
Tri-Mode Ethernet MAC v0.1

Jared Casper
FOSSH

November 3, 2009

1

Tri-Mode Ethernet MAC v0.1 2

1 Introduction

FOSSH’s Tri-mode Ethernet MAC core was designed from the ground up to be a compact, fast, no-frills core
to faciliate streaming data from a widget to a connected computer. Because the core is meant to be small
and fast, many features that are not often used or would not be useful for streaming data are left out. For
example, the core only supports full-duplex operation in that it does not even look at the CRS (carrier-sense)
and COL (collision detection) signals from the PHY. That said, it does have features not present in other
cores to make it easy to stream data. For example, it will generate the ethernet and udp headers for you so
you can simple give it data and it will take care of sending it for you.

The core is in active development and this document describes version 0.1.

1.1 Features

Features that are implemented and functional:

• Interfaces with the PHY using GMII running 10/100/1000 Mb/s. Support for RGMII is planned.

• Full-duplex support only.

• Raw ethernet frame generation, allowing a pure data input stream.

• Optional UDP/IP packet generation with automatic packetization and framentation of an input data
stream.

• Input and output fifos decoupled from the core logic, so the clock rate of application logic is not tied
to the speed of the ethernet link (barring bandwidth issues).

• Full core uses 288 Spartan 6 logic slices and 2 block RAMs. For comparison, the smallest Spartan 6
has 600 slices and 12 block RAMs. The largest Spartan 6 has 23,038 slices and 268 block RAMs.

Features that are in development or planned:

• Multiple input/output fifo for streams to be sent to/from different addresses.

• Optional configuration registers instead of configuration ports for use with a micro controller.

• Automatic flow control via PAUSE frames.

• RGMII interface.

1.2 Obtaining

Stable releases of the MAC core can be downloaded from http://www.fossh.com/. Read-
only public access to the development repository is available using git at the respository
git://jcasper.stanford.edu/fossh/repo.git.

Tri-Mode Ethernet MAC v0.1 3

2 Interface

2.1 Parameters
Name Type Description
USR CLK PERIOD Integer Period, in ns, of usr clk. Needed to to generate a sutable clock for

the mii management port (mdc) from usr clk.
RX CRC CHECK Boolean If true, the CRC of incoming packets will be checked for accuracy.

If false, no such check is performed.

2.2 Clocks, etc.

Name Width Direction Description
usr clk 1 I User clock used to clock data into and out of the core through the

user and management interfaces.
clk 125 1 I 125 MHz clock used to supply phy GTX CLK.
reset n 1 I Active-low reset. Resets all flops and buffers in the core.
debug * O Various signals used during debugging.

2.3 User Interface

All signals in the user interface are synchronous with usr clk.

2.3.1 Configuration

Instead of implementing internal registers to indicate the source and destination MAC address, these values
are simply ports into the core. This allowed the implementation to be expanded to a wider variety of future
interfaces. An optional wrapper is in development that will add registers to the management interface
(Section 2.3.4) and remove these ports.

The following ports are part of the base MAC module and are always used:
Name Width Direction Description
gmii 1 I Indicate that the core should be communicate with the phy in GMII

mode (i.e. 1Gbit/s). Otherwise MII mode (10/100Mbit/s) will be
used. Unfortunately there doesn’t appear to be a standard way to
get the negotiated link speed from the PHY (why is this not in the
802.3 standard is beyond me).

promiscous 1 I Indicate that the core should filter incoming packages to those with
destination of src mac addr.

jumboframes 1 I Indicates that jumbo frames are okay to send.
src mac addr 48 I MAC address to use as the source of transmitted ethernet frames

and the filter for what received frames to not discard when not in
promiscous mode.

dst mac addr 48 I MAC address to use as the destination of transmitted ethernet
frames.

ethertype 16 I EtherType/Length field for outgoing packets.
ifg 10 I Number of cycles inserted between packets. Should be ≥ 0x0D.

Tri-Mode Ethernet MAC v0.1 4

usr clk LLL�HH�LL�HH�L..L�HH�LL�HH�LL�HH�L..L�HH�LL�HH�LL�HHH

tx data UUU�VVVVVV�VVVVV..V�VVVVVV�VVVVVV�VVVVV..V�VVVVVVVVVVVVVV�UUUdata 1.1 data 1.x data 1.n data 2.1 data 2.x data 2.n

tx eof[0] LLLLLLLLLLLLLLLLLL..L�HHHHHH�LLLLLLLLLLLLL..L�HHHHHHHHHHHHHH�LLL

tx we LLL�HHHHHHH�FFFF..�HHHHHHHHHHHHHHHH�FFFF..�HHHHHHHHHHHHHHH�LLL

tx stop LLLLLLLLLLLLLLLLLL..LLLLLLLLLLLLLLLLLLLLLLLL..L�HHHHHH�LLLLLLLLLLL

Figure 1: Timing diagram of two back to back 32-bit aligned packet transmissions, with the final word of
the second packet being interrupted by a full input fifo.

