Point Cloud Library (PCL)
1.7.0
|
00001 /* 00002 * Software License Agreement (BSD License) 00003 * 00004 * Copyright (c) 2010, Willow Garage, Inc. 00005 * All rights reserved. 00006 * 00007 * Redistribution and use in source and binary forms, with or without 00008 * modification, are permitted provided that the following conditions 00009 * are met: 00010 * 00011 * * Redistributions of source code must retain the above copyright 00012 * notice, this list of conditions and the following disclaimer. 00013 * * Redistributions in binary form must reproduce the above 00014 * copyright notice, this list of conditions and the following 00015 * disclaimer in the documentation and/or other materials provided 00016 * with the distribution. 00017 * * Neither the name of the copyright holder(s) nor the names of its 00018 * contributors may be used to endorse or promote products derived 00019 * from this software without specific prior written permission. 00020 * 00021 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00022 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00023 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00024 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00025 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00026 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00027 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00028 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00029 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00030 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00031 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00032 * POSSIBILITY OF SUCH DAMAGE. 00033 * 00034 * $Id$ 00035 * 00036 */ 00037 #ifndef PCL_DISTANCES_H_ 00038 #define PCL_DISTANCES_H_ 00039 00040 #include <pcl/common/common.h> 00041 00042 /** 00043 * \file pcl/common/distances.h 00044 * Define standard C methods to do distance calculations 00045 * \ingroup common 00046 */ 00047 00048 /*@{*/ 00049 namespace pcl 00050 { 00051 /** \brief Get the shortest 3D segment between two 3D lines 00052 * \param line_a the coefficients of the first line (point, direction) 00053 * \param line_b the coefficients of the second line (point, direction) 00054 * \param pt1_seg the first point on the line segment 00055 * \param pt2_seg the second point on the line segment 00056 * \ingroup common 00057 */ 00058 PCL_EXPORTS void 00059 lineToLineSegment (const Eigen::VectorXf &line_a, const Eigen::VectorXf &line_b, 00060 Eigen::Vector4f &pt1_seg, Eigen::Vector4f &pt2_seg); 00061 00062 /** \brief Get the square distance from a point to a line (represented by a point and a direction) 00063 * \param pt a point 00064 * \param line_pt a point on the line (make sure that line_pt[3] = 0 as there are no internal checks!) 00065 * \param line_dir the line direction 00066 * \ingroup common 00067 */ 00068 double inline 00069 sqrPointToLineDistance (const Eigen::Vector4f &pt, const Eigen::Vector4f &line_pt, const Eigen::Vector4f &line_dir) 00070 { 00071 // Calculate the distance from the point to the line 00072 // D = ||(P2-P1) x (P1-P0)|| / ||P2-P1|| = norm (cross (p2-p1, p1-p0)) / norm(p2-p1) 00073 return (line_dir.cross3 (line_pt - pt)).squaredNorm () / line_dir.squaredNorm (); 00074 } 00075 00076 /** \brief Get the square distance from a point to a line (represented by a point and a direction) 00077 * \note This one is useful if one has to compute many distances to a fixed line, so the vector length can be pre-computed 00078 * \param pt a point 00079 * \param line_pt a point on the line (make sure that line_pt[3] = 0 as there are no internal checks!) 00080 * \param line_dir the line direction 00081 * \param sqr_length the squared norm of the line direction 00082 * \ingroup common 00083 */ 00084 double inline 00085 sqrPointToLineDistance (const Eigen::Vector4f &pt, const Eigen::Vector4f &line_pt, const Eigen::Vector4f &line_dir, const double sqr_length) 00086 { 00087 // Calculate the distance from the point to the line 00088 // D = ||(P2-P1) x (P1-P0)|| / ||P2-P1|| = norm (cross (p2-p1, p1-p0)) / norm(p2-p1) 00089 return (line_dir.cross3 (line_pt - pt)).squaredNorm () / sqr_length; 00090 } 00091 00092 /** \brief Obtain the maximum segment in a given set of points, and return the minimum and maximum points. 