 00101 : SampleConsensusModelPlane<PointT> (cloud, random) 00102 , SampleConsensusModelFromNormals<PointT, PointNT> () 00103 { 00104 } 00105 00106 /** \brief Constructor for base SampleConsensusModelNormalPlane. 00107 * \param[in] cloud the input point cloud dataset 00108 * \param[in] indices a vector of point indices to be used from \a cloud 00109 * \param[in] random if true set the random seed to the current time, else set to 12345 (default: false) 00110 */ 00111 SampleConsensusModelNormalPlane (const PointCloudConstPtr &cloud, 00112 const std::vector<int> &indices, 00113 bool random = false) 00114 : SampleConsensusModelPlane<PointT> (cloud, indices, random) 00115 , SampleConsensusModelFromNormals<PointT, PointNT> () 00116 { 00117 } 00118 00119 /** \brief Empty destructor */ 00120 virtual ~SampleConsensusModelNormalPlane () {} 00121 00122 /** \brief Select all the points which respect the given model coefficients as inliers. 00123 * \param[in] model_coefficients the coefficients of a plane model that we need to compute distances to 00124 * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers 00125 * \param[out] inliers the resultant model inliers 00126 */ 00127 void 00128 selectWithinDistance (const Eigen::VectorXf &model_coefficients, 00129 const double threshold, 00130 std::vector<int> &inliers); 00131 00132 /** \brief Count all the points which respect the given model coefficients as inliers. 00133 * 00134 * \param[in] model_coefficients the coefficients of a model that we need to compute distances to 00135 * \param[in] threshold maximum admissible distance threshold for determining the inliers from the outliers 00136 * \return the resultant number of inliers 00137 */ 00138 virtual int 00139 countWithinDistance (const Eigen::VectorXf &model_coefficients, 00140 const double threshold); 00141 00142 /** \brief Compute all distances from the cloud data to a given plane model. 00143 * \param[in] model_coefficients the coefficients of a plane model that we need to compute distances to 00144 * \param[out] distances the resultant estimated distances 00145 */ 00146 void 00147 getDistancesToModel (const Eigen::VectorXf &model_coefficients, 00148 std::vector<double> &distances); 00149 00150 /** \brief Return an unique id for this model (SACMODEL_NORMAL_PLANE). */ 00151 inline pcl::SacModel 00152 getModelType () const { return (SACMODEL_NORMAL_PLANE); } 00153 00154 EIGEN_MAKE_ALIGNED_OPERATOR_NEW 00155 }; 00156 } 00157 00158 #ifdef PCL_NO_PRECOMPILE 00159 #include <pcl/sample_consensus/impl/sac_model_normal_plane.hpp> 00160 #endif 00161 00162 #endif //#ifndef PCL_SAMPLE_CONSENSUS_MODEL_NORMALPLANE_H_