2.3.2 Transmission

The interface used to send packets/frames is a standard FIFO write interface with addition of an end-of-frame
port (tx eo f) that is used to split incoming data into frames.

Name Width Direction Description
tx data 32 I Data to be sent to the phy for transmission. Data is queued to be

sent when tx we is high and tx stop is low. Following ethernet
standards, bytes are sent in big endian order

tx eof 4 I Used to indicate which bytes in the word being written (tx data)
is the last of the frame. Because data is sent big endian, setting
tx eof[0] to 1 indicates that the entire 32-bit should be sent (and is
the last word in this packet).

tx we 1 I Write enable for transmission. Queues tx data to be sent to the phy
when tx stop is low.

tx stop 1 O Indicates that the input buffers are full and no more data can be
queued for transmission.

Figure 1 illustrates normal transmission of a couple of 32-bit aligned packets, with the final word of the
second packet being temporarily stopped by a full input fifo.

If the input fifo runs out of data while the MAC is sending a packet, an error condition will be raised and
the packet will not be sent. Operating at 1Gbps, the PHY will transmit approximately 100MB/s from the
input fifo. Therefore, if data word is supplied every clock, the user clock must be at least 25 MHz, an easy
target for most FPGAs. Alternatively, if the user clock is faster, data need not be supplied on each clock.
For example, a 100 MHz user clock means that once data is first written to the input fifo, the rest of the data
can come at a rate as slow as one word every 4 clocks.

It is important to note that bytes in tx data are sent in big endian mode, following ethernet standards.

Tri-Mode Ethernet MAC v0.1 5

usr clk LLL�HH�LL�HH�L..L�HH�LL�HH�LL�HH�L..L�HH�LL�HH�LL�HHH

rx data UUU�VVVVVV�VVVVV..V�VVVVVV�VVVVVV�VVVVV..V�VVVVVVVVVVVVVV�UUUdata 1.1 data 1.x data 1.n data 2.1 data 2.x data 2.n

rx eof[0] LLLLLLLLLLLLLLLLLL..L�HHHHHH�LLLLLLLLLLLLL..L�HHHHHHHHHHHHHH�LLL

rx dv LLL�HHHHHHH�FFFF..�HHHHHHHHHHHHHHHH�FFFF..�HHHHHHHHHHHHHHH�LLL

rx ack LLLLLL�HHHH�FFFF..�HHHHHHHHHHHHHHHH�FFFF..F
LLLLLL�HHHHHH�LLL

Figure 2: Timing diagram of receiving two back to back 32-bit aligned packets, with the final word of the
second packet being interrupted by the user.

This means tx data[31:16] is sent first, followed by tx data[15:8], and so on. Care should be taken if value
smaller than 32 bits are written and their ordering.

2.3.3 Reception

The interface used to receive packets is a standard FIFO read interface, with the addition of an end-of-frame
port (rx eo f).

Name Width Direction Description
rx data 32 O Data received by the MAC from the phy. Valid when rx dv is high.
rx eof 4 O Used to indicate that rx data is the last word in the received frame.

Mapped to rx data just as tx eof maps to tx data.
rx dv 1 O Indicates that rx data is valid data that was received by the MAC.
rx ack 1 I Acknowledges the receipt of rx data and causes the MAC to move

to the next received word.

Figure 2 illustrating the timing of receiving a packet. If the user logic does not empty the reception fifo fast
enough, it will fill up and the the MAC will drop incoming frames.

2.3.4 Management

The following ports are used to read and write the MII management registers on the PHY. If they are left
unconnected, the MII management module will be optimized away by the synthesis tools.

Tri-Mode Ethernet MAC v0.1 6

usr clk LLL�HH�LL�HH�L....L�HH�LL�HH�LL�HH�L

miim phyad UUU�VVVVVVVVVVVVV....VVVVVVVVVVVVVVVVV�UUUUU

miim addr UUU�VVVVVVVVVVVVV....VVVVVVVVVVVVVVVVV�UUUUU

miim req LLL�HHHHHHHHHHHHH....HHHHHHHHHHHHHHHHH�LLLLL

miim we LLLLLLLLLLLLLLLLLL....LLLLLLLLLLLLLLLLLLLLLLLL

miim ack LLLLLLLLLLLLLLLLLL....LLLLLLLLL�HHHHHH�LLLLL

miim rdata UUUUUUUUUUUUUUUUUU....UUUUUUUUU�VVVVVV�UUUUU

Figure 3: Timing diagram of MII management read.