00093 * \param[in] cloud the point cloud dataset 00094 * \param[out] pmin the coordinates of the "minimum" point in \a cloud (one end of the segment) 00095 * \param[out] pmax the coordinates of the "maximum" point in \a cloud (the other end of the segment) 00096 * \return the length of segment length 00097 * \ingroup common 00098 */ 00099 template <typename PointT> double inline 00100 getMaxSegment (const pcl::PointCloud<PointT> &cloud, 00101 PointT &pmin, PointT &pmax) 00102 { 00103 double max_dist = std::numeric_limits<double>::min (); 00104 int i_min = -1, i_max = -1; 00105 00106 for (size_t i = 0; i < cloud.points.size (); ++i) 00107 { 00108 for (size_t j = i; j < cloud.points.size (); ++j) 00109 { 00110 // Compute the distance 00111 double dist = (cloud.points[i].getVector4fMap () - 00112 cloud.points[j].getVector4fMap ()).squaredNorm (); 00113 if (dist <= max_dist) 00114 continue; 00115 00116 max_dist = dist; 00117 i_min = i; 00118 i_max = j; 00119 } 00120 } 00121 00122 if (i_min == -1 || i_max == -1) 00123 return (max_dist = std::numeric_limits<double>::min ()); 00124 00125 pmin = cloud.points[i_min]; 00126 pmax = cloud.points[i_max]; 00127 return (std::sqrt (max_dist)); 00128 } 00129 00130 /** \brief Obtain the maximum segment in a given set of points, and return the minimum and maximum points. 00131 * \param[in] cloud the point cloud dataset 00132 * \param[in] indices a set of point indices to use from \a cloud 00133 * \param[out] pmin the coordinates of the "minimum" point in \a cloud (one end of the segment) 00134 * \param[out] pmax the coordinates of the "maximum" point in \a cloud (the other end of the segment) 00135 * \return the length of segment length 00136 * \ingroup common 00137 */ 00138 template <typename PointT> double inline 00139 getMaxSegment (const pcl::PointCloud<PointT> &cloud, const std::vector<int> &indices, 00140 PointT &pmin, PointT &pmax) 00141 { 00142 double max_dist = std::numeric_limits<double>::min (); 00143 int i_min = -1, i_max = -1; 00144 00145 for (size_t i = 0; i < indices.size (); ++i) 00146 { 00147 for (size_t j = i; j < indices.size (); ++j) 00148 { 00149 // Compute the distance 00150 double dist = (cloud.points[indices[i]].getVector4fMap () - 00151 cloud.points[indices[j]].getVector4fMap ()).squaredNorm (); 00152 if (dist <= max_dist) 00153 continue; 00154 00155 max_dist = dist; 00156 i_min = i; 00157 i_max = j; 00158 } 00159 } 00160 00161 if (i_min == -1 || i_max == -1) 00162 return (max_dist = std::numeric_limits<double>::min ()); 00163 00164 pmin = cloud.points[indices[i_min]]; 00165 pmax = cloud.points[indices[i_max]]; 00166 return (std::sqrt (max_dist)); 00167 } 00168 00169 /** \brief Calculate the squared euclidean distance between the two given points. 00170 * \param[in] p1 the first point 00171 * \param[in] p2 the second point 00172 */ 00173 template<typename PointType1, typename PointType2> inline float 00174 squaredEuclideanDistance (const PointType1& p1, const PointType2& p2) 00175 { 00176 float diff_x = p2.x - p1.x, diff_y = p2.y - p1.y, diff_z = p2.z - p1.z; 00177 return (diff_x*diff_x + diff_y*diff_y + diff_z*diff_z); 00178 } 00179 00180 /** \brief Calculate the squared euclidean distance between the two given points. 00181 * \param[in] p1 the first point 00182 * \param[in] p2 the second point 00183 */ 00184 template<> inline float 00185 squaredEuclideanDistance (const PointXY& p1, const PointXY& p2) 00186 { 00187 float diff_x = p2.x - p1.x, diff_y = p2.y - p1.y; 00188 return (diff_x*diff_x + diff_y*diff_y); 00189 } 00190 00191 /** \brief Calculate the euclidean distance between the two given points. 00192 * \param[in] p1 the first point 00193 * \param[in] p2 the second point 00194 */ 00195 template<typename PointType1, typename PointType2> inline float 00196 euclideanDistance (const PointType1& p1, const PointType2& p2) 00197 { 00198 return (sqrtf (squaredEuclideanDistance (p1, p2))); 00199 } 00200 } 00201 /*@*/ 00202 #endif //#ifndef PCL_DISTANCES_H_ 00203