Name Width Direction Description
miim phyad 5 I Management address of the PHY to communicate with.
miim addr 5 I Address of PHY register to read/write to.
miim wdata 16 I Data to write to the PHY register.
miim we 1 I Write Enable, write miim wdata to the PHY register miim addr.
miim rdata 16 O Data read from the PHY register.
miim req 1 I Sends a read request to the PHY for miim addr.
miim ack 1 O Indicates that the requested operation (read or write) has been per-

formed. If a read was requested, miim rdata contains the data read
from the PHY.

The management interface is a simple memory-style read/write interface. To read a management reg-
ister, put the address on miim phyad and miim addr and hold miim req high until miim ack is raised.
miim rdata will hold the read data the cycle miim ack is raised. This is shown in Figure 3.

To perform a write to the management register, hold miim phyad, miim addr, and miim wdata valid
and miim we and miim req high until miim ack is asserted, at which point the write has been performed.
This is illustrated in Figure 4.

2.4 UDP/IP Wrapper

When the UDP/IP Wrapper is used, the ethertype port is removed and the following configuration ports are
added.

Tri-Mode Ethernet MAC v0.1 7

usr clk LLL�HH�LL�HH�L....L�HH�LL�HH�LL�HH�L

miim phyad UUU�VVVVVVVVVVVVV....VVVVVVVVVVVVVVVVV�UUUUU

miim addr UUU�VVVVVVVVVVVVV....VVVVVVVVVVVVVVVVV�UUUUU

miim req LLL�HHHHHHHHHHHHH....HHHHHHHHHHHHHHHHH�LLLLL

miim we LLL�HHHHHHHHHHHHH....HHHHHHHHHHHHHHHHH�LLLLL

miim ack LLLLLLLLLLLLLLLLLL....LLLLLLLLL�HHHHHH�LLLLL

miim wdata UUU�VVVVVVVVVVVVV....VVVVVVVVVVVVVVVVV�UUUUU

Figure 4: Timing diagram of MII management write.

Name Width Direction Description
src ip 32 I IP address to use as the source of trasmitted UDP/IP packets.
src port 16 I UDP port to use as the source of transmitted UDP/IP packets.
dst ip 32 I IP address to send UDP/IP packets to.
dst port 16 I UDP port to send UDP/IP packets to.
ttl 8 I Value for the initial Time-To-Live field of UDP/IP packets.

The transmission, reception, and management ports are all the same, except instead of a four bit tx eof,
there is a single bit tx eop, because the UDP wrapper currently does not support sending sub 32-bit aligned
packets.

2.5 PHY

The PHY ports are the standard GMII ports that should be tied directly to pins connected to an ethernet
PHY.

Tri-Mode Ethernet MAC v0.1 8

Name Width Direction Description
phy TXD 8 O

These pins are the standard MII/GMII interface pins described
numerous other places.

phy TX EN 1 O
phy TX ER 1 O
phy TX CLK 1 I
phy GTX CLK 1 O
phy RXD 8 I
phy RX DV 1 I
phy RX ER 1 I
phy RX CLK 1 I
phy MDC 1 O
phy MDIO 1 IO

3 Architecture

The MAC core is split up into three main components: tranmission, reception, and reconciliation. Fig-
urer̃effig:mac-blocks shows a block diagram of how these components work together. The transmission
blocks, txfifo, tx engine, and crc gen, are responsible for taking user data and sending it to the reconcilia-
tion module, which sends it to the ethernet phy. Likewise the recption blocks, rx usr if, rx pkt fifo, rxfifo,
rx engine, and crc chk, are responsible for taking data from the reconciliation layer, throwing away bad
frames, and presenting it to the user. The reconciliation layer handles with the GMII interface to the phy
and deals with differences between 10/100Mbit operation and gigabit operation.

I have tried to make the verilog as readable and nicely commented as possible, so hopefully the code is
self documenting. This section just gives an overview of how things work.

3.1 Reconciliation

The reconcilation modules provides a common interface to the rest of the core regardless of the speed of the
ethernet link. This is done by providing internal clocks to both the tx (int tx clk) and rx (int rx clk)
modules which can be used to send data to the reconciliation layer eight bits a clock.

If gmii is high we are operating at gigabit speeds and the phy sends and receives a full eight bits of data
each 8ns. For transmission, clk 125 is used as both int tx clk and sent as phy GTXCLK, synchronizing all
tranmission to that one 125 MHz clock. Likewise, all reception is synchronized to the 125 MHz phy RXCLK,
which is sent as int rx clk.

if gmii is low we are operating at 10 or 100 Mbits per second and only four bits of the databus to
the phy is used. For transmission, the phy expects four bits every cycle of the phy supplied phy TXCLK; to
maintain an eight bit interface with the rest of the mac, phy TXCLK is divided in half and sent as int tx clk.
Likewise, the phy sends four bits every phy RXCLK, so this is divided in half and sent as int rx clk.

3.2 Transmission

For transmission, tx engine runs a simple state machine which controls what is sent to the reconciliation
layer, pulling data from the configuration ports for the header, txfifo, a 36 bit wide asynchronous fifo, for
the payload, and crc gen for the final CRC checksum. txfifo is 36 bits wide to hold both the data and the
corresponding end of frame bits.

Tri-Mode Ethernet MAC v0.1 9

User RX

rx_data
rx_eof
rx_dv

rx_ack

miim_phyad

miim_addr

miim_wdata

miim_req

miim_we

miim_ack

miim_rdata

Management

phy_TXD

phy_TXEN

phy_TXER

phy_TXCLK

phy_GTXCLK

phy_reset_n

phy_RXD

phy_RXER

phy_RXDV

phy_RXCLK

phy_MDC

phy_MDIO

PHY Interface

gmii

promiscuous

jumboframes

src_mac_addr

dst_mac_addr

ethertype

tx_data

tx_eof

tx_we

tx_stop

User TX

Config

rx_engine

crc_chk

crc_gen

tx_engine

re
co

n
ci

li
at

io
n

rx_pkt_fifo

rxfifo

rx
_

u
sr

_
if

mii_mgmt

txfifo

Figure 5: Block diagram of the MAC core.

Tri-Mode Ethernet MAC v0.1 10

If txfifo runs out of data, tx engine raises phy TXER to drop the packet being sent and continues to drain
txfifo until an end-of-frame is indicated. It then moves on to the next packet in txfifo.

A frame being sent will also be dropped if the frame ends too early or too late. A frame must be 46 bytes
long to be sent. The jumobframes input changes when tx engine thinks a frame as grown too large and
should be dropped. If jumboframes is low, the frame will be dropped if larger than 1500 bytes, otherwise it
will be dropped if larger than 9000. Note that the phy may or may not accept frames larger than the standard
1500 bytes, but the MAC has no way of knowing this.

Once a packet has successfully been sent, tx engine wait for an inter frame gap, set by the IFG parameter
to the tx engine module, which defaults to 12 cycles and begin sending the next frame if it is available.

3.3 Reception

Reception is controlled by both rx engine and rx usr if. rx engine receives data from the phy and passes
all the data unaltered, except for the preamble, to the rxfifo, once a full packet is received it writes a ’1’ to
the single bit asynchronous fifo rx pkt fifo to indicate to rx usr if that the data in rxfifo is ready to send
to the user. If an error is detected during packet reception, either because phy RXER was asserted, the frame
was too short or too long, or the destination MAC address didn’t match and promiscuous was not asserted,
then a ’0’ is written to the rx pkt fifo to indicate to rx usr if that a bad packet is in rxfifo. rx usr if will
then drain the bad packet from rxfifo without ever presenting it to the user.

3.4 Management

Implementation of the management interface is just a straightforward state machine which performs the
requested read and write operations using the MII managment protocol. See section 22.2.2 of IEEE 802.3-
2008, or any phy’s datasheet, for a description of the protocol.

3.5 Clocking

There are six different clock domains within the MAC core, delineated by the dotted lines in Figure 5.

• usr clk This is the only clock that the user of the MAC needs to be aware of, as all user signals into
the MAC are synchronized to this clock. It can be any speed as long as it is fast enough as detailed in
Section 2.3.2.

• int tx clk This clock is used by all of the transmission modules and is generated by the reconcilia-
tion layer depending on the speed of the ethernet link. It is either clk 125 or half of phy TXCLK.

• int rx clk The reception version of int tx clk, also generated by the reconiliation layer. It is either
phy RXCLK or half of phy RXCLK.

• phy TXCLK/phy GTXCLK This is used to clock data out of the FPGA to the phy. phy TXCLK is supplied
by the phy and phy GTXCLK is clk 125.

• phy RXCLK This is used to clock data into the FPGA from the phy and is supplied by the phy.

• phy MDC This is used to clock data in and out of the phy’s management port. It is generated from
usr clk based on the USR CLK PERIOD parameter to the MAC core. It should have a period greater
than 400ns as per section 22.2.2.11 of IEEE 802.3-2008.

